PRAMANA — journal of physics © Indian Academy of Sciences

Vol. 70, No. 5 May 2008 pp. 797–804

Heavy flavor baryons in hypercentral model

BHAVIN PATEL^{1,*}, AJAY KUMAR RAI² and P C VINODKUMAR¹

¹Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, India ²Department of Applied Sciences and Humanities, Sardar Vallabhai National Institute of Technology, Surat 395 007, India

*Corresponding author. E-mail: azadpatel2003@yahoo.co.in; azadpatel@rediffmail.com

MS received 21 September 2007; revised 5 December 2007; accepted 9 January 2008

Abstract. Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index ν . The ground state masses of the heavy flavor, $J^P = \frac{1}{2}^+$ and $\frac{3}{2}^+$ baryons are computed for different power indices, ν starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index $\nu = 1.0$.

Keywords. Hypercentral constituent quark model; charmed and beauty baryons; hyper-Coulomb plus power potential.

PACS Nos 12.39.Jh; 12.39.pn; 14.20.kp

1. Introduction

Recent experimental observations of a family of doubly charm baryons by SELEX, Fermi Laboratory and most of the other charm baryons discovered by CLEO experiments have generated much interest in the spectroscopy of heavy flavor baryons both experimentally and theoretically [1–9]. Baryons are not only interesting systems to study the quark dynamics and their properties, but also interesting from the point of view of simple systems to study three-body problems. Though there are many theoretical attempts to study the baryons [1–3], many of them do not provide the form factors that reproduce experimental data correctly [1]. For this reason alternate schemes to describe the properties of baryons particularly in the heavy flavor sector are being attempted [1,2]. Here, we employ the hypercentral approach to study the three-body problem, particularly the baryons constituting single- and double-charm (beauty) quarks. The confinement potential is assumed in the hypercentral coordinates of the Coulomb plus power potential form. It should be mentioned that, hypercentral potential contains the effects of the three-body force. As suggested by lattice QCD calculations [10] the three-body forces are important in the study of baryons. For the low-lying resonance states it is a good approximation to simply take the space wave functions of the hyper-Coulomb potential instead of seeking explicit numerical solution with hyperfine interaction.

2. The model

A correct treatment for three-body system is a longstanding problem in physics particularly in atomic and nuclear physics. Other three-body systems of interest are the baryons containing three quarks. Typical interactions among the three quarks are studied using the two-body quark potentials such as the Igsur Karl model, the Capstic and Isgur relativistic model, the chiral model, the harmonic oscillator model etc. The three-body effects are incorporated in such models through two-body and three-body spin-orbit terms. To describe the baryon as a bound state of three constituent quarks, we define the configuration of three particles by two Jacobi vectors $\vec{\rho}$ and $\vec{\lambda}$ as [11]

$$\vec{\rho} = \frac{1}{\sqrt{2}}(\vec{r_1} - \vec{r_2}); \quad \vec{\lambda} = \frac{1}{\sqrt{6}}(\vec{r_1} + \vec{r_2} - 2\vec{r_3}) \tag{1}$$

such that

$$m_{\rho} = \frac{2m_1m_2}{m_1 + m_2}; \quad m_{\lambda} = \frac{3m_3(m_1 + m_2)}{2(m_1 + m_2 + m_3)}.$$
 (2)

Here m_1 , m_2 and m_3 are the constituent quark masses. Further, we introduce the hyperspherical coordinates which are given by the angles

$$\Omega_{\rho} = (\theta_{\rho}, \phi_{\rho}); \quad \Omega_{\lambda} = (\theta_{\lambda}, \phi_{\lambda}) \tag{3}$$

together with the hyper-radius, x and hyperangle ξ respectively defined by

$$x = \sqrt{\rho^2 + \lambda^2}; \quad \xi = \arctan\left(\frac{\rho}{\lambda}\right).$$
 (4)

As a model Hamiltonian for baryons, we consider

$$H = \frac{P_{\rho}^2}{2m_{\rho}} + \frac{P_{\lambda}^2}{2m_{\lambda}} + V(\rho, \lambda) = \frac{P^2}{2m} + V(x).$$
(5)

Here the potential V is not purely a two-body interaction but it contains three-body interactions also. If the interaction potential is hypercentral symmetric such that the potential depends on the hyper-radius x only, then the hyper-radial Schrödinger equation corresponds to the Hamiltonian given by eq. (5), and can be written as

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{5}{x}\frac{\mathrm{d}}{\mathrm{d}x} - \gamma(\gamma+4)\right]\phi_\gamma(x) = -2m[E - V(x)]\phi_\gamma(x),\tag{6}$$

where γ is the grand angular quantum number and m is the reduced mass [12] which is defined as

798 Pramana – J. Phys., Vol. 70, No. 5, May 2008

Heavy flavor baryons in hypercentral model

 Table 1. Quark model parameters.

