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Abstract. We consider the linear equation of state for matter distributions that may
be applied to strange stars with quark matter. In our general approach the compact
relativistic body allows for anisotropic pressures in the presence of the electromagnetic
field. New exact solutions are found to the Einstein–Maxwell system. A particular case
is shown to be regular at the stellar centre. In the isotropic limit we regain the general
relativistic isothermal Universe. We show that the mass corresponds to the values obtained
previously for quark stars when anisotropy and charge are present.
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1. Introduction

In an early and seminal treatment the existence of quark matter in a stellar con-
figuration in hydrostatic equilibrium was suggested by Itoh [1]. Subsequently, the
analysis of strange stars consisting of quark matter has been considered in a number
of investigations. Strange stars are likely to form in the period of collapse of the
core regions of a massive star after a supernova explosion which was pointed out by
Cheng et al [2]. The core of a neutron star or proto–neutron star is a suitable envi-
ronment for conventional barotropic matter to convert into strange quark matter.
Regions of low temperatures and sufficiently high temperatures are required for a
first- or second-order phase transition which results in deconfined quark matter.
Another possibility suggested by Cheng and Dai [3] to explain the formation of a
strange star is the accretion of sufficient mass in a rapidly spinning dense star in
X-ray binaries which undergoes a phase transition. The behaviour of matter at
ultrahigh densities for quark matter is not well understood: in an attempt to study
the physics researchers normally restrict their attention to the MIT bag model (see

481



S D Maharaj and S Thirukkanesh

the treatments of Chodos et al [4], Farhi and Jaffe [5] and Witten [6]). The strange
matter equation of state is taken to be

p =
1
3
(ρ − 4B), (1)

where ρ is the energy density, p is the pressure and B is the bag constant. The
vacuum pressure B in the bag model equilibrates the pressure and stabilizes the
system; the constant B determines the quark confinement. The studies of Bombaci
[7], Li et al [8–10], Dey et al [11], Xu et al [12,13], Pons et al [14] and Usov [15]
directed at particular compact astronomical objects suggest that these could be
strange stars composed of quark matter with equation of state (1).

Mak and Harko [16] found an exact general relativistic model of a quark star that
admits a conformal Killing vector. This was shown by Komathiraj and Maharaj
[17] to be a part of a more general class of exact analytical models in the presence
of the electromagnetic field with isotropic pressures. The role of anisotropy was
investigated by Lobo [18], Mak and Harko [19] and Sharma and Maharaj [20] for
strange stars with quark matter with neutral anisotropic distributions. It is our
intention to study the Einstein–Maxwell system with a linear equation of state with
anisotropic pressures; this treatment would be applicable to strange stars which are
charged and anisotropic which is the most general case. In §2, we write the Einstein–
Maxwell system in an equivalent form using a coordinate transformation. A new
exact solution, in terms of simple elementary functions, is given in §3. In addition,
we demonstrate that it is possible to find a particular model which is nonsingular
at the stellar origin. The limit of vanishing anisotropy is studied in §4 and we
regain the isothermal Universes studied previously. In §5, we consider the physical
features of the new solutions, plot the matter variables for particular parameter
values and show that the quark star mass is consistent with earlier treatments.
Some concluding remarks are made in §6.

2. Basic equations

It is our intention to model the interior of a dense realistic star with a general
matter distribution. On physical grounds we can take the gravitational field to be
static and spherically symmetric. Consequently, we assume that the gravitational
field of the stellar interior is represented by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (2)

in Schwarzschild coordinates (xa) = (t, r, θ, φ). We consider the general case of
a matter distribution with both anisotropy and charge. Therefore, we take the
energy–momentum tensor for the interior to be an anisotropic charged imperfect
fluid; this is represented by the form

Tij = diag
(
−ρ − 1

2
E2, pr − 1

2
E2, pt +

1
2
E2, pt +

1
2
E2

)
, (3)

where ρ is the energy density, pr is the radial pressure, pt is the tangential pressure
and E is the electric field intensity. These physical quantities are measured relative
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to the comoving fluid velocity ui = e−νδi
0. The line element (2) and the imperfect

matter distribution (3) generate the Einstein field equations; the field equations
can be written in the form

1
r2

[
r(1 − e−2λ)

]′
= ρ +

1
2
E2, (4)

