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Abstract. This paper examines numerically the complex classical trajectories of the
kicked rotor and the double pendulum. Both of these systems exhibit a transition to
chaos, and this feature is studied in complex phase space. Additionally, it is shown that
the short-time and long-time behaviours of these two PT -symmetric dynamical models in
complex phase space exhibit strong qualitative similarities.
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1. Introduction

The past decade has seen intense activity in the field of PT quantum mechanics
[1,2]. A PT -symmetric Hamiltonian is said to have an unbroken PT symmetry if its
eigenfunctions are PT symmetric. A Hamiltonian having an unbroken PT symme-
try is physically relevant because its eigenvalues are real and it generates unitary
time evolution. Such a Hamiltonian defines a conventional quantum-mechanical
theory even though it may not be Dirac Hermitian. (A linear operator is Dirac
Hermitian if it remains invariant under the combined operations of matrix trans-
position and complex conjugation.) One can regard such non-Hermitian quantum-
mechanical systems as being complex extensions of conventional quantum systems.

Interesting features of PT quantum mechanics have motivated many recent stud-
ies of PT classical mechanics. In particular, solutions to Hamilton’s equations have
been examined for various systems whose Hamiltonians are PT symmetric. For
such systems the classical trajectories are typically complex [3–16]. These trajecto-
ries can lie in many-sheeted Riemann surfaces and often have elaborate topological
structure. When the PT symmetry of the quantum Hamiltonian is not broken, the

453



Carl M Bender et al

real-energy trajectories of the corresponding classical Hamiltonian are found to be
closed and periodic [8,13].

The purpose of this paper is to explore a new aspect of complex classical me-
chanics, namely, the complex extension of chaotic behaviour. Specifically, we study
two classical systems: the kicked rotor and the double pendulum. The kicked rotor
is a paradigm for studying the dynamics of chaotic systems described by time-
dependent Hamiltonians [17–19]. The planar double pendulum is also a dynamical
model whose classical motion is known to be chaotic [20]. The Hamiltonians for
both of these dynamical systems are PT symmetric so long as the parameters K
in the Hamiltonian for the kicked rotor (4) and g in the Hamiltonian for the double
pendulum (10) are real. We use a variety of computational tools in order to derive
the numerical results presented. The C programming language was used to imple-
ment a fully symplectic three-stage Gauss–Legendre Runge–Kutta method for the
simulation of the double pendulum, and standard functionality in Mathematica 6
was used in the study of the kicked rotor.

This paper is organized as follows: In §2 we define the kicked rotor and mention
briefly the transition associated with the disappearance of KAM trajectories. In §3
we describe the planar double pendulum and describe the analogous transition that
occurs for this dynamical system. We also reproduce the numerical work of Heyl
concerning flip times. This work reveals fractal-like structure in the plane of initial
conditions [21]. Then, in §§4 and 5 we study the short- and long-time behaviours
of the kicked rotor and the double pendulum in the complex domain, wherein
part of our objective is to identify indicators for the transition to chaos. We also
demonstrate that these two very different dynamical systems exhibit remarkably
similar features. Section 6 contains some concluding remarks.

2. Kicked rotor

The Hamiltonian for the kicked rotor is [17–19]

H =
p2

2I
+ K cos θ

∞∑

n=−∞
δ(t − nT ), (1)

where I is the moment of inertia of the rotor, p is its angular momentum and θ is the
angular coordinate. As the rotor turns, it is subjected to a periodic impulse, which is
applied at times t = 0, ±T, ±2T, . . . . The magnitude of the impulse is proportional
to K, a constant having dimensions of angular momentum. This Hamiltonian is
PT symmetric because it is symmetric separately under the operation of angular
reflection P, where P: θ → 2π − θ and P: p → −p, and the operation of time
reversal T , where T : t → −t, T : p → −p, and T leaves θ invariant. (Note that
angular reflection P is not the same as spacial reflection, which maps θ → π − θ.)

