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Abstract. A self-consistent system of gravitational field with a binary mixture of perfect
fluid and dark energy given by a cosmological constant has been considered in Bianchi
Type-V universe. The perfect fluid is chosen to be obeying either the equation of state
p = γρ with γ ∈ [0, 1] or a van der Waals equation of state. The role of Λ-term in the
evolution of the Bianchi Type-V universe has been studied.
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1. Introduction

In view of its importance in explaining the observational cosmology, many workers
have considered cosmological models with dark energy. In a recent paper, Kremer
[1] has modelled the universe as a binary mixture whose constituents are described
by a van der Waals fluid and dark energy. Zlatev et al [2] showed that ‘tracker field’,
a form of quintessence, may explain the coincidence, adding a new motivation for
the quintessence scenario. The fate of density perturbation in a universe dominated
by the Chaplygin gas, which exhibits negative pressure was studied by Fabris et al
[3]. Models with Chaplygin gas were also studied by Bento et al [4] and Dev et al [5].
These authors restricted their study to a spatially flat, homogeneous and isotropic
universe described by a FRW metric. Since the theoretical arguments and recent
experimental data support the existence of an anisotropic phase, it makes sense to
consider the models of the universe with anisotropic background in the presence of
dark energy. Saha [6,7] has studied the role of Λ-term in the evolution of Bianchi
Type-I universe in the presence of spinor and/or scalar field with a perfect fluid
satisfying equation of state p = γρ. Saha [7,8] has studied the evolution of an
anisotropic universe given by a Bianchi Type-I space–time in the presence of a
perfect fluid obeying not only p = γρ, but also the van der Waals equation of state.
In the present work we have studied the evolution of Bianchi Type-V universe in
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the presence of a perfect fluid with equation of state p = γρ or van der Waals fluid
[1] and dark energy given by a cosmological constant. We have followed the method
due to Saha [7–10] and Kremer [1].

2. Basic equation

The Einstein field equations are in the form

Rj
i −

1
2
δj
i R = kT j

i + δj
i Λ. (2.1)

Here Rj
i is the Ricci tensor, R is the Ricci scalar, k is the Einstein gravitational

constant and Λ is the cosmological constant. A positive Λ corresponds to the
universal repulsion force, while a negative one gives an attractive force. Note that
a positive Λ is often taken to be a form of dark energy. We study the gravitational
field given by Bianchi Type-V cosmological model and choose it in the form

ds2 = dt2 − a2
1 dx2 − a2

2e
−2mx dy2 − a2

3e
−2mx dz2 (2.2)

with the metric functions a1, a2, a3 being functions of t only and m is a constant.
The Einstein field equations (2.1) for the Bianchi Type-V space–time, in the

presence of the Λ term, can be written in the form

ä2

a2
+

ä3

a3
+

ȧ2ȧ3

a2a3
− m2

a2
1

= kT 1
1 + Λ. (2.3a)

ä1

a1
+

ä3

a3
+

ȧ1ȧ3

a1a3
− m2

a2
1

= kT 2
2 + Λ. (2.3b)

ä1

a1
+

ä2

a2
+

ȧ1ȧ2

a1a2
− m2

a2
1

= kT 3
3 + Λ. (2.3c)

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
− 3m2

a2
1

= kT 0
0 + Λ. (2.3d)

ȧ2

a2
+

ȧ3

a3
=

2ȧ1

a1
. (2.3e)

From (2.3e) we have a2a3 = a2
1.

Here, overhead dot denotes differentiation with respect to t. The energy–
momentum tensor of the source is given by

T j
i = (ρ + p)uiu

j − pδj
i , (2.4)

where ui is the flow vector satisfying
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giju
iuj = 1. (2.5)

Here ρ is the total energy density of a perfect fluid and/or dark energy, while p
is the corresponding pressure. p and ρ are related by an equation of state.

