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Abstract. We study the physical features of a class of exact solutions for cold compact
anisotropic stars. The effect of pressure anisotropy on the maximum mass and surface red-
shift is analysed in the Vaidya–Tikekar model. It is shown that maximum compactness,
red-shift and mass increase in the presence of anisotropic pressures; numerical values are
generated which are in agreement with observation.
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1. Introduction

The description of very compact astrophysical objects has been a key issue in rel-
ativistic astrophysics for the past decades. Recent observations suggest that there
are many compact objects such as X-ray pulsar Her X-1, X-ray burster 4U 1820-30,
millisecond pulsar SAX J 1808.4-3658, X-ray sources 4U 1728-34, PSR 0943+10
and RX J185635-3754, whose estimated masses and radii are not compatible with
the standard neutron star models. The conjecture that quark matter might be the
true ground state of hadrons [1,2], inspired many authors to describe such stars
as strange stars [3,4], quark–diquark stars [5], hybrid stars [6] and boson/boson–
fermion stars [7–11].

As densities of such compact objects are normally above nuclear matter den-
sity, theoretical studies suggest that pressures within such stars are likely to be
anisotropic, i.e., at the interior of such stars there are two different kinds of pres-
sures, viz., the radial pressure and the tangential pressure [12]. Different solutions
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of Einstein’s field equations for anisotropic fluid distribution with spheroidal geome-
try, with varying forms of the energy density, have been obtained by many workers
[13–16]. So far, the role of pressure anisotropy has been extensively studied in
the context of high red-shift values and stability of compact objects (see for ex-
ample [17–19] and references therein). Bowers and Liang [20] have pointed out
that anisotropy may also change the limiting values of the maximum mass of com-
pact stars. The objective of the present work is to investigate the role of pressure
anisotropy on the maximum masses of compact objects. To this end, in §2, we
modify a solution obtained by Mukherjee et al [21] to incorporate anisotropy. The
class of solutions, capable of describing cold compact stars, was obtained by using
an ansatz given by Vaidya and Tikekar [22]. For physically relevant anisotropic
stars, the regularity and matching conditions for the solutions are developed. In §3
we discuss the role of anisotropy and calculate the maximum possible masses for
this class of solutions in §4. We conclude by summarizing our results in §5.

2. Anisotropic model

We take the line element for a static spherically symmetric cold compact star in
the standard form

ds2 = −e2γ(r)dt2 + e2μ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where γ(r) and μ(r) are the two unknown metric functions. Assuming the energy
momentum tensor for an anisotropic star in the most general form

Tij = diag (−ρ, pr, p⊥, p⊥), (2)

the field equations are obtained as

ρ =

(
1 − e−2μ

)
r2

+
2μ′e−2μ

r
, (3)

pr =
2γ′e−2μ

r
−

(
1 − e−2μ

)
r2

, (4)

Δe2μ = γ′′ + γ′2 − γ′μ′ − γ′

r
− μ′

r
−

(
1 − e2μ

)
r2

, (5)

where we have set p⊥ − pr = Δ. In (3)–(5), ρ is the energy density, pr is the radial
pressure, p⊥ is the tangential pressure and Δ is the measure of pressure anisotropy
in this model. To solve this system we use the ansatz [22]

e2μ =
1 + λr2/R2

1 − r2/R2
, Ψ = eγ(r), x2 = 1 − r2

R2
. (6)

Then (5) takes the form

(1 + λ − λx2)Ψxx + λxΨx + λ(λ + 1)Ψ − ΔR2(1 + λ − λx2)2

(1 − x2)
Ψ = 0.