Quark masses	$m_u = 338 \text{ MeV}$ $m_d = 350 \text{ MeV}$ $m_s = 400 \text{ MeV}$ $m_c = 1394 \text{ MeV}$ $m_b = 4510 \text{ MeV}$
Model parameter Spin–spin interaction parameters	$b = 13.6, \frac{\beta}{m\tau} = 1 \text{ (MeV)}^{\nu}$ A = 140.7 MeV $\alpha = 850 \text{ MeV}$

$$m = \frac{2m_{\rho}m_{\lambda}}{m_{\rho} + m_{\lambda}} \tag{7}$$

and potential V(x) is taken as [13]

$$V(x) = -\frac{\tau}{x} + \beta x^{\nu} + \kappa + V_{\text{hyp}}(x).$$
(8)

Here the hyperfine part of the potential $V_{hyp}(x)$ is given by [2]

$$V_{\rm hyp}(x) = A e^{-\alpha x} \sum_{i \neq j} \sigma_i \cdot \sigma_j, \qquad (9)$$

where τ, β, A, κ and α are potential parameters. The energy eigenvalue corresponding to eq. (6), is obtained using virial theorem for different choices of the potential index ν . The trial wave function is taken as the hyper-Coulomb radial wave function given by [2]

$$\psi_{\omega\gamma} = \left[\frac{(\omega - \gamma)!(2g)^6}{(2\omega + 5)(\omega + \gamma + 4)!}\right]^{1/2} (2gx)^{\gamma} \mathrm{e}^{-gx}.$$
(10)

The baryon mass in this hypercentral model is given by

$$M_{\rm B} = \sum_{i=1}^{3} m_i + \langle H \rangle. \tag{11}$$

The constituent quark mass parameters employed in our calculations are listed in table 1 along with other potential parameters. Here κ is found to be proportional to the reduced mass, the flavor-color degree of freedom $(N_{\rm f}N_{\rm c})$ as well as the strong coupling constant $\alpha_{\rm s}$ as

$$\kappa \propto N_{\rm c} N_{\rm f} m \alpha_{\rm s} (1 + O(\alpha_{\rm s}^2)). \tag{12}$$

It is found that the proportionality constant is equal to 0.41 for the qqQ systems and 0.32 for the QQq systems. The computations are repeated for different choices of ν , from 0.5 to 2.0 and the hyperfine interaction energy is treated perturbatively.

Pramana – J. Phys., Vol. 70, No. 5, May 2008 799

Figure 1. Variation of spin average masses with potential index ν for single heavy baryons. (a) Single charm baryons, (b) single beauty baryons.

Figure 2. Variation of spin average masses with potential index ν for doubly heavy baryons. (a) Doubly charm baryons, (b) doubly beauty baryons.

3. Results and discussion

800

The behavior of the spin average mass of the baryons with the potential index ν in the case of qqQ and qQQ systems are shown in figures 1a,b and 2a,b respectively. It is found that the mass of the baryon decreases as ν increases and attains a saturated value beyond $\nu = 1$. It may be due to the saturation of effective interquark interaction within the baryon at potential index $\nu > 1.0$. The computed results for the ground state mass of the single charm, single beauty and double heavy baryons are presented in tables 2, 3 and 4 respectively. We compare our masses at this saturation ($\nu > 1.0$) with other theoretical and existing experimental values.

