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Abstract. In this paper, we propose a new adaptive H∞ synchronization strategy, called an adap-
tive fuzzy delayed feedback H∞ synchronization (AFDFHS) strategy, for chaotic systems with
uncertain parameters and external disturbances. Based on Lyapunov–Krasovskii theory, Takagi–
Sugeno (T–S) fuzzy model and adaptive delayed feedback H∞ control scheme, the AFDFHS
controller is presented such that the synchronization error system is asymptotically stable with a
guaranteed H∞ performance. It is shown that the design of the AFDFHS controller with adaptive
law can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated
by using some standard numerical packages. An illustrative example is given to demonstrate the
effectiveness of the proposed AFDFHS approach.
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1. Introduction

Chaos is a very interesting nonlinear phenomenon and has extensive applications in many
areas. Since the first work of Pecora and Carrol in 1990 [1], chaos synchronization has
received increasing attention due to its theoretical challenge and its great potential appli-
cations in secure communication, economics, signal generator design, chemical reaction,
biological systems, and so on [2]. In the literature, various synchronization schemes,
such as variable structure control [3], OGY method [4], parameters adaptive control [5,6],
observer-based control [7], active control [8,9], time-delay feedback approach [10], back-
stepping design technique [11,12], passivity-based control [13,14], and so on, have been
successfully applied to the chaos synchronization. Over the past several years, the delayed
feedback control approach [15] has received considerable attention. The use of time
delay in the feedback loop eliminates the need for explicitly determining any information

DOI: 10.1007/s12043-011-0239-4; ePublication: 13 January 2012 361



Choon Ki Ahn

about the underlying dynamics other than the period of the desired orbit. The authors
in [16–18] have used the linear and nonlinear parts of Lur’e chaotic systems to achieve
synchronization. Despite some advances in the delayed feedback control, in general, it is
difficult to get the corresponding linearized models along the system trajectory during the
drive-response procedure.

In recent years, fuzzy logic has received much attention as a powerful tool for the non-
linear control. Among various kinds of fuzzy methods, Takagi–Sugeno (T–S) fuzzy model
provides a successful method to describe certain complex nonlinear systems using some
local linear subsystems [19,20]. These linear subsystems are smoothly blended together
through fuzzy membership functions. It is therefore intuitive to believe that the T–S fuzzy
model can be used to develop synchronization methods via the delayed feedback control
without the assumption employed in [16–18]. Recently, a T–S fuzzy model-based delayed
feedback synchronization controller was proposed for chaotic systems in [21]. However,
this work was restricted to chaotic systems without unknown parameters and external
disturbances. In real situation, some disturbances and unknown parameters always exist
that may cause instability and poor performance. Therefore, knowledge of the adaptive
synchronization for chaotic systems with unknown parameters and external disturbances
is of considerable practical importance. To the best of our knowledge, however, for the
T–S fuzzy model-based adaptive H∞ delayed feedback synchronization of chaotic sys-
tems with both uncertain parameters and external disturbances, there is no result in the
literature so far, which still remains open and challenging.

In this paper, a new adaptive H∞ synchronization method based on the T–S fuzzy
model and the adaptive delayed feedback control is proposed for chaotic systems with
uncertain parameters and external disturbances. This method is called an adaptive fuzzy
delayed feedback H∞ synchronization (AFDFHS) method. By the proposed scheme, the
synchronization error system is asymptotically stable with a guaranteed H∞ norm bound.
Based on Lyapunov–Krasovskii stability theory, the design of the proposed controller can
be realized by solving a linear matrix inequality (LMI), which can be facilitated readily
via standard numerical algorithms [22].

This paper is organized as follows. In §2, we formulate the problem. In §3, an LMI
problem for the AFDFHS of chaotic systems is proposed. In §4, an application example
for Lorenz system is given, and finally, conclusions are presented in §5.