(7)
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To solve (7) we assume that the form of the anisotropic parameter Δ is

Δ =
αλ2(1 − x2)

R2(1 + λ − λx2)2
,

and if we make a further transformation z =
√

λ/(λ + 1)x, (7) becomes

(1 − z2)Ψzz + zΨz + (Λ + 1)Ψ = 0, (8)

where α = 1−Λ/λ is a constant. This has the general solution (see [21] for details)

eγ = A

[
cos[(β + 1)ζ + δ]

β + 1
− cos[(β − 1)ζ + δ]

β − 1

]
, (9)

where β =
√

Λ + 2, ζ = cos−1 z, and A and δ are constants which can be determined
from the boundary conditions. The physical parameters in this model are then
obtained as

ρ =
1

R2(1 − z2)

[
1 +

2
(λ + 1)(1 − z2)

]
, (10)

pr = − 1
R2(1 − z2)

[
1 +

2zΨz

(λ + 1)Ψ

]
, (11)

p⊥ = pr + Δ, (12)

Δ =
αλ

R2

[
(λ + 1)(1 − z2) − 1
(λ + 1)2(1 − z2)2

]
, (13)

which together with (6) and (9) comprise an exact solution to the Einstein field
equations. Note that

M(b) =
(1 + λ)b3

2R2(1 + λ b2

R2 )
(14)

is the total mass of a star of radius b.
We impose the following conditions in our model:

• At the boundary of the star the interior solution should be matched with the
Schwarzschild exterior solution, i.e.,

e2γ(r=b) = e−2μ(r=b) =
(

1 − 2M

b

)
. (15)

• The radial pressure pr should vanish at the boundary of the star which gives

Ψz(zb)
Ψ(zb)

= − (1 + λ)
2zb

, (16)
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where z2
b = (λ/(λ + 1))(1 − b2/R2). From (9) we have

ψz

ψ
=

(β2 − 1)√
(1 − z2)

[
sin[(β − 1)ζ + δ] − sin[(β + 1)ζ + δ]

(β + 1) cos[(β − 1)ζ + δ] − (β − 1) cos[(β + 1)ζ + δ]

]
.

(17)

Combining (16) and (17) we obtain

tan δ =
τ cot ζb − tan(βζb)

1 + τ cot ζb tan(βζb)
, (18)

where τ = λ(1−2α)+1
β(1+λ) and ζb = cos−1 zb.

• pr ≥ 0 inside the star gives

Ψz

Ψ
≤ − (1 + λ)

2z
. (19)

• Using (10)–(12) we get

dpr

dρ
=

z(1 − z2)2(Ψz/Ψ)2 − (1 − z2)Ψz/Ψ) − αλz(1 − z2)
z(1 − z2)(1 + λ) + 4z

, (20)

dp⊥
dρ

=
dpr

dρ
+

αλ

(1 + λ)

[
(λ + 1)(1 − z2) − 2
(λ + 1)(1 − z2) + 4

]
. (21)

We choose the parameters so that the causality conditions are not violated,
i.e., dpr/dρ,dp⊥/dρ ≤ 1 in this model.

The above conditions are imposed for a physically reasonable model.

3. Physical applications

It was shown earlier by Sharma et al [23] that the Vaidya–Tikekar model provides a
simple method of studying systematically the maximum mass problem of compact
isotropic (α = 0) stars. To see the effect of anisotropy (α �= 0) in this model, we
may adopt the following methods.

We may choose the isotropic compactness ui = (M/b)iso and λ as input parame-
ters and using (14) calculate y = b2/R2. For a given central or surface density, (10)
can be used to calculate the value of R which then determines the radius b = R

√
y

or mass M (from (14)). The parameter δ is fixed by choosing a specific value of α.
Since mass and radius are fixed, this method is not suitable to analyze the role of
anisotropy on the maximum mass problem. However, (20) and (21) can be utilized
to show that stars with the same masses and radii may have different anisotropic
compositions if the equations of state are modified accordingly. In §3.1, we con-
sider two such examples to show how the composition may change in the presence
of anisotropy. Note that the variations of the slopes of dpr/dρ and dp⊥/dρ may
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Figure 1. Variations of dp/dρ at the

boundary and at the centre of an aniso-

tropic star against α. We took λ = 2 and

ui = 0.1686. The solid line is for (dpr/

dρ)r=0, the dotted line is for (dp⊥/dρ)r=0,

the long dashed line is for (dpr/dρ)r=b, and

the dashed line is for (dp⊥/dρ)r=b.