Our results are found to be in accordance with the known experimental as well as with other theoretical predictions in the case of single heavy baryons at the mass saturation. The variation with the PDG average values are just around 1.0% in the case of single charm baryons and less than 1.0% in the case of single beauty baryons. Consistency has also been found in the case of double heavy systems with the potential index $\nu \geq 1.0$ with other theoretical predictions. Our results at the

Pramana – J. Phys., Vol. 70, No. 5, May 2008

Heavy flavor baryons in hypercentral model

Baryon	$\mathrm{P.I.}(\nu)$	$J^P = \frac{1}{2}^+$	Others	$J^P = \frac{3}{2}^+$	Others
$\frac{\Sigma_c^{++}}{(uuc)}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	2539 2463 2432 2425 2425 2425	2453 [14] 2454±0.18 [4] 2460±80 [15]	2607 2527 2495 2488 2488	$^-$ 2518±0.6 [4] 2440±70 [15]
$\frac{\Sigma_c^+}{(udc)}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	2557 2480 2449 2442 2442	2451 [14] 2439 [16] 2453 [17] 2452 [18] 2448 [19] 2453 ± 0.4 [4]	2627 2546 2514 2507 2507	$\begin{array}{c} -\\ 2518 \ [16] \\ 2520 \ [17] \\ 2538 \ [18] \\ 2505 \ [19] \\ 2518 \pm 2.3 \ [4] \end{array}$
$\begin{array}{c} \Sigma_c^0\\ (ddc) \end{array}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	$2575 \\ 2497 \\ 2466 \\ 2460 \\ 2460 \\ 2460$	2452 [14] 2454±0.18 [4]	2647 2566 2533 2526 2526	_ 2518±0.5 [4]
$\Xi_c^+ (usc)$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	2630 2550 2518 2512 2512	$\begin{array}{c} 2466 \ [14] \\ 2481 \ [16] \\ 2468 \ [17] \\ 2473 \ [18] \\ 2496 \ [19] \\ 2468 {\pm} 0.4 \ [4] \\ 2410 {\pm} 50 \ [15] \end{array}$	$2708 \\ 2625 \\ 2591 \\ 2584 \\ 2584$	$\begin{array}{c} -\\ 2654 \ [16]\\ 2650 \ [17]\\ 2680 \ [18]\\ 2633 \ [19]\\ 2647{\pm}1.4 \ [4]\\ 2550{\pm}80 \ [15] \end{array}$
$\frac{\Xi_c^0}{(dsc)}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	2648 2567 2536 2529 2529	2472 [14] 2471±0.4 [4]	2729 2645 2611 2604 2604	$_{2646\pm1.2}^{-}$ [4]
Ω_c^0 (ssc)	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	2723 2639 2607 2601 2601	$\begin{array}{c} 2698 \ [14] \\ 2698 \ [16] \\ 2710 \ [17] \\ 2678 \ [18] \\ 2701 \ [19] \\ 2680 {\pm} 70 \ [15] \\ 2698 {\pm} 2.6 \ [4] \end{array}$	2813 2726 2692 2684 2684	$\begin{array}{c} -\\ 2768 \ [16]\\ 2770 \ [17]\\ 2752 \ [18]\\ 2759 \ [19]\\ 2660{\pm}80 \ [15] \end{array}$

Table 2. Single charm baryon masses (masses are in MeV).

saturated value of the masses are very close (< 1.0% difference) to the theoretical predictions of Gershtain *et al* [23] and Kiselev *et al* [21]. However, the predictions of Albertus *et al* [20] are found to be nearer to our predicted masses at $\nu = 0.5$. The recent observations of SELEX group [24] on double charmed baryonic state