2. Problem formulation

Consider a class of uncertain chaotic systems represented by the following T–S fuzzy
model:

Fuzzy Rule i :
IF ω1 is μi1 and . . . ωs is μis, THEN

ẋ(t) = Ai x(t) + ηi (t) +
p∑

k=1

�k(x(t))θk, (1)

y(t) = Cx(t), (2)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the output vector, �k(x(t)) (k =
1, . . . , p): Rn → Rn is the smooth vector field satisfying the Lipschitz condition with
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the Lipschitz constant Lk , θk (k = 1, . . . , p) represents the unknown constant parameter
vector, Ai ∈ Rn×n and C ∈ Rm×n are known constant matrices, ηi (t) ∈ Rn denotes a
bias term which is generated by the fuzzy modelling procedure, ω j ( j = 1, . . . , s) is the
premise variable, μi j (i = 1, . . . , r, j = 1, . . . , s) is the fuzzy set that is characterized
by membership function, p is the number of unknown parameters, r is the number of IF–
THEN rules and s is the number of premise variables. Suppose the uncertain parameter
vector θk is norm bounded by the known positive constant ξk . Note that the fuzzy model
(1)–(2) can represent a general class of uncertain nonlinear system and we employ it for
fuzzy modelling of uncertain chaotic systems.

Using a standard fuzzy inference method (using a singleton fuzzifier, product fuzzy
inference and weighted average defuzzifier), the system (1)–(2) is inferred as follows:

ẋ(t) =
r∑

i=1

hi (ω)

[
Ai x(t) + ηi (t) +

p∑

k=1

�k(x(t))θk

]
, (3)

y(t) = Cx(t), (4)

where ω = [ω1, . . . , ωs], hi (ω) = �i (ω)/
∑r

j=1 � j (ω), �i : Rs → [0, 1] (i = 1, . . . , r)

is the membership function of the system with respect to the fuzzy rule i . hi can be
regarded as the normalized weight of each IF–THEN rule and it satisfies

hi (ω) ≥ 0,

r∑

i=1

hi (ω) = 1. (5)

The system (3)–(4) is considered as a drive system.
The synchronization problem of system (3)–(4) is considered by using the drive-

response configuration. According to the drive-response concept, the controlled fuzzy
response system is described by the following rules:

Fuzzy Rule i :

IF ω1 is μi1 and . . . ωs is μis, THEN

˙̂x(t) = Ai x̂(t) + ηi (t) +
p∑

k=1

�k(x̂(t))θ̂k(t) + u(t) + Gi d(t), (6)

ŷ(t) = Cx̂(t), (7)

where x̂(t) ∈ Rn is the state vector of the response system, ŷ(t) ∈ Rm is the output
vector of the response system, u(t) ∈ Rn is the control input, d(t) ∈ Rq is the external
disturbance, θ̂k(t) (k = 1, . . . , p) is the estimate of θk and Gi ∈ Rn×q is a known constant
matrix. The fuzzy response system can be inferred as

˙̂x(t) =
r∑

i=1

hi (ω)

×
[

Ai x̂(t) + ηi (t) +
p∑

k=1

�k(x̂(t))θ̂k(t) + u(t) + Gi d(t)

]
, (8)

ŷ(t) =Cx̂(t). (9)
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Define the synchronization error e(t) = x̂(t) − x(t). Then we obtain the synchronization
error system

ė(t) =
r∑

i=1

hi (ω)
[

Ai e(t) +
p∑

k=1

(�k(x̂(t))θ̃k(t) + �̃k(x̂(t), x(t))θk)

+ u(t) + Gi d(t)
]
, (10)

where �̃k(x̂(t), x(t)) = �k(x̂(t)) − �k(x(t)) and θ̃k(t) = θ̂k(t) − θk .
The objective of this study is to design the AFDFHS controller u(t) for the chaotic

system (3)–(4) with a guaranteed performance in the H∞ sense. Specifically, given a
prescribed level of disturbance attenuation γ > 0, find the AFDFHS controller u(t)
such that the synchronization error system (10) with d(t) = 0 is asymptotically stable
(limt→∞ e(t) = 0) and

∫ ∞

0
eT (t)Se(t)dt < γ 2

∫ ∞

0
dT (t)d(t)dt, (11)

under zero-initial conditions for all nonzero d(t) ∈ L2[0,∞), where L2[0,∞) is the
space of square integrable vector functions over [0,∞). In this case, the synchronization
error system (10) is said to be asymptotically stable with γ as the H∞ performance.