In a co-moving system of coordinates, from eq. (2.4) one finds

T 0
0 = ρ, T 1

1 = T 2
2 = T 3

3 = −p. (2.6)

Now using eqs (2.3a)–(2.3e) and eq. (2.6) we obtain

ä2

a2
+

ä3

a3
+

ȧ2ȧ3

a2a3
− m2

a2
1

= −kp + Λ. (2.7a)

ä1

a1
+

ä3

a3
+

ȧ1ȧ3

a1a3
− m2

a2
1

= −kp + Λ. (2.7b)

ä1

a1
+

ä2

a2
+

ȧ1ȧ2

a1a2
− m2

a2
1

= −kp + Λ. (2.7c)

ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1
− 3m2

a2
1

= kρ + Λ. (2.7d)

a2a3 = a2
1. (2.7e)

We follow the method used by Saha [7] to solve eqs (2.7a)–(2.7d) and use a2a3 =
a2
1. Subtracting eq. (2.7b) from eq. (2.7a), we get

d
dt

(
ȧ1

a1
− ȧ2

a2

)
+

(
ȧ1

a1
− ȧ2

a2

)(
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
= 0. (2.8)

Let V be a function of t defined by

V = a1a2a3. (2.9)

Then from eqs (2.8) and (2.9) we have

d
dt

(
ȧ1

a1
− ȧ2

a2

)
+

(
ȧ1

a1
− ȧ2

a2

)
V̇

V
= 0. (2.10)

Integrating the above equation, we get

a1

a2
= d1 exp

(
x1

∫
dt

V

)
, d1 = constant, x1 = constant. (2.11)

By subtracting eq. (2.7c) from (2.7a) and eq. (2.7a) from (2.7b), we get
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a1

a3
= d2 exp

(
x2

∫
dt

V

)
, d2 = constant, x2 = constant, (2.12a)

a2

a3
= d3 exp

(
x3

∫
dt

V

)
, d3 = constant, x3 = constant, (2.12b)

where d2, d3, x2, x3 are integration constants.
In view of the relations V = a1a2a3 we find the following relation between the

constants d1, d2, d3, x1, x2, x3.

d2 = d1d3, x2 = x1 + x3.

Finally from eqs (2.11) and (2.12), we write a1(t), a2(t), and a3(t) in the explicit
form.

a1(t) = D1V
1/3 exp

(
X1

∫
dt

V (t)

)
, (2.13a)

a2(t) = D2V
1/3 exp

(
X2

∫
dt

V (t)

)
, (2.13b)

a3(t) = D3V
1/3 exp

(
X3

∫
dt

V (t)

)
, (2.13c)

where Di (i = 1, 2, 3) and Xi (i = 1, 2, 3) satisfy the relation D1D2D3 = 1 and
X1 + X2 + X3 = 0.

From eq. (2.7e) we get

X1 = 0, X2 = −X3 = X, D1 = 1, D2 = D−1
3 = D. (2.14)

Then eq. (2.13) can be written as

a1(t) = V 1/3, (2.15a)

a2(t) = DV 1/3 exp
(

X

∫
dt

V (t)

)
, (2.15b)

a3(t) = D−1V 1/3 exp
(
−X

∫
dt

V (t)

)
, (2.15c)

where X and D are constants.
Now, by adding eqs (2.7a), (2.7b), (2.7c) and three times eq. (2.7d), we get

(
ä1

a1
+

ä2

a2
+

ä3

a3

)
+ 2

(
ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1

)
− 6m2

a2
1

=
3k(ρ− p)

2
+ 3Λ. (2.16)
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From eq. (2.9) we have

V̈

V
=

(
ä1

a1
+

ä2

a2
+

ä3

a3

)
+ 2

(
ȧ1ȧ2

a1a2
+

ȧ2ȧ3

a2a3
+

ȧ3ȧ1

a3a1

)
. (2.17)