Hamilton’s equations of motion derived from (1) are

dθ

dt
=

p

I
and

dp

dt
= K sin θ

∞∑

n=0

δ(t − nT ). (2)
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These equations imply that the angular momentum p changes discontinuously at
each kick, but remains constant between kicks. As a result, the angle θ changes
linearly with time t between kicks and is continuous at each kick.

It is customary to denote pn = p(nT + 0+) and θn = θ(nT + 0+). Thus, pn is
the angular momentum and θn is the angle variable immediately after the nth kick.
These variables satisfy the discretized version of (2):

θn+1 = θn +
T

I
pn and pn+1 = pn + K sin θn+1. (3)

It is conventional to replace pn and K by the dimensionless quantities T
I pn → pn

and T
I K → K, in terms of which we rewrite (3) in dimensionless form as

θn+1 = θn + pn and pn+1 = pn + K sin θn+1. (4)

This system of difference equations, which depends on a single dimensionless real
parameter K, is known as the standard map. It is straightforward to show that the
standard map is area-preserving in p− θ phase space. The angular variable θn may
be taken modulo 2π. It then follows from the first equation in (4) that pn may also
be taken modulo 2π. Thus, (4) maps the two-dimensional torus onto itself.

The behaviour of the standard map (4) has been studied extensively
[17–19,22–26]. For small K the motion in phase space is bounded and chaotic
in some regions. As K increases, KAM trajectories disappear. At the critical value
Kc = 0.9716 . . . only the KAM trajectories with golden-mean winding number and
with inverse golden-mean winding number remain, and the motion in phase space
is still confined. For K > Kc the last bounding trajectory is destroyed and global
diffusion in phase space ensues. The critical behaviour near Kc has been studied
intensively [23,26].

Figure 1 illustrates the transition from subcritical to supercritical K for the
kicked rotor. In this figure we display four sets of superpositions of phase planes,
each consisting of 11 randomly chosen initial conditions θ0, p0. For each set of initial
conditions we allow the time variable n to range from 1 to several thousand. The
values of K for these four plots are 0.40, 0.97, 2.0 and 4.0.

In this paper we continue the classical dynamics described by the standard map
(4) into complex phase space [26a]. Our objective here is to generalize (4) into com-
plex phase space and thereby gain a better understanding of the critical behaviour
near Kc. To accomplish this we are motivated to extend the analysis of refs [3–16]
to time-dependent systems. Thus, we treat pn, θn and sometimes K as complex
variables, which we separate into real and imaginary parts as

pn = rn + isn, θn = αn + iβn, K = L + iM. (5)

Substituting (5) in (4), we obtain the complexified standard map

αn+1 = αn + rn, βn+1 = βn + sn,

rn+1 = rn + L sin αn+1 cosh βn+1 − M cos αn+1 sinhβn+1,

sn+1 = sn + L cos αn+1 sinhβn+1 + M sin αn+1 cosh βn+1. (6)

In §§4 and 5 we display and discuss the results of our numerical studies of (6).
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Figure 1. Four phase-plane views of the kicked rotor. In each of the figures
we display the superposition of the discrete phase-plane trajectories θn, pn for
11 randomly chosen initial conditions. The time variable n ranges from 1 to
several thousand. The values of K for the four plots are 0.40, 0.97, 2.0 and
4.0. The KAM surfaces separate Poincaré islands. As K increases, the KAM
surfaces gradually disappear and the trajectories diffuse into the phase plane.

Figure 2. Configuration of the double pendulum. The double pendulum
consists of two massless rods, each having a massive bob at the end. The
second rod hangs from the end of the first rod. The two rods swing in a plane
and are acted on by a homogeneous gravitational field of strength g.

3. Double pendulum

As shown in figure 2, a planar double pendulum consists of a massless rod of length
�1 with a bob of mass m1 at the lower end from which hangs a second massless rod
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of length �2 with a second bob of mass m2. This compound pendulum swings in a
homogeneous gravitational field g, and its motion is constrained to a plane.