Remark 1. The H∞ norm [23] is defined as

‖Ted‖∞ =
√∫ ∞

0 eT (t)Se(t)dt
√∫ ∞

0 dT (t)d(t)dt
,

where Ted is a transfer function matrix from d(t) to e(t). For a given level γ > 0,
‖Ted‖∞ < γ can be restated in the equivalent form (11). If we define

H(t) =
∫ t

0 eT (σ )Se(σ )dσ
∫ t

0 dT (σ )d(σ )dσ
, (12)

the relation (11) can be represented by

H(∞) < γ 2. (13)

In §4, through the plot of H(t) vs. time, the relation (13) is verified.

3. Main result

In this section, we design the AFDFHS controller for the chaotic system (3)–(4). The
following theorem presents an LMI-based criterion to obtain the AFDFHS controller.
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Theorem 1. For given γ > 0, 1 > ζ > 0 and S = ST > 0, if there exist P = PT > 0,
Q = QT > 0, R = RT > 0, W = W T > 0, and M j such that

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[1, 1] −ζ M j C W PGi P I I

−ζCT MT
j −R −W 0 0 0 0

W −W − 1

τ
Q 0 0 0 0

GT
i P 0 0 −γ 2 I 0 0 0

P 0 0 0 −I 0 0

I 0 0 0 0 − 1
∑p

k=1 ξ 2
k L2

k

I 0

I 0 0 0 0 0 −S−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (14)

where

[1, 1] = AT
i P + P Ai + M j C + CT MT

j + τ Q + R,

for i, j = 1, 2, . . . , r , the synchronization error system (10) is asymptotically stable with
H∞ performance γ . Then the controller and the adaptive law for the AFDFHS are given
by

u(t) =
r∑

j=1

h j (ω)P−1 M j
[
(ŷ(t) − y(t)) − ζ(ŷ(t − τ) − y(t − τ))

]
, (15)

˙̂
θk(t) = −�T

k (x̂(t))Pe(t), k = 1, . . . , p, (16)

where τ > 0 is the chosen time delay or the propagation as it is in [16,17]. In addition,
θ̃k(t) is bounded for any bounded disturbance.

Proof . The AFDFHS controller can be constructed via the parallel distributed compen-
sation. The controller is described by the following rules:

Fuzzy Rule j :

IF ω1 is μ j1 and . . . ωs is μ js, THEN

u(t) = K j
[
(ŷ(t) − y(t)) − ζ(ŷ(t − τ) − y(t − τ))

]
, (17)

where K j ∈ Rn×m is the gain matrix of the controller for the fuzzy rule j . The fuzzy
controller can be inferred as

u(t) =
r∑

j=1

h j (ω)K j
[
(ŷ(t) − y(t)) − ζ(ŷ(t − τ) − y(t − τ))

]

=
r∑

j=1

h j (ω)K j C [e(t) − ζe(t − τ)] . (18)
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The closed-loop synchronization error system with the control input (18) can be written
as

ė(t)=
r∑

i=1

r∑

j=1

hi(ω)hj (ω)

[
(Ai + Kj C)e(t)−ζ Kj Ce(t −τ)

+
p∑

k=1

(�k(x̂(t))θ̃k(t)+ �̃k(x̂(t), x(t))θk)+Gi d(t)

]
.