From eqs (2.16), (2.17) and (2.15a) we obtain

V̈

V
− 6m2

V 2/3
=

3k(ρ− p)
2

+ 3Λ. (2.18)

On the other hand, the conservational law for the energy–momentum tensor gives

ρ̇ = − V̇

V
(ρ + p). (2.19)

From (2.18) and (2.19) we have

V̇ 2 = 3(2kρ + Λ)V 2 + 9m2V 4/3 + C1 (2.20)

with C1 being an integration constant. Let us define the Hubble constant as

V̇

V
=

ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3
= 3H. (2.21)

From eqs (2.20) and (2.21) we have

kρ =
3
2
H2 − 3m2

2V 2/3
− Λ

2
− C1

6V 2
. (2.22)

It should be noted that the energy density of the universe is a positive quantity.
It is believed that at the early stages of evolution when the volume scale V was
close to zero, the energy density of the universe was infinitely large. On the other
hand, with the expansion of the universe, i.e., with the increase of V , the energy
density ρ decreases and an infinitely large V corresponds to a ρ close to zero. In
that case, from eq. (2.22), it follows that

3H2 − Λ −→ 0. (2.23)

As seen from eq. (2.23), in this case Λ is essentially non-negative. We can also
conclude from (2.23) that in the absence of a Λ term, beginning from some value of
V the evolution of the universe becomes standstill, i.e., V becomes constant, since
H becomes zero, whereas in the case of a positive Λ the process of evolution of the
universe never comes to halt. Moreover, it is believed that the presence of the dark
energy results in the accelerated expansion of the universe. As far as negative Λ is
concerned, its presence imposes some restriction on ρ, namely, ρ can never be small
enough to be ignored. It means in that case there exists some upper limit for V as
well.

From eqs (2.21), (2.22), and (2.18), we obtain

Ḣ = −k

2
(ρ + p)− 2m2

V 2/3
+

Λ
2
− C1

6V 2
. (2.24)
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Let us now go back to eq. (2.20). It is in fact the first integral of eq. (2.18) and
can be written as

V̇ = ±
√

C1 + 3(2kρ + Λ)V 2 + 9m2V 4/3. (2.25)

On the other hand, rewriting (2.19) in the form

ρ̇

ρ + p
= − V̇

V
(2.26)

and taking into account the pressure and the energy density obeying an equation
of state of type p = f(ρ), we conclude that ρ and p, hence the right-hand side of
eq. (2.18) is a function of V only.

V̈ =
3k

2
(ρ− p)V + 3ΛV + 6m2V 1/3 ≡ F (V ). (2.27)

From the mechanical point of view, eq. (2.27) can be interpreted as equation of
motion of a single particle with unit mass under the force F (V ). Then the following
first integral exists:

V̇ =
√

2[ε− U(V )]. (2.28)

Here ε can be viewed as energy and U(V ) is the potential of the force F . Comparing
eqs (2.25) and (2.28) we find ε = C1/2 and

U(V ) = −
[
3
2
(kρ + Λ)V 2 +

9
2
m2V 4/3

]
. (2.29)

Finally, we write the solution to eq. (2.25) in quadrature form
∫

dV√
C1 + 3(kρ + Λ)V 2 + 9

2m2V 4/3
= t + t0, (2.30)

where the integration constant t0 can be taken to be zero, since it only gives a shift
in time.

Essentially we have followed the method due to Saha [7].

3. Universe filled with perfect fluid

In this section we consider the case when the source field is given by a perfect fluid.
Here we study two possibilities: (i) The energy density and the pressure of the
perfect fluid are connected by a linear equation of state and (ii) the equation of
state is a nonlinear (van der Waals) one.
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3.1 Universe as a perfect fluid with pPF = γρPF

In this subsection we consider the case when the source field is given by a perfect
fluid obeying the equation of state

pPF = γρPF. (3.1)

Here γ is a constant and lies in the interval γ ∈ [0, 1]. Depending on its numerical
value γ describes the following types of universe.