In this paper we take both bobs to have unit mass and both rods to have unit
length. The coordinates of the bobs in terms of the angles from the vertical are

x1 = sin θ1, y1 = − cos θ1,

x2 = sin θ1 + sin θ2, y2 = − cos θ1 − cos θ2. (7)

Therefore, the potential and kinetic energies of the double pendulum are

V = −g cos θ2 − 2g cos θ1 and T = θ̇2
1 + 1

2 θ̇2
2 + θ̇1θ̇2 cos(θ1 − θ2). (8)

From these one can form the Lagrangian L = T − V , and then construct the
Hamiltonian for the system by a Legendre transform. We obtain

H =
p2
1 + 2p2

2 − 2p1p2 cos(θ1 − θ2)
2

[
sin2(θ1 − θ2) + 1

] − g cos θ2 − 2g cos θ1. (9)

This Hamiltonian is PT symmetric because it is symmetric separately under angu-
lar reflection P, where P: θ1,2 → 2π − θ1,2 and P: p1,2 → −p1,2, and time reversal
T , where T : t → −t, T : p1,2 → −p1,2, and T leaves θ1,2 invariant.

Hamilton’s equations are then

ṗ1 = −∂H

∂θ1
= −2g sin θ1 −

p1p2 sin(θ1 − θ2)
sin2(θ1 − θ2) + 1

+
[p2

1 + 2p2
2 − 2p1p2 cos(θ1 − θ2)] sin[2(θ1 − θ2)]

2[sin2(θ1 − θ2) + 1]2
,

θ̇1 =
∂H

∂p1
=

p1 − p2 cos(θ1 − θ2)
sin2(θ1 − θ2) + 1

,

ṗ2 = −∂H

∂θ2
= −g sin θ2 +

p1p2 sin(θ1 − θ2)
sin2(θ1 − θ2) + 1

− [p2
1 + 2p2

2 − 2p1p2 cos(θ1 − θ2)] sin[2(θ1 − θ2)]
2[sin2(θ1 − θ2) + 1]2

,

θ̇2 =
∂H

∂p2
=

2p2 − p1 cos(θ1 − θ2)
sin2(θ1 − θ2) + 1

. (10)

Note that this system conserves energy, unlike the kicked rotor whose Hamiltonian
(1) is time-dependent.

A beautiful and convincing numerical demonstration that the motion of the dou-
ble pendulum is complicated and elaborate was given by Heyl [21]. In his work
Heyl calculates for a given initial condition the time required for either pendulum
to exhibit a flip; that is, for either θ1 or θ2 to exceed the value π. This calculation
is then performed for the limited set of initial conditions for which p1(0) = 0 and
p2(0) = 0, and the initial values of θ1 and θ2 both range from 0 to 2π. Each pixel
in the initial θ1, θ2 plane is then coloured according to the length of the flip time.

We have applied Heyl’s approach to the double pendulum in (10) and have used
a Gauss–Legendre Runge–Kutta method, which is known to be fully symplectic

Pramana – J. Phys., Vol. 73, No. 3, September 2009 457



Carl M Bender et al

Figure 3. Flip times for initial conditions −π ≤ θ1(0) ≤ π, −π ≤ θ2(0) ≤ π,
p1(0) = 0 and p2(0) = 0. By a flip we mean that the angular position of either
bob exceeds π. This figure contains a 600 × 600 grid of pixels. The colour
of each pixel characterizes the behaviour of the double pendulum that arises
from the initial condition [θ1(0), θ2(0)]. If neither pendulum flips within 100
time units, then the pixel is black (the convex-lens-shaped region in the centre
of the figure). If one of the pendula flips in a short time, the pixel is coloured
dark gray. Longer flip times are indicated by lighter shades of gray. The
fractal-like structure throughout the diagram reveals the nontrivial dynamics
of the double pendulum. Because of parity symmetry this figure is symmetric
under the combined reflections θ1,2 → −θ1,2. Note that different pixels are
associated with different energies and that there is an elliptical region at the
centre of the figure in which flips are forbidden by energy considerations.