(19)

First, to establish the H∞ performance for the synchronization error system (19), consider
the following Lyapunov–Krasovskii functional:

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (20)

where

V1(t) = eT (t)Pe(t) +
p∑

k=1

θ̃T
k (t)θ̃k(t), (21)

V2(t) =
∫ 0

−τ

∫ t

t+β

eT (α)Qe(α)dαdβ, (22)

V3(t) =
∫ t

t−τ

eT (σ )Re(σ )dσ, (23)

V4(t) =
[∫ t

t−τ

e(σ )dσ

]T

W

[∫ t

t−τ

e(σ )dσ

]
. (24)

The time derivative of V1(t) along the trajectory of (19) is

V̇1(t) = ė(t)T Pe(t) + eT (t)Pė(t) + 2
p∑

k=1

θ̃T
k (t) ˙̂

θk(t)

=
r∑

i=1

r∑

j=1

hi (ω)h j (ω)

×
{

eT (t)[AT
i P + P Ai + P K j C + CT K T

j P]e(t)

− ζeT (t)P K j Ce(t − τ) − ζeT (t − τ)CT K T
j Pe(t)

+ eT (t)PGi d(t) + dT (t)GT
i Pe(t)

+ 2e(t)T P
p∑

k=1

(�k(x̂(t))θ̃k(t) + �̃k(x̂(t), x(t))θk)

}

+ 2
p∑

k=1

θ̃T
k (t) ˙̂

θk(t).
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If we use the inequality X T Y + Y T X ≤ X T �X + Y T �−1Y , which is valid for any
matrices X ∈ Rn×m , Y ∈ Rn×m , � = �T > 0, � ∈ Rn×n , we have

e(t)T PGi d(t) + dT (t)GT
i Pe(t) ≤ γ 2dT (t)d(t)

+ 1

γ 2
e(t)T PGi G

T
i Pe(t), (25)

2e(t)T P�̃k(x̂(t), x(t))θk ≤ e(t)T P Pe(t)

+ θT
k �̃T

k (x̂(t), x(t))�̃k(x̂(t), x(t))θk

= e(t)T P Pe(t) + ‖�̃k(x̂(t), x(t))θk‖2

≤ e(t)T P Pe(t) + ξ 2
k L2

k‖e(t)‖2

= e(t)T [P P + ξ 2
k L2

k I ]e(t). (26)

Using (25) and (26), we obtain

V̇1(t) ≤
r∑

i=1

r∑

j=1

hi (ω)h j (ω)

×
{

eT (t)

[
AT

i P + P Ai + P K j C + CT K T
j P + P P +

p∑

k=1

ξ 2
k L2

k I

+ 1

γ 2
PGi G

T
i P

]
e(t) − ζeT (t)P K j Ce(t − τ) − ζeT (t − τ)CT

× K T
j Pe(t) + 2e(t)T P

p∑

k=1

�k(x̂(t))θ̃k(t) + γ 2dT (t)d(t)

}

+ 2
p∑

k=1

θ̃T
k (t) ˙̂

θk(t).

Since

2e(t)T P�k(x̂(t))θ̃k(t) = 2θ̃T
k (t)�T

k (x̂(t))Pe(t), (27)

we obtain

V̇1(t) ≤
r∑

i=1

r∑

j=1

hi (ω)h j (ω)

×
{

eT (t)

[
AT

i P + P Ai + P K j C + CT K T
j P + P P +

p∑

k=1

ξ 2
k L2

k I

+ 1

γ 2
PGi G

T
i P

]
e(t) − ζeT (t)P K j Ce(t − τ) − ζeT (t − τ)CT

× K T
j Pe(t) + γ 2dT (t)d(t)

}

+ 2
p∑

k=1

θ̃T
k (t)[ ˙̂θk(t) + �T

k (x̂(t))Pe(t)].
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The time derivative of V2(t) is

V̇2(t) = τeT (t)Qe(t) −
∫ t

t−τ

eT (σ )Qe(σ )dσ. (28)

Using the inequality [24]
[∫ t

t−τ

e(σ )dσ

]T

Q

[∫ t

t−τ

e(σ )dσ

]
≤ τ

∫ t

t−τ

e(σ )T Qe(σ )dσ, (29)

we have

V̇2(t) ≤ τeT (t)Qe(t) − 1

τ

[∫ t

t−τ

e(σ )dσ

]T

Q

[∫ t

t−τ

e(σ )dσ

]
. (30)

