PRAMANA © Indian Academy of Sciences Vol. 57, Nos 5 & 6
— journal of Nov. & Dec. 2001
physics pp. 981-985

Stable complex solitary waves of Sasa Satsuma equation
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Abstract. Existence of a new class of complex solitary waves is shown for Sasa Satsuma equation.
These solitary waves are found to be stable in a certain domain of the parameter and become chaotic
if the parameter exceeds the value 2.4. Significantly, the complex solitary waves propagate at higher
bit rate over the most stable solitons under the same conditions of the input parameters.
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The importance of nonlinear Sduinger equation [1-4] and its higher order generali-
sation, namely the Sasa Satsuma equation [8] in the context of optical communication
through the nonlinear fibre is well-known [5-7]. Solitons play a key role for lossless prop-
agation through the nonlinear optical fibres. The lossless propagation is achieved primarily
because of the presence of the stimulated Raman the scattering term in the dynamical equa-
tion itself of the Sasa Satsuma equation. The explicit form of the Sasa Satsuma equation
[8] is given by

0,E = i[0;:E + 2|E|?E] + 0;1E + 60;(|E|’E) + 30;(|E|*)E 1)

where,E is envelope of the electric field propagatingzidirection at a timer. The terms

on the RHS respectively represent group velocity dispersion (GD), Kerr effect, third order
dispersion (TOD), self-steeping (SS) related to Kerr effect and the self frequency shifting
via stimulated Raman scattering. It is the last term, which plays an important role in the
propagation of distortionless optical pulses over a long distance. But the contribution from
the last three terms becomes appreciable only for the very short optical pulses, typically of
the femtosecond order. On the other hand, the nonlineao@iciger equation successfully
describes the dynamics of the optical pulses of picosecond order.

Realizing the importance of the Sasa Satsuma equation in describing the propagation
of ultra short pulses through the fibre, several attempts have been made to find soliton
solutions of the Sasa Satsuma eq. (1) [8-12] by various methods like Hirota’s bilinear
method, Painle¥ analysis, Backlund transformation and inverse scattering technique. It
has been observed recently that the dispersion managed optical pulses for the nonlinear
Schiodinger equation are more useful if the pulses are made in the form of a power series
of one soliton solution. These complex pulses are not only stable in a certain domain of
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the parameter, but also propagate at a higher bit rate than the most stable soliton under the
same input condition.

Motivated by these observations, we look for a class of complex solitary wave solutions
for the Sasa Satsuma equation. Nonetheless, these pulses will be shown to be stable in a
certain domain of the parameter, controlling the rate of propagation. In this context, it is
important to mention that the nonlinear Satliiger equation also exhibits similar kind of
solitary wave solutions [13], which are found in the form of a series of localised stationery
pulses. These solitary waves are found to propagate at a much higher rate (say 50 GB/s)
than the usual NLS solitons, which can propagate at a rate of 10 GB/s for a typical soliton
transmission system.

The organization of this paper is as follows. We discuss the existence of a simple lo-
calised solution of sech type. As a byproduct we obtain an interesting relationship between
the input power and the characteristic properties of the fibre for the Sasa Satsuma equation.
Next we obtain a class of solutions as a power series of one soliton. We also study the sta-
bility of the solutions and show that onset of deterministic chaos occurs when the value of
the parameter controlling the bit rate exceeds 2.4. Moreover, we obtain a relationship of
one of the series solutions with the group of nonlinear transformations.

To begin with let us assume a simple trial solution of (1) in the form

E(z,1) = B, Ty(yr — Byx) 2)

wherea andb are real parameters ag(yT — Byx) is chosen as a real functiomandb in

the above equation may be interpreted as frequency and wave vector respectively, whereas
y~t andB~1 may be related respectively to the width and group velocity of the envelope
wave. Substituting the trial solution (2) in (1), we obtain a set of two differential equations

iny:
(—a—b?—b3y+ (1+3b)y’ + (2+6b)EZy> =0 (3)

Y+ (—20—307)Y +y" +4E5(y?) =0 @)

where’ denotes the derivative with respectrtoNotice that the solution foy must satisfy

both the above equations simultaneously. This is possible if one of the equations vanishes
identically or the coefficients of each type of term in the above equations are equal. The
coefficients in (4) cannot be set equal to zero since this eventually ledflg+00. As

a second possibility, if the coefficients of the egs (3) and (4) are equated, the last term
becomes inconsistent. The only possibility left, therefore, is to set the coefficients in (3) to
zero. If we now choose

b=—= 5)
a

== (6)

then eq. (3) vanishes. We will see later that these conditions, in fact, lead to one soliton
solution. As a consequence, the eq. (4) reduces to

ot 3Y +Y" +AER(y) =0 ™)
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It can straightaway be observed that if we choose a solutigrobthe form

y = sech(yt — Byx) (8)
the eq. (7) will be satisfied, provided the following conditions are obeyed
1
B=V+3 ©)
1
B =5y (10)

The first condition determines the group velocity of the envelope wave. The second condi-
tion, on the other hand, gives an interesting relation between the input power and the width
of the optical pulse. This, in fact, gives an estimate of the required input power for a given
width of an optical pulse to propagate in a particular fibre. If this relation mismatches for
a particular fibre, the soliton will not be formed.