[31,32]. The results of this calculation are given in figure 3. This figure is com-
posed of a 600× 600 grid of pixels, where each pixel represents the initial condition
[θ1(0), θ2(0)]. If neither pendulum flips within 100 time units, then the pixel is as-
signed the colour black (the convex-lens-shaped region in the centre of the figure).
If either pendulum flips in a short time, the pixel is coloured dark gray, with longer
flip times being indicated by lighter shades of gray. Notice the fractal-like structure
throughout the diagram. The appearance of this complicated structure demon-
strates that even though the double pendulum has only two degrees of freedom, it
exhibits rich and nontrivial dynamics.

In analogy with the kicked rotor, there is a transition in the behaviour of the
double pendulum in which KAM surfaces disappear as a dimensionless parameter
increases beyond a critical value. This parameter, which measures the strength of
the gravitational field relative to the total energy, is defined as [20] γ ≡ m1g�1/E.
The transition occurs near γ = 0.1 and ref. [20] shows that at the transition the
last surviving KAM surface is the one with winding number being equal to the
golden mean. In figure 4 we plot the Poincaré sections generated from 25 randomly
chosen initial conditions for four different values of γ. The plot displays points in
the θ1, p1 plane when θ2 = 0 and simultaneously p2 > 0. A KAM surface is visible
when γ = 0.05, which is below the critical value. At γ = 0.1, which is near the
critical value, the KAM surface disappears. For the other two values of γ, which
are significantly greater than the critical value, the distribution of points in the plot
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Figure 4. Poincaré plots for the double pendulum for four values of γ. Below
the critical value, which is near γ = 0.1, the final KAM surface can still be
seen in the second plot, but this surface evaporates as γ increases past the
critical value and the points in the plot spread. This plot is analogous to that
in figure 1 for the kicked rotor.

becomes diffuse in a manner analogous to the behaviour displayed in figure 1 for
the kicked rotor in the K > Kc regime.

4. Short-time behaviour

Having reviewed some properties of the kicked rotor and the double pendulum, we
proceed to examine the behaviour of the solutions to the kicked rotor and double
pendulum equations of motion in the complex domain. To do so, we do not change
the form of the equations of motion, but rather we take complex initial conditions
and in some cases we allow the parameter K in (4) for the kicked rotor and the
parameter g in (10) for the double pendulum to take on complex values.

In this section we investigate the behaviour of these dynamical systems for short
times; that is, for up to 1000 time steps. For the kicked rotor, let us see what
happens if we take the initial momentum to be real, p0 = 0, but take the initial
angle to have a small imaginary component, θ0 = 1 + 0.0001i. In figure 5 we plot
the points θn in the complex-θ plane for n = 0, 1, 2, . . . , 1000 for a range of real
values of K around the critical point Kc = 0.9716 . . . . While it is difficult to see the
subtle change from subcritical to supercritical behaviour in real plots like those in
figure 1, a qualitative change in the complex behaviour is quite evident in figure 5
[33]. Below Kc the points tend to occupy a two-dimensional region in the complex
plane with some fine structure in it, but as K increases above Kc, the points tend
to coalesce along well-separated one-dimensional curves.
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Figure 5. Behaviour of the solution to the kicked rotor in the complex-θ
plane for a range of real values of K near Kc = 0.9716 . . . . We take as an
initial condition p0 = 0 and θ0 = 1 + 0.0001i and allow the system to evolve
for n = 1000 time steps. For each value of n we plot the complex value of θn

as a point in the complex-θ plane. The plot corresponding to the critical value
is highlighted. Note that there is a qualitative change in the nature of these
complex plots as K passes through its critical value. Specifically, the points
making up the plot become less uniform and more stratified. These changes
in behaviour are easier to observe than those in figure 1.