The time derivative of V3(t) is written as

V̇3(t) = e(t)T Re(t) − eT (t − τ)Re(t − τ). (31)

Since V̇4(t) yields the relation

V̇4(t) = [e(t) − e(t − τ)]T W

[∫ t

t−τ

e(σ )dσ

]

+
[∫ t

t−τ

e(σ )dσ

]T

W [e(t) − e(t − τ)], (32)

we have the derivative of V (t) as

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t)

≤
r∑

i=1

r∑

j=1

hi (ω)h j (ω)

×

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢⎣

e(t)
e(t − τ)∫ t

t−τ

e(σ )dσ

⎤

⎥⎥⎦

T ⎡

⎢⎣

(1, 1) −ζ P K j C W
−ζCT K T

j P −R −W

W −W − 1

τ
Q

⎤

⎥⎦

×

⎡

⎢⎢⎣

e(t)
e(t − τ)∫ t

t−τ

e(σ )dσ

⎤

⎥⎥⎦ − eT (t)Se(t) + γ 2dT (t)d(t)

⎫
⎪⎪⎬

⎪⎪⎭

+ 2
p∑

k=1

θ̃T
k (t)[ ˙̂θk(t) + �T

k (x̂(t))Pe(t)],

where

(1, 1) = AT
i P + P Ai + P K j C + CT K T

j P + P P

+
p∑

k=1

ξ 2
k L2

k I + 1

γ 2
PGi G

T
i P + τ Q + R + S. (33)
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If the adaptive law (16) is used and the following matrix inequality is satisfied
⎡

⎣
(1, 1) −ζ P K j C W

−ζCT K T
j P −R −W

W −W − 1
τ

Q

⎤

⎦ < 0, (34)

for i, j = 1, 2, . . . , r , we have

V̇ (t) <

r∑

i=1

r∑

j=1

hi (ω)h j (ω){−eT (t)Se(t) + γ 2dT (t)d(t)}

= −eT (t)Se(t) + γ 2dT (t)d(t). (35)

Since V (t) is radially unbounded with regard to θ̃k(t) (k = 1, . . . , p), the relation (35)
guarantees that θ̃k(t) is bounded for any bounded disturbance d(t). Integrating both sides
of (35) from 0 to ∞ gives

V (∞) − V (0) < −
∫ ∞

0
eT (t)Se(t)dt + γ 2

∫ ∞

0
dT (t)d(t)dt.

Since V (∞) ≥ 0 and V (0) = 0, we have the relation (11). From Schur complement, the
matrix inequality (34) is equivalent to

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{1, 1} −ζ P K j C W PGi P I I

−ζCT K T
j P −R −W 0 0 0 0

W −W − 1

τ
Q 0 0 0 0

GT
i P 0 0 −γ 2 I 0 0 0

P 0 0 0 −I 0 0

I 0 0 0 0 − 1
∑p

k=1 ξ 2
k L2

k

I 0

I 0 0 0 0 0 −S−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(36)

where

{1, 1} = AT
i P + P Ai + P K j C + CT K T

j P + τ Q + R.

If we let M j = P K j , eq. (36) is equivalently changed into the LMI (14). Then the gain
matrix of the control input u(t) is given by K j = P−1 M j .

Next, we show that, under the condition (14) of Theorem 1, the synchronization error
system (19) with d(t) = 0 is asymptotically stable. When d(t) = 0, we obtain

V̇ (t) < −eT (t)Se(t) ≤ 0 (37)

from (35). This guarantees

lim
t→∞ e(t) = 0 (38)

from Lyapunov–Krasovskii stability theory. This completes the proof. �
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Remark 2. The LMI problem given in Theorem 1 is to determine whether the solution
exists or not. It is called the feasibility problem. The LMI problem can be solved effi-
ciently by using the recently developed convex optimization algorithms [22]. In this paper,
in order to solve the LMI problem, we utilize MATLAB LMI Control Toolbox [25], which
implements state-of-the-art interior-point algorithms.