− 1
r2

(
1 − e−2λ

)
+

2ν′

r
e−2λ = pr − 1

2
E2, (5)

e−2λ

(
ν′′ + ν′2 +

ν′

r
− ν′λ′ − λ′

r

)
= pt +

1
2
E2, (6)

σ =
1
r2

e−λ(r2E)′, (7)

where primes denote differentiation with respect to r and σ is the proper charge
density. We are utilizing units where the coupling constant (8πG/c4) = 1 and the
speed of light c = 1. The Einstein–Maxwell system of equations (4)–(7) describes
the gravitational behaviour for an anisotropic charged imperfect fluid. For matter
distributions with pr = pt (isotropic pressures) and E = 0 (no charge) we regain
Einstein’s equations for an uncharged perfect fluid from (4) to (7).

An equivalent form of the field equations is obtained if we introduce new variables:
the independent variable x and new functions y and Z. These are given by

x = Cr2, Z(x) = e−2λ(r) and A2y2(x) = e2ν(r), (8)

which was earlier used by Durgapal and Bannerji [21] to describe neutron stars. In
terms of the new variables the line element (2) becomes

ds2 = −A2y2dt2 +
1

4CxZ
dx2 +

x

C
(dθ2 + sin2 θdφ2), (9)

where A and C are arbitrary constants. The transformation (8) simplifies the field
equations, and we find that the system (4)–(7) can be written as

1 − Z

x
− 2Ż =

ρ

C
+

E2

2C
, (10)

4Z
ẏ

y
+

Z − 1
x

=
pr

C
− E2

2C
, (11)

4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż =

pt

C
+

E2

2C
, (12)

σ2

C
=

4Z

x
(xĖ + E)2, (13)
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where dots denote differentiation with respect to the variable x.
The definition

m(r) =
1
2

∫ r

0

ω2ρ(ω)dω (14)

represents the mass contained within a radius r which is a useful physical quantity.
The mass function (14) has the form

m(x) =
1

4C3/2

∫ x

0

√
wρ(w)dw, (15)

in terms of the new variables introduced in (8).
On physical grounds we expect that the matter distribution for realistic stellar

matter should satisfy a barotropic equation of state pr = pr(ρ). For the investiga-
tions in this paper we assume the particular equation of state

pr = αρ − β, (16)

where α and β are constants. This is a simple linear relationship with desirable
physical features and contains models investigated previously. Now it is possible to
rewrite (10)–(13) as the system

ρ

C
=

1 − Z

x
− 2Ż − E2

2C
, (17)

pr = αρ − β, (18)

pt = pr + Δ, (19)

Δ = 4CxZ
ÿ

y
+ 2C

[
xŻ +

4Z

(1 + α)

]
ẏ

y
+

(1 + 5α)
(1 + α)

CŻ

−C(1 − Z)
x

+
2β

(1 + α)
, (20)

E2

2C
=

1 − Z

x
− 1

(1 + α)

[
2αŻ + 4Z

ẏ

y
+

β

C

]
, (21)

σ2

C
= 4

Z

x
(xĖ + E)2, (22)

where the quantity Δ = pt − pr is defined as the measure of anisotropy. The
Einstein–Maxwell equations as expressed in (17)–(22) is a system of six nonlinear
equations in terms of eight variables (ρ, pr, pt,Δ, E, σ, y, Z). The system (17)–(22)
is under-determined so that there are different ways in which we can proceed with
the integration process. Here we show that it is possible to specify two of the
quantities and generate an ordinary differential equation in only one dependent
variable in the integration process. This helps to produce a particular exact model.
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3. New solutions

In this paper, we choose physically reasonable forms for the gravitational potential
Z and electric field intensity E and then integrate the system (17)–(22) to generate
exact models. We make the specific choices

Z =
1

a + bxn
, (23)

E2

C
=

2k(d + 2x)
a + bxn

, (24)

where a, b, d, n and k are real constants. The potential Z is regular at the origin and
continuous in the stellar interior for a wide range of values for the parameters a, b
and n. The electric field intensity E is a bounded and decreasing function from the
origin to the surface of the sphere. Therefore, the forms chosen in (23) and (24) are
physically acceptable. These specific choices for Z and E simplify the integration
process. Equation (21) can be written as

ẏ

y
=

(a − 1)(1 + α)
4x

+
α

2
bnxn−1

(a + bxn)
+

(1 + α)b
4

xn−1

− β

4C
(a + bxn) − (1 + α)k

4
(d + 2x), (25)

where we have used (23) and (24). This has the advantage of being a first-order
linear equation in the gravitational potential y.