In analogy with figure 5, we plot in figure 6 a trajectory for the double pendulum
in the Re θ1, Im p2 plane as a function of t for 0 ≤ t ≤ 224. We take two values of γ,
one subcritical and one supercritical, and use the slightly complex initial conditions
θ1 = 3.1, θ2 = 3.1 + 0.0001i, p1 = 1.283 and p2 = 1.283 in which the numbers are
chosen at random. When γ is above the critical value the trajectory appears to
be confined to distinct narrow bands, somewhat similar to the stratified structures
that occur for K > Kc in figure 5 for the kicked rotor. However, when γ is below
the critical value, the trajectory spreads and is similar to the more diffuse behaviour
in figure 5 when K < Kc. It would be interesting to understand this stratification
analytically and also to understand its relation to KAM theory.

A more dramatic way to observe the transition from the subcritical to the super-
critical regions of the kicked rotor is to construct plots like that in figure 3 for the
double pendulum. We take p0 = 0 and take a range of complex initial values for
θ0: −π ≤ Re θ0 ≤ π and −π ≤ Im θ0 ≤ π. For each initial condition we allow the
kicked rotor to evolve up to a maximum of 400 time steps and determine the time
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Figure 6. Trajectory for the double pendulum resulting from the slightly
complex initial conditions θ1 = 3, θ2 = 3 + 0.0001i, p1 = p2 = 2. The
parameter γ is varied by changing the values of g and l1 and fixing m1 = E = 1.
This plot displays the trajectory in the Re θ1, Im p2 plane as a function of t
for 0 ≤ t ≤ 1000. The trajectory is confined to narrow bands when γ is above
the critical value and is more diffuse when it is below the critical value. In
this sense, this is similar to figure 5 for the kicked rotor.

step at which the real part of pn becomes infinite, if it does become infinite. (Here,
by infinite we mean that the numerical value of Re pn exceeds 10308, the largest
number that may be represented in double precision arithmetic.) We then perform
this calculation for each pixel on a 628×628 grid representing the complex-θ0 plane.
We assign a colour to each pixel corresponding to the time at which pn becomes
infinite: White indicates that pn does not become infinite within 400 time steps,
and darker shades indicate that pn becomes infinite after shorter times.

In figure 7 we display the results of this calculation for K = 0.01, 0.1, 0.2 and
0.6, and in figure 8 we display the results for this calculation for K = 0.9, 1.1, 2.0
and 5.0. Note that all these figures exhibit a complicated dendritic and fractal-like
structure. A number of qualitative changes occur as K increases past its critical
value. One obvious change is that the dendritic landscape becomes smoother and
more rounded as K increases. A less obvious change is that the regions in which
Re pn does not diverge for n ≤ 400 become connected when K exceeds Kc.
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Figure 7. Behaviour of the solution to the kicked rotor in the complex-θ
plane for four real values of K and a range of complex initial conditions:
p0 = 0, 0 ≤ Re θ0 ≤ 2π and 0 ≤ Im θ0 ≤ 2π. We allow the system to
evolve for at most n = 400 time steps. We assign a colour to each value of
θ0 according to the time at which Re pn becomes infinite (if it does so). The
graph of initial values of θ clearly has fractal structure. Distinctive changes
occur in the nature of these complex plots as K increases.

Instead of constraining K to be real, we can, of course, take K to be complex.
In figure 9 we take K = 0.6i. Note that the fractal structure in figures 7 and 8 is
preserved, but it is distorted and loses its left–right symmetry.