Pramana - J. Phys., Vol. 70, No. 5, May 2008

801

Baryon	$\mathrm{P.I.}(\nu)$	$J^P = \frac{1}{2}^+$	Others	$J^P = \frac{3}{2}^+$	Others
Σ_b^+	0.5	5862	5820 [14]	5889	
(uub)	0.7	5803	5770 ± 70 [15]	5828	5780 ± 70 [15]
	1.0	5778	$5808^{+02}_{-2.3} \pm 1.7$ [9]	5801	$5829^{+1.6}_{-1.8} \pm 1.7$ [9]
	1.5	5772		5793	
	2.0	5772		5793	
Σ_b^-	0.5	5908	5820 [14]	5937	-
(ddb)	0.7	5849	$5816^{+01}_{-01} \pm 1.7$ [9]	5875	$5837^{+2.1}_{-1.9} \pm 1.7$ [9]
	1.0	5823		5847	
	1.5	5816		5840	
	2.0	5816		5840	
Σ_b^0	0.5	5884	5624 [14]	5912	_
(udb)	0.7	5825	5805 [3]	5851	5834[3]
	1.0	5800	5820 [17]	5823	5850 [17]
	1.5	5793	5847 [18]	5816	5871 [18]
	2.0	5793	5789 [19]	5816	5844 [19]
Ξ_b^0	0.5	5974	5624 [14]	6007	_
(usb)	0.7	5913	5805 [3]	5943	5963 [3]
	1.0	5887	5820 [17]	5915	5980 [17]
	1.5	5880	5847 [18]	5907	5959 [18]
	2.0	5880	5789 [19]	5907	5967[19]
			5760 ± 60 [15]		5900 ± 80 [15]
Ξ_{h}^{-}	0.5	5997	5800 [14]	6032	_
(dsb)	0.7	5936		5967	
	1.0	5909		5938	
	1.5	5903		5931	
	2.0	5903		5931	
Ω_{h}^{-}	0.5	6092	6040 [14]	6132	_
(ssb)	0.7	6028	6065 [3]	6064	6088 [3]
. /	1.0	6001	6060 [17]	6035	6090 [17]
	1.5	5994	6040 [18]	6028	6060 [18]
	2.0	5994	6037 [19]	6028	6090 [19]
			5990±70 [15]		6000 ± 70 [15]

 Table 3. Single beauty baryon masses (masses are in MeV)

 Ξ_{cc}^+ and Ξ_{cc}^{*+} are found to be very close to our predicted values. Our predicted mass difference $M(\Xi_{cc}^{*+}) - M(\Xi_{cc}^+)$ of 73.3 MeV is extremely close to the lattice QCD prediction of 76.6 MeV [15]. New experimental results are expected to provide the masses of many of the double heavy flavor charm and beauty baryons.

Pramana - J. Phys., Vol. 70, No. 5, May 2008

Baryon	$\mathrm{P.I.}(\nu)$	$J^P = \frac{1}{2}^+$	Others	$J^P = \frac{3}{2}^+$	Others
$\frac{\Xi_{cc}^{++}}{(ccu)}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	$3583 \\ 3505 \\ 3475 \\ 3468 \\ 3468 \\ 3468$	$\begin{array}{c} 3612^{+17} \ [20] \\ 3620 \ [16] \\ 3480 \ [21] \\ 3740 \ [22] \\ 3478 \ [23] \end{array}$	3660 3578 3545 3537 3537	$\begin{array}{c} 3706^{+23} \ [20] \\ 3727 \ [16] \\ 3610 \ [21] \\ 3860 \ [22] \\ 3610 \ [23] \end{array}$
$\begin{array}{c} \Xi_{cc}^+ \\ (ccd) \end{array}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	3604 3525 3494 3487 3487	$\begin{array}{c} 3541 \ [24] \\ 3605 \pm 23 \ [25] \\ 3620 \ [16] \\ 3480 \ [21] \\ 3740 \ [22] \\ 3478 \ [23] \\ 3443 \ [24] \end{array}$	3684 3601 3567 3560 3560	3685 ± 23 [25] 3727 [16] 3610 [21] 3860 [22] 3610 [23] 3520 [24]
Ω_{cc}^+ (ccs)	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	3687 3604 3572 3566 3566	3702^{+41} [20] 3778 [16] 3590 [21] 3760 [22] 3590 [23] 3733 ± 09 [25]	3782 3693 3659 3651 3651	$\begin{array}{c} 3783^{+22} \ [20] \\ 3872 \ [16] \\ 3690 \ [21] \\ 3900 \ [22] \\ 3690 \ [23] \\ 3801 {\pm} 09 \ [25] \end{array}$
$\begin{array}{c} \Xi_{bb}^{0} \\ (bbu) \end{array}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	10105 10032 10004 9998 9998	$\begin{array}{c} 10197^{+10}_{-17} \ [20] \\ 10202 \ [16] \\ 10090 \ [21] \\ 10300 \ [22] \\ 10093 \ [23] \\ 10314 \pm 47 \ [26] \end{array}$	$10170 \\ 10092 \\ 10060 \\ 10053 \\ 10053$	$\begin{array}{c} 10236^{+09}_{-17} \ [20] \\ 10237 \ [16] \\ 10130 \ [21] \\ 10340 \ [22] \\ 10133 \ [23] \\ 10333 \pm 45 \ [26] \end{array}$
Ξ_{bb}^{-} (bbd)	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	10137 10063 10034 10028 10028	$\begin{array}{c} 10197^{+10}_{-17} \ [20] \\ 10202 \ [16] \\ 10090 \ [21] \\ 10300 \ [22] \\ 10314 \pm 47 \ [26] \end{array}$	10206 10127 10095 10087 10087	$\begin{array}{c} 10236^{+09}_{-17} \ [20]\\ 10237 \ [16]\\ 10130 \ [21]\\ 10340 \ [22]\\ 10333 {\pm} 45 \ [26] \end{array}$
$\begin{array}{c} \Omega_{bb}^{-} \\ (bbs) \end{array}$	$0.5 \\ 0.7 \\ 1.0 \\ 1.5 \\ 2.0$	$10269 \\ 10190 \\ 10160 \\ 10154 \\ 10154$	$\begin{array}{c} 10260^{+14}_{-34} \ [20] \\ 10359 \ [16] \\ 10180 \ [21] \\ 10340 \ [22] \\ 10180 \ [23] \\ 10365 {\pm} 40 \ [26] \end{array}$	10355 10270 10236 10228 10228	$\begin{array}{c} 10297^{+05}_{-28} \ [20] \\ 10389 \ [16] \\ 10200 \ [21] \\ 10380 \ [22] \\ 10200 \ [23] \\ 10383 {\pm} 39 \ [26] \end{array}$