γ = 0 (dust universe) (3.2a)

γ = 1/3 (radiation universe) (3.2b)

γ ∈ (1/3, 1) (hard universe) (3.2c)

γ = 1 (Zeldovich universe or stiff matter). (3.2d)

In view of eq. (3.1), from eq. (2.19) for the energy density and pressure one
obtains

ρPF =
ρ0

V 1+γ
, pPF =

γρ0

V 1+γ
, (3.3)

where ρ0 is a constant of integration. For V from eq. (2.30) one find
∫

dV√
C1 + 3(kρ0V 1−γ + ΛV 2) + 9m2V 4/3

= t. (3.4)

In the absence of the Λ term one immediately finds
∫

dV√
C1 + 3kρ0V 1−γ + 9m2V 4/3

= t. (3.5)

3.2 Universe as a van der Waals fluid

Here we consider the case when the source field is given by a perfect fluid with a
van der Waals equation of state in the absence of dissipative process. The pressure
of the van der Waals fluid pw is related to its energy density ρw [1] by

pw =
8Wρw

3− ρw
− 3ρ2

w. (3.6)

In (3.6) the pressure and the energy density are written in terms of dimensionless
reduced variables and W is a parameter connected with a reduced temperature.

Inserting eq. (3.6) into (2.24), on account of eq. (2.22) we find
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Ḣ = −

( 3
2H2 − 3m2

2V 2/3 − Λ
2 − C1

6V 2 )[(8W + 3)k − 10( 3
2H2 − 3m2

2V 2/3 − Λ
2 − C1

6V 2 )
+ 3

k ( 3
2H2 − 3m2

2V 2/3 − Λ
2 − C1

6V 2 )]

2[3k − ( 3
2H2 − 3m2

2V 2/3 − Λ
2 − C1

6V 2 )]

− 2m2

V 2/3
+

Λ
2
− C1

6V 2
. (3.7)

It can be easily verified that eq. (3.7) in the absence of Λ term and C1 = 0 and
k = 3, reduces to

Ḣ = −3
2


1

2

(
H2 − m2

V 2/3

)
+

8W
(

1
2

(
H2 − m2

V 2/3

))

3− 1
2

(
H2 − m2

V 2/3

)

−3
(

1
2

(
H2 − m2

V 2/3

))2
]
− 2m2

V 2/3
. (3.8)

4. Some particular cases

Case I. γ = 1/3 (disordered radiation)
For C1 = 0, eq. (3.4) reduces to

∫
dV√

3kρ0V 2/3 + 3ΛV 2 + 9m2V 4/3
= t (4.1)

which gives

V =
[
em2

√
3

kρ0
t− 2kρ0

3m2

]3/2

, when Λ =
9m4

4kρ0
, (4.2a)

V =

[(
kρ0

Λ
− 9m4

4Λ2

)1/2

sinh

(
2

√
Λ
3

t

)
− 3m2

2Λ

]3/2

, when Λ >
9m4

4kρ0
,

(4.2b)

V =

[(
9m4

4Λ2
− kρ0

Λ

)1/2

cosh

(
2

√
Λ
3

t

)
− 3m2

2Λ

]3/2

, when Λ <
9m4

4kρ0
.

(4.2c)

We consider these subcases separately.
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Case I(a). Λ = 9m4/4kρ0

Then from eqs (2.15) and (4.2a), we obtain

a1(t) = (eC2t − C3)1/2, (4.3a)

a2(t) = D(eC2t − C3)1/2

× exp

[
2X

C2C3

(
1√
C3

tan−1

√
C3

(eC2t − C3)
− 1√

(eC2t − C3)

)]
,

(4.3b)

a3(t) = D−1(eC2t − C3)1/2

× exp

[
− 2X

C2C3

(
1√
C3

tan−1

√
C3

(eC2t − C3)

− 1√
(eC2t − C3)

)]
, (4.3c)

where

C2 = m2

√
3

kρ0
and C3 =

2kρ0

3m2
.