Equation (25) can be integrated in closed form to give

y = Dx
(a−1)(1+α)

4 (a + bxn)α/2 exp[F (x)], (26)

where we have defined

F (x) = −βx

4C

[
a +

bxn

n + 1

]
+

(1 + α)
4

[
bxn

n
− k(dx + x2)

]

and D is a constant of integration. Now from (23), (24) and (26) we can generate
an exact model for the system (17)–(22) as follows:

e2λ = a + bxn, (27)

e2ν = A2D2x
(a−1)(1+α)

2 (a + bxn)α exp[2F (x)], (28)

ρ

C
=

(a − 1) + bxn

x(a + bxn)
+

2bnxn−1

(a + bxn)2
− k(d + 2x)

(a + bxn)
, (29)

pr = αρ − β, (30)
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pt = pr + Δ, (31)

Δ =
1
4

{
4C(1 − a − bxn)

x(a + bxn)
− 4bCn(1 + 5α)xn−1

(1 + α)(a + bxn)2
+

8β

(1 + α)

−2[4a − bxn(n(1 + α) − 4)]2

(1 + α)x(a + bxn)3
(a2(βx − C(1 + α))

+bxn(C[(1 + α)(1 − bxn + dkx + 2kx2) − 2nα] + bβxn+1)
+a[C(1 + α)(1 + dkx + 2kx2 − 2bxn) + 2bβxn+1]

)

+
Cx

(a + bxn)

[
1
x2

(
(a − 1)(1 + α)

×
(

4bnαxn

(a + bxn)
+ (a(1 + α) − 5 − α)

)

+
4bnαxn(2a(n − 1) + (nα − 2)bxn)

(a + bxn)2

)

−2[a(1 + α)(a − 1 + bxn) + bxn(2nα − (1 + α))]
Cx2(a + bxn)

× (
C(1 + α)(k(dx + 2x2) − bxn)

)

+βx(a + bxn) + 4
(

(1 + α)(b(n − 1)xn−2 − 2k) − bnβxn−1

C

+
[C(1 + α)(k(d + 2x) − bxn−1) + β(a + bxn)]2

4C2

)]}
, (32)

E2

C
=

2k(d + 2x)
a + bxn

. (33)

The equations (27)–(33) represent an exact solution to the Einstein–Maxwell system
(17)–(22) for a charged imperfect fluid with the linear equation of state pr = αρ−β.
Exact solutions with the equation of state pr = αρ − β have been used to model
compact objects such as strange stars, as shown by Sharma and Maharaj [20],
and dark energy stars which are stable, as demonstrated by Lobo [18]. The exact
solution (27)–(33) may be regarded as a generalization of an isothermal Universe
model as we indicate in §4.

The solutions (27)–(33) admits singularities at the stellar centre in general. The
singularity may be avoided for particular parameter values. If we set a = 1 and
n = 1 then we generate the line element

ds2 = −A2D2(1 + bx)α exp[2F (x)]dt2

+(1 + bx)dr2 + r2(dθ2 + sin2 θdφ2), (34)

where F (x) = − βx
8C (2 + bx) + (1+α)

4 [bx − k(dx + x2)], with energy density

ρ

C
=

b(3 + bx)
(1 + bx)2

− k(d + 2x)
(1 + bx)

. (35)
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When k = 0 then the mass function (15) has the form

m(x) =
bx3/2

2C3/2(1 + bx)
. (36)

The expression of the mass function given in (36) represents an energy density
which is monotonically decreasing in the interior of the uncharged sphere and has
a finite value at the centre x = 0. This is physically reasonable and similar mass
profiles appear in the treatments of general relativistic equilibrium configurations of
Matese and Whitman [22], neutron star models of Finch and Skea [23], anisotropic
stellar solutions of Mak and Harko [24], and the dark energy stars of Lobo [18].
The gravitational potentials for charged imperfect fluid solution corresponding to
the line element (34) are nonsingular at the origin. The energy density ρ, the
measure of anisotropy Δ, and associated quantities pr and pt are also regular at
the centre for our choice of E. Note that the quantity Δ vanishes at the centre and
is a continuous function in the stellar interior. Hence the model (27)–(33) admits
a particular case corresponding to the parameter values a = 1 and n = 1 which is
regular and well-behaved at the origin.