Rather than requiring that K passes its critical value on the real-K axis, it is
possible to go from a subcritical real value to a supercritical real value via a path
in the complex-K plane, as in figure 10. The pictures making up this figure are
constructed from values of K that lie on a semicircle of radius 0.6 and are centred at
the critical value Kc = 0.9716 . . . . In these figures we observe fractal structures like
those in figures 7–9, but they are slightly distorted. However, there is a significant
difference in that there is mottling (replacement of large patches of solid shading by
a speckled pattern) in the graphs where K is complex; this mottling is absent when
K is pure real or pure imaginary. (Note that when K is complex, PT symmetry is
broken if the T operator is antilinear, that is, it changes the sign of i [33a].

We have performed a related study for the double pendulum: We allow g to
be complex and repeat the numerical analysis of the short-time behaviour that we
used to produce figure 3. We find that as the imaginary part of g increases, the
fractal-like structure that we see in figure 3 gradually moves outward towards the
corners of the figure. Correspondingly, the boundaries between different coloured
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Figure 8. Same as in figure 7 with four higher values of K. There are many
qualitative changes that occur as K increases. For example, the dendritic
landscape that occurs for smaller values of K becomes smoother and more
rounded as K increases. A subtle but important change is that the white
regions, the regions in which Re pn does not diverge for n ≤ 400, become
connected when K exceeds Kc.

Figure 9. Same as in figures 7 and 8 except that K = 0.6i. Observe that
while many features of the fractal structure in figures 7 and 8 are preserved,
they are distorted and the left-right symmetry is destroyed.
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Figure 10. Same as in figure 7 except that the pictures making up this figure
are constructed from values of K lying on a semicircle of radius 0.6 and cen-
tred at the critical value Kc = 0.9716 . . . . In these figures we observe fractal
structures similar to those in figures 7–9, but slightly distorted. An impor-
tant difference between this figure and figures 7–9 is that there is mottling
(speckling) in those graphs where K is complex.

regions become smoother. To demonstrate this effect, we choose four different
complex values, g = 0.1+0.005i, 0.1+0.01i, 0.1+0.1i, 0.1i, and plot the results in
figure 11.

5. Long-time behaviour

In this section we study the long-time behaviour of the kicked rotor and the double
pendulum in complex phase space and we find that they share many qualitative
features in this regime as well. By long-time we mean roughly 104 to 105 time steps
or time units rather than the 103 time steps taken in §4. We find that the solutions
to the dynamical equations for these systems exhibit characteristic behaviours at
different time scales. On a long-time scale, which is determined by the imaginary
part of the initial value of an angle, the solutions tend to ring; that is, the envelope of
the solution grows and decays to zero with gradually changing periods. On a short-
time scale the solution exhibits a distinct and clearly identifiable rapid oscillation,
as we can see in figure 12.

We use the language of multiple-scale perturbation theory here [34] to describe
this oscillatory behaviour. However, for both the kicked rotor and the double

464 Pramana – J. Phys., Vol. 73, No. 3, September 2009



Chaotic systems in complex phase space

Figure 11. Short-time behaviour of the double pendulum with complex
g. Same as figure 3 but with g = 0.1 + 0.005i, 0.1 + 0.01i, 0.1 + 0.1i, 0.1i.
As Im g increases, the fractal-like structure seen in figure 3 moves outward
and towards the corners, and boundaries between differently coloured regions
become smooth. Unlike figure 3, there are no energetically-forbidden-flip
regions because there exist complex pathways from any pixel to a flipped
configuration.

pendulum the unperturbed equations are not linear, and thus the usual techniques
of multiple-scale perturbation theory cannot be applied directly in these cases.

Let us first examine the kicked rotor. As an initial condition we choose p0 = 0
and θ0 = 1 + iε. In figure 12 we take K = 0.6 and ε = 10−5 and we plot Re θn,
Im θn, Re pn and Im pn for 0 ≤ n <∼ 260 000. Note that while Re θn and Re pn

oscillate within almost constant boundaries, Im θn and Im pn appear to ring with
a period of order 1/ε. To verify this dependence on ε we take ε = 10−4, which is
ten times larger, and we do not change the other initial conditions or the value of
K. The result for Im θn is given in figure 13, where we see that the period of the
ringing is roughly ten times shorter than the period in figure 12. In both of these
figures the ringing eventually comes to an abrupt end, at which point the iteration
diverges and the amplitude of oscillation becomes infinite; this happens after about
2 1