Finally, the solution of (1) will be of the form

E(x,T) = %ZGXD[IZE?X—I% ]sech[yr—y(yz+§) x] (11)
which is nothing but one soliton solution [8,12].

It is interesting to note that, apart from the above solution (11), the Sasa Satsuma equa-
tion (1) inherits a class of stable solitary wave solutions of more complex nature. We will
show that these pulses propagate at a higher bit rate than the most stable pulses, namely
solitons under similar input conditions. We may write the trial solutions explicitly in the
form

i C, secH(yt — Byx) (12)

as a power series of one soliton (11), Whé[eare c-number coefficients apa= 0,1,2, -
Substituting (12) into (7), we obtain a recursion relation among the coefflcﬂr-jlntist is
found that unless the first coefficie@t becomes zero, the solution emerges as a trivial
solution. IfC, = 0, all even coefficients consequently become zero

Cy =0 (13)

The odd coefficients, however, satisfy a nontrivial recursion relation among themselves for
arbitrary nonzeroreal values ofC;. The explicit form of the recursion relation may be
given as

2j+1
21437 P[5 2) 2t
3 2j+1 m
- - - - IC,C.. C.,.
DG+ 1) &y 2, 1t Cai-mea

(14)

for j=0,1,2,3,--- andC; # 0. The existence of a power series solutions for the Sasa Sat-
suma equation (1) has some interesting consequences. A few remarks about the solutions
(12), (13), (14) are in order.
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1. The recursion relation (14) has a universal form and does not depend on the parame-
ters of the dynamical equation.

2. Itis obvious to observe from the recursion relation (14) that if the arbitrary coefficient
C, is chosen to be unity all higher order coefficients starting f@&bythecome zero and the
series is left with only one terny,= sech(yr — Byx). Thus forC; = 1, the solution (12)
reduces to the one soliton solution (11) itself.

3. Depending on the values ©f, the Sasa Satsuma equation admits an infinite number
of localised solutions of the form (12). But all the localised solutions may not be stable
and eventually become chaotic depending on the valu€s.ofhe Lyapunov exponent

1, |dCy
/\(Cl):jlmj—_ln %1“

(15)

for different values oCC, yields to the onset of chaos fQy > 2.4. If C; < 2.4, the new
localised optical pulses are expected to be almost solitonic in nature and are stable. As
expected the maximum stability of the solution is foun@ at= 1.

4. Itis observed that €, > 1, the intensity of the pulse remains constant upto the value
C, = 2.4 and shoots up fdZ, > 2.4. But forC; < 1, the behaviour of the pulses becomes
extremely interesting. Both the intensity and the width of the pulses decrease together with
the decrease of the value®©f from C; = 1. Thus for a particular fibre with a given input
power, the widths of these non-solitonic pulses will be smaller than those of most stable
solitons. This ensures the higher bit rate of propagation of non-solitonic pulses over the
solitons under similar input conditions.

To conclude, localised solitary wave solutions are obtained for the Sasa Satsuma equa-
tion. These pulses are stable in a certain domain of the para@gtdtorC, > 2.4, the
pulses become chaotic. But f@; < 1, the behaviour of the waves becomes interesting.
With the decrease in the values©f, both the width and the intensity of the envelope
waves decrease. This behaviour of non-solitonic pulses leads to higher bit rate of propa-
gation over the solitons under similar input conditions. This definitely has an interesting
consequence in the communication system through the nonlinear fibre.

Acknowledgements

SG would like to thank CSIR, Govt. of India for financial support to carry out the work
under the project 03(0896)/99/EMRII.

References

[1] A Hasewaga and F D Tappe#Appl. Phys. Lett23, 142 (1973)

[2] L F Mollenauer, R H Stolen and J P Gorddthys. Rev. Letd5, 1095 (1980)

[3] AHasegawaAppl. Opt.23, 3302 (1984)Pptical solitons in fibre§Springer, Heidelberg, 1989)
[4] L F Mollenauer and K SmithQpt. Lett.13, 675 (1988)

[5] J P GordonQpt. Lett.11, 662 (1986)

[6] F M Mitschke and L F Mollenauefpt. Lett.11, 657 (1986)

[7] Y Kodama and A HasegawtEEE J. Quantum ElectrorQE-23, 5610 (1987)

[8] N Sasa and J Satsumh,Phys. Soc. Jpr&0, 409 (1991)

984 Pramana — J. Phys.Vol. 57, Nos 5 & 6, Nov. & Dec. 2001



Sasa Satsuma equation

[9] K Porsezian and K NakkeeraRhys. Rev. LetZ6, 3955 (1996)
[10] M Gedalin, T C Scott and Y B Ban@®hys. Rev. LetZ8, 448 (1997)
[11] K Porsezian, M Daniel and M Lakshmandproc. of the Int. Conf. on Nonlinear Evolution
Equations and Dynamical Systeedited by V G Makhankov, | Puzynin and O Pashaev (World
Sc., Singapore) 436 (1993)
[12] S Ghosh, A Kundu and S Nandy, Math. Phys40, 1993 (1999)
[13] S Lekic, S Galamic and Z Rajili®?hys. Solid Statd1, 830 Solv-int 9812012

Pramana — J. Phys.Vol. 57, Nos 5 & 6, Nov. & Dec. 2001 985