4. Isotropic models

It is possible to consider the special case of isotropic pressures with pr = pt in the
uncharged limit for neutral matter. When k = 0 (E = 0), eq. (32) becomes

Δ =
1
4

{
4C(1 − a − bxn)

x(a + bxn)
− 4bCn(1 + 5α)xn−1

(1 + α)(a + bxn)
+

8β

(1 + α)

−2[4a − (n(1 + α) − 4)bxn]
(1 + α)x(a + bxn)3

[a2(βx − C(1 + α))

−bxn(C((1 + α)(bxn − 1) + 2nα) − bβxn+1)

+a(C(1 + α)(1 − 2bx2) + 2bβxn+1)] +
C

x(a + bxn)

×
[
4b(n − 1)(1 + α)xn + (a − 1)(1 + α)(a(1 + α) − 5 − α)

+
4(a − 1)bnα(1 + α)xn

(a + bxn)
− 4bnβxn+1

C

+
4bnα[2a(n − 1) + b(nα − 2)xn]xn

(a + bxn)2

+
[aβx − b(C(1 + α) − βx)xn]2

C2

+
2

C(a + bxn)
(a(1 + α)(a − 1 + bxn)

+(2nα − (1 + α))bxn)((C(1 + α) − βx)bxn − aβx)
]}

. (37)
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Equation (37) shows that the model remains anisotropic even for the uncharged
case in general. However, for particular parameter values we can show that Δ = 0
in the relevant limit in the general solution (27)–(33). If we set b = 0 and β = 0
then (37) becomes

Δ =
C(a − 1)

4ax

{
a(1 + α)2 − [

4α + (1 + α)2
]}

.

From the above equation we easily observe that when a = 1 and a = 1+ 4α
(1+α)2 the

measure of anisotropy Δ vanishes. When a = 1 we note from (29) that ρ = 0 since
b = k = 0. Consequently, we cannot regain an isotropic model when a = 1; to avoid
vanishing energy densities we must have a �= 1 when Δ = 0. When a = 1 + 4α

(1+α)2

we obtain the expressions

ds2 = −Br
4α

1+α dt2 +
[
1 +

4α

(1 + α)2

]
dr2 + r2(dθ2 + sin2 θdφ2), (38)

ρ =
4α

[4α + (1 + α)2]r2
, pr(= pt) = αρ, (39)

where we have set A2D2aα = B and C = 1.
The above solution was obtained by Saslaw et al [25] in their investigation of

general relativistic isothermal Universes. Since ρ ∝ r−2 we may interpret (38) as
a relativistic cosmological metric since there is an analogy that can be made with
the well-known Newtonian solution as pointed out by Chandrasekhar [26]. In the
Newtonian case the density ρ is finite in the core regions and decreases according to
r−2 in the rest of the model. The total mass and region of the isothermal model are
infinite. Therefore, the line element (38) may be interpreted as a relativistic inho-
mogeneous Universe where the nonzero pressure balances gravity. Saslaw et al [25]
point out that (38) may be viewed as the asymptotic state of the Einstein–de Sitter
cosmological model, in an expansion-free state as t → ∞, where the hierarchial dis-
tribution of matter has clustered over large scales. As t → ∞ the Einstein–de Sitter
model tends to the line element (38) and the Universe evolves into an isothermal
static sphere given by the exact solution (38) with equation of state pr(= pt) = αρ.
To move from the pressure-free Einstein–de Sitter model to the static isothermal
metric requires a phase transition for condensation through clustering of galaxies.
It is interesting to observe that Chaisi and Maharaj [27] and Maharaj and Chaisi
[28] have obtained generalized anisotropic static isothermal spheres by utilizing a
known isotropic metric to produce a new anisotropic solution of the Einstein field
equations. Govender and Govinder [29] have found simple nonstatic generalizations
of isothermal Universes which describe an isothermal sphere of galaxies in quasi-
hydrostatic equilibrium with heat dissipation driving the system to equilibrium.
Hence the imperfect relativistic fluid, in the presence of electromagnetic field, with
the linear equation of state pr = αρ − β, is a generalization of the conventional
isothermal model with a clear physical basis.
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5. Physical analysis