Figure 2. Variations of dp/dρ at the

boundary and at the centre of an aniso-

tropic star against α. We took λ = 53.34

and ui = 0.2994. The solid line is for (dpr/

dρ)r=0, the dotted line is for (dp⊥/dρ)r=0,

the long dashed line is for (dpr/dρ)r=b, and

the dashed line is for (dp⊥/dρ)r=b.

correspond to different material compositions within the star. These variations are
shown in figures 1 and 2.

To see the effect of anisotropy on the compactness, we adopt a different approach.
Note that (18) is a relation between y and δ which we will utilize to calculate δ for
given values of α and λ. For given values of λ and ui, we first calculate y using (14).
Substituting these values in (18), we determine δ for the isotropic case (α = 0).
Once δ is determined, we use this value to calculate yani for different α values. We
then use the relation

uani =
(1 + λ)yani

2(1 + λyani)

to see the effect of anisotropy on the compactness of a star.

3.1 Numerical results

Following the method discussed above, we have obtained numerical results showing
the effect of anisotropy on some physically relevant parameters. Two different cases
have been studied.

Case I: We use our earlier data for the pulsar Her X-1 [24] and choose λ = 2,
M = 0.88M�, b = 7.7 km so that ui = 0.1686 and calculate the compactness for
different anisotropic parameters.

Case II: We consider the millisecond pulsar SAX J 1808.4-3658 and use the results
obtained in an earlier work [25] and choose λ = 53.34, M = 1.435M�, b = 7.07 km
so that ui = 0.2994.

We note that the compactness decreases with increasing anisotropy which is in
agreement with earlier results obtained in [17]. The results are shown in table 1.
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Figure 3. Variation of anisotropy factor (Δ̃ = R2Δ) against radial parameter
z for ui = 0.1686, λ = 2 and α = 0.6.

Table 1. Compactness and mass calculated for different anisotropic parame-
ters for two different cases discussed in §3.1.

λ = 2, b = 7.7 km λ = 53.34, b = 7.07 km

α yani uani Mani (M�) α yani uani Mani (M�)

0 0.1450 0.1686 0.88 0 0.0267 0.2994 1.435
0.2 0.1281 0.1530 0.80 0.05 0.0269 0.3002 1.439
0.4 0.0953 0.1201 0.63 0.1 0.0270 0.3006 1.441
0.5 0.0690 0.0909 0.47 0.2 0.0268 0.2997 1.437
0.6 0.0322 0.0454 0.24 0.4 0.0239 0.2858 1.368
0.65 0.0082 0.0121 0.06 0.6 0.0090 0.1760 0.844

The behaviour of the anisotropy factor (Δ̃ = R2Δ) in the stellar interior is shown
in figure 3.

4. Maximum mass and surface red-shift

In an earlier work [23], we calculated the maximum mass for a class of isotropic
stars. Here we follow the same technique to calculate the maximum mass in the
presence of pressure anisotropy.

• We assume that dpr/dρ ≤ 1 and the value is maximum at the centre. This
gives

ψz

ψ
|zo ≥ (1 + λ)

2
√

λ

[√
λ + 1 −

√
21λ + 1 +

4αλ2

λ + 1

]
. (22)

Combining (17) and (22), we determine the limiting value of δ for different α
values for a chosen value of λ.