Table 4. Doubly heavy baryon masses (masses are in MeV).

Acknowledgement

One of the authors (PCV) acknowledges the financial support from the University Grants Commission, Government of India under a Major Research Project F. 32-31/2006 (SR).

Pramana - J. Phys., Vol. 70, No. 5, May 2008

803

References

- [1] M M Giannini et al, Euro. Phys. J. A12, 447 (2001)
- [2] E Santopinto *et al*, *Euro. Phys. J.* A1, 307 (1998)
- [3] D Ebert et al, Phys. Rev. D72, 034026 (2005); D66, 014008 (2002)
- [4] Particle Data Group: W M Yao et al, J. Phys. G33, 01 (2006)
- [5] CLEO Collaboration: S B Athar et al, Phys. Rev. D71, 051101 (2005)
- [6] CDF & Collaboration: Eduarev Dela Cruz Burelo, Nucl. Phys. (Proc. Suppl.) B156, 244 (2006)
- [7] CLEO Collaboration: P Avery et al, Phys. Rev. Lett. 75, 4364 (1995)
- [8] Bhavin Patel et al, Proc. DAE-BRNS Symp. on Nucl. Phys. 51, 509 (2006)
- [9] CDF Collaboration: I V Gorelov, arXiv:hep-ex/0701056 (2007)
- [10] Gunnar S Bali, Phys. Rep. 343, 1 (2001)
- [11] Yu A Simonov, Sov. J. Nucl. Phys. 3, 461 (2001)
- [12] M V N Murthy, Z. Phys. C31, 81 (1986)
- [13] Ajay Kumar Rai et al, J. Phys. G31, 1453 (2005)
- [14] Amand Faessler et al, Phys. Rev. D73, 094013 (2006)
- [15] K C Bowler et al, Phys. Rev. D57, 6948 (1998)
- [16] D Ebert, R N Faustov, V O Galkin and A P Martynenko, Phys. Rev. D66, 014008 (2002)
- [17] R Roncaglia, D B Lichtenberg and E Predazzi, Phys. Rev. D52, 1722 (1995)
- [18] N Mathur, R Lewis and R M Woloshyn, *Phys. Rev.* D66, 014502 (2002)
- [19] H Garcilazo et al, J. Phys. **G34**, 961 (2007)
- [20] C Albertus et al, arXiv:hep-ph/0610131v1 (2006)
- [21] V V Kiselev and A K Likhoded, Phys. Usp. 45, 455 (2002)
- [22] S P Tong et al, Phys. Rev. **D62**, 054024 (2000)
- [23] S S Gershtein et al, Phys. Rev. **D62**, 054021 (2000)
- [24] SELEX Collaboration: M Mattson et al, Phys. Rev. Lett. 89, 112001 (2002)
- [25] R Lewis et al, Phys. Rev. **D64**, 094509 (2001)
- [26] A Ali Khan et al, Phys. Rev. D62, 054505 (2000)