We observe that the exact solution (27)–(33) may be singular at the origin in
general. The solution should be used to describe the gravitational field of the
envelope in the outer regions of a quark star or a dark energy star with equation
of state pr = αρ − β. To avoid the singularity at the centre, another solution is
required to model the stellar core. Examples of core–envelope models in general
relativity are provided by Thomas et al [30], Tikekar and Thomas [31] and Paul
and Tikekar [32]. We observe that if a = 1 then the imperfect charged solution
(27)–(33) admits the line element

ds2 = −A2D2(1 + bxn)α exp[2F (x)]dt2 + (1 + bxn)dr2

+r2(dθ2 + sin2 θdφ2), (40)

where F (x) = − βx
4C

[
1 + bxn

n+1

]
+ (1+α)

4

[
bxn

n − k(dx + x2)
]
. It is clear from (40) that

the gravitational potentials are nonsingular at the origin for all values of n. If n = 1
then there is no singularity in the energy density ρ and the model is nonsingular
throughout the stellar interior. However, if n �= 1 then the gravitational potential
(40) may continue to be well-behaved but singularities may appear in the matter
variables at the origin r = 0.

By considering a particular example we can demonstrate graphically that the
matter variables are well-behaved outside the origin. Figures 1–5 represent the
energy density, the radial pressure, the tangential pressure, the electric field inten-
sity and the measure of anisotropy, respectively. Note that solid lines represent
uncharged matter (E = 0) and dashed lines include the effect of charged matter
E �= 0. To plot the graphs we choose the parameters n = 2, a = 1, b = 40, k =
2, d = 1, α = 1

3 and β = 0.3569, and the stellar boundary is set at r = 1. From
figures 1 and 2 we see that both the energy density ρ and the radial pressure pr

are continuous throughout the interior, increasing from the centre to r = 0.32 and
then decreasing. Note that the radial pressure is zero at the boundary r = 1 for
the uncharged case E = 0. We observe from figure 3 that the tangential pressure
pt is continuous and well-behaved in the interior regions. From figure 4 we observe

0.2 0.4 0.6 0.8 1.0
r

�2

2

4

6

8

10

Ρ

E � 0

E � 0

Figure 1. Energy density.
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0.2 0.4 0.6 0.8 1.0
r

�1

1

2

3

pr

E � 0

E � 0

Figure 2. Radial pressure.

0.2 0.4 0.6 0.8 1.0
r

�4

�2

2

4

6

8

10

pt

E � 0

E � 0

Figure 3. Tangential pressure.

that the electric field intensity E is decreasing smoothly throughout the stellar in-
terior. We can observe from figure 5 that the measure of anisotropy is continuous
throughout the stellar interior. The behaviour of Δ outside the centre is likely
to correspond to physically realistic matter in the presence of the electromagnetic
field. Figure 5 has a profile similar to the anisotropic boson stars studied by Dev
and Gleiser [33] and the compact anisotropic relativistic spheres of Chaisi and Ma-
haraj [34]. From the figures we can see that the effect of electric field intensity E
is to produce lower values for ρ, pr, pt and Δ.

We now show that the solutions generated in this paper can be used to describe
realistic compact objects for the case n = 1 as an example from §3. In our model,
when n = 1, the parameter b has the dimension of length−2, k has the dimension
of length−4 and d has the dimension of length2. For simplicity, we introduce the
transformations

b̃ = bR2, k̃ = kR4, d̃ = dR−2,

where R is a parameter which has the dimension of a length. Under these trans-
formations the energy density becomes
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0.2 0.4 0.6 0.8 1.0
r

1

2

3

4

E2

Figure 4. Electric field intensity.
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�4
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10

�

E � 0

E � 0

Figure 5. Measure of anisotropy.

ρ =
1

R2

[
b̃

1 + b̃y
+

2b̃
(1 + b̃y)2

− k̃(d̃ + 2y)
1 + b̃y

]
, (41)

where we have set C = 1 and y = r2/R2. Then the mass contained within a radius
s has the form

M =
1
2

{
b̃ s3

R2

1 + b̃ s2

R2

2k̃

3b̃
s3

R2
+ k̃(2 − b̃d̃)

[
s

b̃2
− R

b̃5/2
arctan

[√
b̃

s

R

]]}
.