• Corresponding to the limiting value of δ, (18) can be used to calculate the
maximum value of y = b2/R2.
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Table 2. Maximum compactness (umax), maximum surface red-shift (Zs|max)
and maximum mass (Mmax) for different anisotropic parameters. We have
considered a star of radius 10 km and surface density equal to twice ρnucl,
where, ρnucl = 2.7 × 1014 gm/cm3.

b = 10 km ρb = 2ρnucl

α ymax umax Zs|max Mmax (M�) Mmax (M�) bmax (km)

0 0.0252 0.3615 0.9003 2.45 2.60 10.62
0.2 0.0285 0.3738 0.9910 2.53 2.69 10.62
0.4 0.0322 0.3852 1.0872 2.61 2.77 10.62
0.6 0.0361 0.3955 1.1879 2.68 2.84 10.62
0.7 0.0383 0.4003 1.2398 2.71 2.88 10.61
0.8 0.0404 0.4048 1.2927 2.74 2.91 10.60
0.9 0.0427 0.4092 1.3463 2.77 2.93 10.59
1.0 0.0450 0.4132 1.3998 2.80 2.96 10.58

• From (14) the compactness of a star in this model is given by

u =
M(b)

b
=

(1 + λ)
2(λ + 1

y )
. (23)

Clearly, the maximum value of y corresponds to the maximum compactness
of the configuration. The maximum surface red-shift (Zs|max) corresponding
to this value can also be obtained using the following equation

Zs|max = (1 − 2uani)
−1/2 − 1. (24)

Once the value of maximum compactness is obtained, the maximum mass of
anisotropic star can be calculated for a given radius or surface density. In [23]
we observed that for a particular choice (λ = 100), the maximum compactness for
an isotropic star is 0.3615. Keeping the same value of λ if we go on increasing α
we see that the maximum compactness, maximum surface red-shift and maximum
mass all increase with anisotropy. The results are shown in table 2. For α close to
unity (the maximum value of α in the present model is 1) these values are almost
0.4, 1.4 and 2.8M�, respectively, for a star of radius 10 km. These values are similar
to the results obtained in [26]. The maximum surface red-shift obtained by Bondi
[27] was 1.352 which is also very close to our values. The maximum mass for an
isotropic star of radius 10 km was 2.45M� [23], which increases to 2.8M� in the
presence of anisotropy.

5. Discussion

We briefly point out the behaviour of the dynamical variables in this class of mod-
els. It is clear that the energy density ρ and the radial pressure pr are decreasing
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Figure 4. Radial pressure (solid curve) and tangential pressure (dashed
curve) plotted against the radial parameter z for α = 0.4 and λ = 2.

functions from the centre to the boundary of the star. This is also true for the
anisotropic stellar models of Chaisi and Maharaj [19] and Sharma et al [25] who
have studied the same space-time geometry. The tangential pressure p⊥ has a more
complicated behaviour because it is related to the anisotropy factor via p⊥ = pr+Δ;
in addition p⊥ depends on the Gegenbaur function and the new variable z rather
than the original radial coordinate r. To illustrate the behaviour of p⊥ we have
generated a plot in figure 4. It is clear that the tangential pressure is an increasing
function as we approach the centre. This is physically acceptable since the conser-
vation of angular momentum during the quasi-equilibrium contraction of a massive
body should lead to high values of p⊥ in the central regions of the star.

We have extended a class of solutions describing cold compact stars to incorporate
anisotropy. The solutions were then used to see the effect of anisotropy on the
maximum possible mass and surface red-shift parameters of cold compact stars.
A comparative study of our results with earlier results are given in table 3. The
anisotropy in the present model vanishes at the centre and reaches the maximum
value at the surface of the star as shown in figure 3. Unlike some earlier works
[18,19], this model has an isotropic counterpart (α = 0) which helps to compare
anisotropic stars with their isotropic counterparts. In this model we assumed p⊥ >
pr and have shown that the upper bound on the maximum mass increases in the
presence of anisotropy. To conclude, our model provides a simple method to fix the

Table 3. Maximum compactness (umax) and maxi-

mum surface red-shift (Zs|max) of anisotropic stars in

different models.

References 2umax Zsmax

Guven and Murchadha [28] 0.974 5.211
Ivanov [29] 0.957 3.842
Bondi [27] 0.819 1.352
Hernández and Núñez [26] 0.800 1.200
Present work 0.826 1.400
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upper bound on the maximum possible masses for the class of compact anisotropic
stars described by the Vaidya–Tikekar model.
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