2 rings in figure 12 and after about 11 rings in figure 13.
While the inverse of the imaginary part of θ0 appears to set the scale of the

ringing period, we have found that the length of the ringing period is also sensitive
to the value of K. In figure 14 we plot Im pn for four values of K: 0.5, 0.53, 0.55
and 1.0. For each of these values of K we plot Im pn until it diverges. The initial
conditions for each graph in figure 14 are the same as those in figure 12.

The double pendulum exhibits a long-time ringing behaviour that almost exactly
parallels that of the kicked rotor. We plot the long-time behaviour of Im θ1 for
g = 1 and initial conditions p1(0) = p2(0) = 0, θ1(0) = 1 and θ2(0) = 10−4i in
figure 15 and for θ2(0) = 2×10−4i in figure 16. Note that, like the kicked rotor, the
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Figure 12. Long-time behaviour of the kicked rotor with initial conditions
p0 = 0 and θ0 = 1 + 10−5i and K = 0.6. While the real parts of pn and θn

oscillate between almost constant boundaries, the imaginary parts of pn and θn

exhibit a synchronized ringing behaviour whose period is of order 1/ (Im θ0). In
addition to the long-time ringing there is a short-time oscillation that becomes
most pronounced when the amplitude of the ringing is at a maximum. After
about 2 1

2
rings the solution abruptly diverges and ceases to exist.

long-time scale ringing periods are determined by the imaginary part of the initial
value of an angle; here, the period is proportional to 1/ [Im θ2(0)].

6. Concluding remarks

Apart from making the obvious remark that the two nonlinear systems studied in
this paper exhibit very similar short-time and long-time dynamical behaviours, this
work indicates that studying the dynamics of classical chaotic systems in complex
phase space may help us to understand the onset of chaos. For example, for the
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Figure 13. Same as in figure 12 except that the imaginary part of θ0 is ten
times smaller: θ0 = 1 + 10−4i and only the imaginary part of θn is displayed.
In this figure the period of the ringing is ten times shorter and there are about
11 rings before the solution destabilizes and ceases to exist.

Figure 14. Long-time behaviour of Im pn for the kicked rotor for four differ-
ent values of K. The initial conditions are the same as in figure 12. Observe
that the period of ringing is quite sensitive to the value of K.

case of the kicked rotor, we observe in figure 5 a change in the complex behaviour
as K increases past Kc. Of course, the results reported here are empirical, but they
clearly underscore the need for a deeper analytical understanding of these models.
For example, an important unanswered question is, what is the analog of the KAM
theorem in complex phase space?

Finally, we remark that the kicked rotor is one of the rare time-dependent systems
whose quantum dynamics may be studied in detail. Indeed, the kicked rotor is a
paradigm for studying quantum chaos. It might be useful to explore the PT -
deformed analog of the work of Fishman et al and Jain [19] because (i) this would
be a nontrivial extension of PT quantum mechanics to time-dependent systems
and (ii) it may help to define and understand PT -symmetric quantum chaos.
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Figure 15. Long-time behaviour of the double pendulum with g = 1. The
initial conditions used for this plot are p1(0) = p2(0) = 0, θ1(0) = 1 and
θ2(0) = 10−4i. Like the kicked rotor, the imaginary part of an angle exhibits a
ringing behaviour whose characteristic period is of order 1/Im θ2(0). The plot
terminates when the solution to the equations of motion abruptly diverges.
Like the kicked rotor, there is also a short-time oscillation, but unlike the
kicked rotor, the positive and negative peaks are out of phase with one another.

Figure 16. Same as figure 15 but with θ2(0) = 2×10−4i. Note that doubling
the imaginary part of θ2(0) has the effect of roughly halving the ringing period.
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