For simplicity we set b̃d̃ = 2 so that these expressions reduce to

ρ =
1

R2

[
b̃

1 + b̃y
+

2b̃
(1 + b̃y)2

− 2k̃

b̃

]
, (42)

M =
1
2

[
b̃

1 + b̃ s2

R2

− 2k̃

3b̃

]
s3

R2
, (43)
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which are simple forms. It is now easy to calculate the density and mass for
particular parameter values from (42) and (44). For example, when s = 7.07
km, R = 1 km, b̃ = 0.03 and k̃ = 0.00045, we obtain the mass ME=0 = 1.436M�
for uncharged matter and ME �=0 = 0.240M� for charged matter. Note that the
value of the mass for uncharged matter is consistent with the strange star models
previously found by Sharma and Maharaj [20] and Dey et al [11]. We have shown
that the inclusion of the electromagnetic field affects the value for the mass M . It is
also possible to relate our results to other treatments. If we set s = 9.46 km, R = 1
km, b̃ = 0.35 and k̃ = 0.00045, then we obtain the mass ME=0 = 3.103M� for
uncharged matter and ME �=0 = 2.858M� for charged matter. These values for the
mass are similar to charged quark stellar models generated by Mak and Harko [16]
which describe a unique static charged configuration of quark matter admitting a
one-parameter group of conformal symmetries. We have shown that the presence of
anisotropy and charge in the matter distribution yields masses which are consistent
with other investigations.

6. Discussion

We have investigated the Einstein–Maxwell system of field equations with a strange
matter equation of state for anisotropic matter distributions when the electromag-
netic field is present. A new class of exact solutions was found to this system
of nonlinear equations. A particular case is nonsingular at the centre of the star
and the gravitational potentials and matter variables are well-behaved. When the
anisotropy vanishes we regain the general relativistic isothermal Universe of Saslaw
[25]. This is an extension of the conventional Newtonian isothermal Universe with
density ρ ∝ r−2. The plots of the matter variables indicate that the solution may
be used to model quark stars, at least in the envelope if singularities are present
at the origin. We calculated the mass in a special case (a = 1, n = 1) and showed
that this value is consistent with strange matter distributions of Dey et al [11],
Mak and Harko [16] and Sharma and Maharaj [20]. Ours is a particular solution
of the Einstein–Maxwell system with the nice feature containing the isothermal
Universe in the isotropic limit. A more comprehensive study of other possible solu-
tions admitted, with the strange matter equation of state, is likely to produce other
interesting results.

We now comment on some physical aspects of the solutions found which are of
interest. Firstly, there are a number of free parameters in the solution which may
be determined by imposing boundary conditions. The solutions may be connected
to the Reissner–Nordstrom exterior spacetime

ds2 = −
(

1 − 2M

r
+

Q2

r2

)
dt2 +

(
1 − 2M

r
+

Q2

r2

)−1

dr2

+r2
(
dθ2 + sin2 θdφ2

)
(44)

with the interior spacetime (40) across the boundary r = s where M and Q represent
the total mass and the charge of the star, respectively. This gives the conditions
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1 − 2M

s
+

Q2

s2
= A2D2

{
[1 + b(Cs2)n]α exp[2F (Cs2)]

}
(

1 − 2M

s
+

Q2

s2

)−1

= 1 + b(Cs2)n.

Therefore, the continuity of the metric coefficients across the boundary r = s is
maintained. The number of free parameters (A,C,D, b and n) ensures that these
necessary conditions are satisfied. Secondly, from the graphs generated for the
energy density and the pressure we observe that these quantities are negative in
regions close to the centre. We believe that this feature arises because of the strange
equation of state that we have imposed on the model. To avoid negative matter
variables we would need to use another solution to describe the core with our
solution serving as the envelope. This is the situation that arises in the gravastar
model of Mazur and Mottola where the singular core is replaced by a de Sitter
condensate through a phase transition near the location of the event horizon. This
idea has been utilized by Lobo [18] to demonstrate that dark energy stars are
stable. Thirdly, the example of this paper and other exact solutions found for the
Einstein–Maxwell system suggests that the negativity of the energy density and
the pressure close to the centre may be a generic feature of charged stellar models.
It appears that the existence of the electric field always makes the energy density
negative in regions close to the centre of the sphere. This suggests the conjecture
that a charged fluid cannot satisfy the energy conditions near the stellar centre is
possible. This will be the topic of a separate investigation.
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