From eqs (3.3) and (4.2a), we have

ρ = ρ0

[
em2

√
3

kρ0
t− 2kρ0

3m2

]−2

(4.4a)

and

p =
ρ0

3

[
em2

√
3

kρ0
t− 2kρ0

3m2

]−2

. (4.4b)

The physical quantities of observational interest in cosmology are the expansion
scalar θ, the mean anisotropy parameter A, the shear scalar σ2 and the deceleration
parameter q. They are defined as

θ = 3H. (4.5)

A =
1
3

3∑

i=1

(
∆Hi

H

)2

. (4.6)

σ2 =
1
2

(
3∑

i=1

H2
i − 3H2

)
=

3
2
AH2. (4.7)
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q =
d
dt

(
1
H

)
− 1. (4.8)

In this case these quantities are

θ =
3m2

2

√
3

kρ0

em2
q

3
kρ0

t

em2
q

3
kρ0

t − 2kρ0
3m2

(4.9)

A =
8X2

3a2

[
em2

q
3

kρ0
t − 2kρ0

3m2

]3

e2m2
q

3
kρ0

t
(4.10)

σ2 = X2

[
em2

q
3

kρ0
t − 2kρ0

3m2

]
(4.11)

q = −1 +
4kρ0

3m2
e−m2

q
3

kρ0
t
. (4.12)

For a finite value of t, pressure and density tend to infinity. Therefore, the model
has a future singularity in finite time.

Case I(b). Λ > 9m4

4kρ0

Then for small t (i.e. near singularity t = 0),

sinh

(
2

√
Λ
3

t

)
≈ 2

√
Λ
3

t. (4.13)

Then eq. (4.2b) reduces to

V =

[
2√
3

(
kρ0 − 9m4

4Λ

)1/2

t− 3m2

2Λ

]3/2

. (4.14)

From eqs (2.15) and (4.14), we obtain

a1(t) = (C4t− C5)1/2, (4.15a)

a2(t) = D(C4t− C5)1/2 exp
[
− 2X

C4

√
C4t− C5

]
, (4.15b)

a3(t) = D−1(C4t− C5)1/2 exp
[

2X

C4

√
C4t− C5

]
, (4.15c)

where
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C4 =
2√
3

(
kρ0 − 9m4

4Λ

)1/2

and C5 =
3m2

2Λ
.

From eqs (3.3) and (4.14), we have

ρ = ρ0

[
2√
3

(
kρ0 − 9m4

4Λ

)1/2

t− 3m2

2Λ

]−2

(4.16a)

and

p =
ρ0

3

[
2√
3

(
kρ0 − 9m4

4Λ

)1/2

t− 3m2

2Λ

]−2

. (4.16b)

With the use of eqs (4.5)–(4.8) we can express the physical quantities as

θ =

√
3

(
kρ0 − 9m4

4Λ

)1/2

[
2√
3

(
kρ0 − 9m4

4Λ

)1/2
t− 3m2

2Λ

] (4.17)

A =
8X2

3a2

[
2√
3

(
kρ0 − 9m4

4Λ

)1/2

t− 3m2

2Λ

]3

(4.18)

σ2 = X2

[
2√
3

(
kρ0 − 9m4

4Λ

)1/2

t− 3m2

2Λ

]
(4.19)

q = 1. (4.20)

For a finite value of t, pressure and density become infinite. Therefore, the model
has a future singularity in finite time.