Remark 3. An especially powerful control scheme, which is called time-delayed feedback
control, was introduced by Pyragas [15]. It constructs a control input from the difference
of the present state of a given nondelayed system to its delayed value. For proper choices
of the time delay, the control input vanishes if the state to be stabilized is reached. Thus,
the method is noninvasive. This control scheme is easy to implement in an experimental
set-up and numerical calculation. It can stabilize fixed points as well as periodic orbits
even if the dynamics are very fast. The time-delayed feedback control can also be applied
to the adaptive control problem for uncertain dynamical systems without time-delay [26].
In this paper, we extend the time-delayed feedback control to the adaptive time-delayed
feedback H∞ control problem for uncertain chaotic systems represented by the T–S fuzzy
model without time-delay.

4. Numerical example

Consider the following Lorenz system:

ẋ1(t) = −10x1(t) + 10x2(t),

ẋ2(t) = 28x1(t) − x2(t) − x1(t)x3(t),

ẋ3(t) = x1(t)x2(t) − κx3(t). (39)

The parameter κ is assumed to be unknown. To apply the proposed scheme, we need the
T–S fuzzy model representation of the Lorenz system. By defining two fuzzy sets, we can

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
x 10-6

time(sec)

H
(t

)

Figure 1. The plot of H(t) vs. time.
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obtain the following fuzzy drive system that exactly represents the nonlinear equation of
the Lorenz system:

ẋ(t) =
2∑

i=1

hi (ω)[Ai x(t) + ηi (t) + �(x(t))θ ], (40)

where

A1 =
⎡

⎣
−10 10 0
28 −1 −d
0 d 0

⎤

⎦ , A2 =
⎡

⎣
−10 10 0
28 −1 d
0 −d 0

⎤

⎦ ,

η1(t) = η2(t) =
⎡

⎣
0
0
0

⎤

⎦ , �(x(t)) =
⎡

⎣
0
0

−x3(t)

⎤

⎦ , θ = κ. (41)
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Figure 2. State trajectories.
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The membership functions are

h1(ω) = 1

2

(
1 + x1

d

)
, h2(ω) = 1

2

(
1 − x1

d

)
. (42)

For the numerical simulation, we use the following parameters:

d = 30, τ = 0.2, ζ = 0.1, κ = 8

3
, (43)

C =
[

1 1 0
0 0 1

]
, G1 = G2 =

⎡

⎣
1
1
1

⎤

⎦ , S =
⎡

⎣
0.1 0 0
0 0.1 0
0 0 0.1

⎤

⎦ . (44)
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Figure 3. Synchronization errors.
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Applying Theorem 1 to the fuzzy system (40) with the H∞ performance γ = 0.1 yields

P =
⎡

⎣
2.9323 −1.4547 −0.9776

−1.4547 2.2975 −0.4132
−0.9776 −0.4132 2.0402

⎤

⎦ ,

M1 = M2 =
⎡

⎣
−48.7828 −12.0774
−93.8064 11.7248

0.2058 −133.0279

⎤

⎦ .

Figure 1 shows the plot of H(t) vs. time when d(t) = sin(10t). Figure 1 verifies H(∞) <

γ 2 = 0.01. This means that the H∞ norm from the external disturbance d(t) to the
synchronization error e(t) is reduced within the H∞ norm bound γ . Figure 2 shows state
trajectories for drive and response systems when the initial conditions are given by

⎡

⎣
x1(0)

x2(0)

x3(0)

⎤

⎦ =
⎡

⎣
15.8

−17.48
15.64

⎤

⎦ ,

⎡

⎣
x̂1(0)

x̂2(0)

x̂3(0)

⎤

⎦ =
⎡

⎣
13.8
−14
13

⎤

⎦ , θ̂ (0) = 0, (45)

and the external disturbance d(t) is given by

d(t) =
{

w(t), 0 ≤ t ≤ 10,

0, otherwise,

where w(t) means a Gaussian noise with mean 0 and variance 100. Figure 3 shows that the
proposed method reduces the effect of external disturbance d(t) on the synchronization
error e(t). In addition, it is shown that the synchronization error e(t) goes to zero after the
external disturbance d(t) disappears. The estimate θ̂ (t) of the unknown parameter θ is
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Figure 4. The estimate value θ̂ (t) of parameter θ .
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illustrated in figure 4, which shows that the estimate θ̂ (t) is bounded around target value
8/3. However, the estimate θ̂ (t) approaches rapidly to target value 8/3 after the external
disturbance d(t) disappears.