Case I(c). Λ < 9m4

4kρ0

Then for small t (i.e. near singularity t = 0),

cosh

(
2

√
Λ
3

t

)
≈ 1 +

Λ
3

t2. (4.21)

Then eq. (4.2c) reduces to

V =

[(
m4

4
− kρ0Λ

9

)1/2

t2 +
(

9m4

4Λ2
− kρ0

Λ

)1/2

− 3m2

2Λ

]3/2

. (4.22)

From eqs (2.15) and (4.22), we obtain
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a1(t) = (C6t− C7)1/2, (4.23a)

a2(t) = D(C6t− C7)1/2 exp

[
X

C7

√
C6

(
C6t

2

C6t2 + C7

)1/2
]

, (4.23b)

a3(t) = D−1(C6t− C7)1/2 exp

[
− X

C7

√
C6

(
C6t

2

C6t2 + C7

)1/2
]

, (4.23c)

where

C6 =
(

m4

4
− kρ0Λ

9

)1/2

and C7 =
(

9m4

4Λ2
− kρ0

Λ

)1/2

− 3m2

2Λ
.

From eqs (3.3) and (4.22), we have

ρ = ρ0

[(
m4

4
− kρ0Λ

9

)1/2

t2 +
(

9m4

4Λ2
− kρ0

Λ

)1/2

− 3m2

2Λ

]−2

(4.24a)

and

p =
ρ0

3

[(
m4

4
− kρ0Λ

9

)1/2

t2 +
(

9m4

4Λ2
− kρ0

Λ

)1/2

− 3m2

2Λ

]−2

. (4.24b)

With the use of eqs (4.5)–(4.8) we can express the physical quantities as

θ =
3(m4

4 − kρ0Λ
9 )1/2t

[(m4

4 − kρ0Λ
9 )1/2t2 + ( 9m4

4Λ2 − kρ0
Λ )1/2 − 3m2

2Λ ]
(4.25)

A =
2X2

3(m4

4 − kρ0Λ
9 )t2[(m4

4 − kρ0Λ
9 )1/2t2 + ( 9m4

4Λ2 − kρ0
Λ )1/2 − 3m2

2Λ ]
(4.26)

σ2 =
X2

[(m4

4 − kρ0Λ
9 )1/2t2 + ( 9m4

4Λ2 − kρ0
Λ )1/2 − 3m2

2Λ ]3
(4.27)

q = − [( 9m4

4Λ2 − kρ0
Λ )1/2 − 3m2

2Λ ]

(m4

4 − kρ0Λ
9 )1/2

1
t2

. (4.28)

This model has no singularity.

Case II. γ = −1

For C1 = 0, eq. (3.4) reduces to
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∫
dV√

3(kρ0 + Λ)V 2 + 9m2V 1/3
= t (4.29)

which gives

V =
[

3m2

2(kρ0 + Λ)

]3/2
[
cosh

(
2

√
kρ0 + Λ

3
t

)
− 1

]3/2

. (4.30)

For small t (i.e. near singularity t = 0)

cosh

(
2

√
kρ0 + Λ

3
t

)
≈ 1 +

(
kρ0 + Λ

3

)
t2. (4.31)

Then eq. (4.30) reduces to

V =
m3

2
√

2
t3. (4.32)

From eqs (2.15) and (4.32), we obtain

a1(t) =
mt√

2
, (4.33a)

a2(t) = D
mt√

2
exp

(
−
√

2X

m3

1
t2

)
, (4.33b)

a3(t) = D−1 mt√
2

exp

(√
2X

m3

1
t2

)
. (4.33c)

From eqs (3.3) and (4.32), we obtain

ρ = ρ0 (4.34a)

and

p = −ρ0. (4.34b)

With the use of eqs (4.5)–(4.8) we can express the physical quantities as

θ =
3
t
, (4.35)

A =
16X2

m6t6
, (4.36)

σ2 =
8X2

m6t4
, (4.37)

q = 0. (4.38)

This model has no singularity. The anisotropy and shear die out as t →∞.
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5. Conclusion

The Bianchi Type-V universe has been considered for a mixture of a perfect fuid
and dark energy given by cosmological constant. The solution has been obtained
in quadrature form. The particular cases of disordered radiation and inflation have
been studied in detail. Their singularities have also been studied.
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