5. Conclusion

In this paper, we have proposed the AFDFHS controller, which is a new adaptive H∞
synchronization controller, for chaotic systems with uncertain parameter and external dis-
turbance. Based on Lyapunov–Krasovskii theory and LMI approach, the synchronization
error system was shown to be asymptotically stable with a guaranteed H∞ performance.
It was also shown that the AFDFHS controller can be determined by solving the delay-
dependent LMI. The synchronization for the Lorenz system was given to illustrate the
effectiveness of the proposed scheme. Finally, the proposed AFDFHS scheme has the
advantage that it can be effectively used to adaptive H∞ control and synchronization of
other uncertain nonlinear systems described by a T–S fuzzy model.

References

[1] L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1996)
[2] G Chen and X Dong, From chaos to order (World Scientific, Singapore, 1998)
[3] C C Wang and J P Su, Chaos, Solitons and Fractals 20, 967 (2004)
[4] E Ott, C Grebogi and J A Yorke, Phys. Rev. Lett. 64, 1196 (1990)
[5] Y Wang, Z H Guan and H O Wang, Phys. Lett. A312, 34 (2003)
[6] J H Park, Int. J. Nonlinear Sci. Numer. Simul. 6, 201 (2005)
[7] X S Yang and G Chen, Chaos, Solitons and Fractals 13, 1303 (2002)
[8] E Bai and K Lonngen, Phys. Rev. E8, 51 (1997)
[9] E W Bai and K E Lonngren, Chaos, Solitons and Fractals 11, 1041 (2000)

[10] O M Kwon and J H Park, Chaos, Solitons and Fractals 23, 445 (2005)
[11] X Wu and J Lu, Chaos, Solitons and Fractals 18, 721 (2003)
[12] J Hu, S Chen and L Chen, Phys. Lett. 339, 455 (2005)
[13] C K Ahn, Mod. Phys. Lett. B23, 3531 (2009)
[14] C K Ahn, Chin. Phys. Lett. 27, 010503 (2010)
[15] K Pyragas, Phys. Lett. A170, 421 (1992)
[16] M E Yalcin, J A K Suykens and J Vandewalle, Int. J. Bifurcation and Chaos 11, 1707 (2001)
[17] X X Liao and G R Chen, Int. J. Bifurcation and Chaos 13, 207 (2003)
[18] F L Zhu, Phys. Lett. A372, 223 (2008)
[19] T Takagi and M Sugeno, IEEE Trans. Syst., Man. Cyb. 15, 116 (1985)
[20] K Tanaka and M Sugeno, Fuzzy Sets Syst. 45, 135 (1992)
[21] H K Lam, W K Ling, H H Iu and S S H Ling, IEEE Trans. Circuits Syst. I 55, 893 (2008)
[22] S Boyd, L E Ghaoui, E Feron and V Balakrishnan, Linear matrix inequalities in systems and

control theory (SIAM, Philadelphia, PA, 1994)
[23] Anton Stoorvogel, The H∞ control problem: A state-space approach (Prentice Hall, London,

1992)
[24] E Noldus, Int. J. Control 41, 947 (1985)
[25] P Gahinet, A Nemirovski, A J Laub and M Chilali, LMI control toolbox (The Mathworks Inc.,

Natik, 1995)
[26] B Robert, H H C Iu and M Feki, J. Circuit. Syst. Comp. 13, 519 (2004)

374 Pramana – J. Phys., Vol. 78, No. 3, March 2012


	Robust chaos synchronization based on adaptive fuzzy delayed feedback H control
	Abstract
	Introduction
	Problem formulation
	Main result
	Numerical example
	Conclusion
	References



