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Abstract
ROS act as an signaling molecule in the biological growth and development process. The homeostasis of ROS must be 
kept by different antioxidant defense mechanisms. Currently, superoxide dismutase (SOD), catalase (CAT), and ascorbate 
peroxidase (APX) as major antioxidant enzymes are not well understood in cassava (Manihot esculenta). In this research, 7 
SODs, 6 CATs, and 6 APXs were identified from the cassava genome by hidden Markov models, which was supported by 
gene structure, protein motifs, and phylogenetic relationship analyses. SOD, CAT, and APX genes expressed differentially 
in different tissues of cassava, of which most SODs showed high expression levels. The comprehensive expression profiles 
revealed the participation of SOD, CAT​, APX genes during postharvest physiological deterioration (PPD) of storage root 
and in response to osmotic stress and ABA as well as Xanthomonas axonopodis infection. Together, this study increases our 
understanding of cassava SOD, CAT​, APX genes feature and their potential function during PPD process and in response to 
biotic and abiotic stresses in cassava, laying a solid foundation for further gene function analysis in cassava.
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Abbreviations
ABA	� Abscisic acid
APX	� Ascorbate peroxidase
CAT​	� Catalase
FEC	� Friable embryogenic calli

FR	� Fibrous root
H2O2	� Hydrogen peroxide
HP	� Hour postharvest
MT	� Melationin
OES	� Organized embryogenic structure
PPD	� Postharvest physiological deterioration
RAM	� Root apical meristem
ROS	� Reactive oxygen species
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SAM	� Shoot apical meristem
SOD	� Superoxide dismutase
SR	� Storage root
Xam	� Xanthomonas axonopodis Pv. Manihotis

Introduction

Reactive oxygen species (ROS), such as hydroxyl radical, 
singlet oxygen, superoxide anion, and hydrogen peroxide 
(H2O2), are a group of products that are produced during 
plant growth and development (Choudhury et al. 2017). 
However, excessive ROS would cause damage to cell mem-
branes and organelles (Mittler et al. 2011). The dynamic 
balance must be kept between the production and scavenging 
of ROS. ROS acts as an important signaling molecule in the 
biological growth and development process (Mittler et al. 
2011). In order to maintain the homeostasis of ROS content, 
especially in response to biotic and abiotic stresses, plants 
have evolved complex antioxidant system for resisting oxida-
tion, which includes antioxidant enzymes of superoxide dis-
mutase (SOD), catalase (CAT), ascorbate peroxidase (APX), 
and peroxidase (POD), etc. (Hasanuzzaman et al. 2020). 
In these enzymes, SOD is the first line of defense against 
oxidative damage by converting O2

− into H2O2, which is 
then converted into oxygen and nontoxic water by APX or 
CAT (Abreu and Cabelli 2010a). SOD exists in almost eve-
rywhere of cellular and complete the water-water cycle in 
chloroplasts. CAT is mainly in peroxisomes. APX exists in 
cytosol, chloroplasts, mitochondria and peroxisomes to com-
plete ascorbate–glutathione cycle (Mittler 2002).

As the first step to scavenge ROS, O2− was converted to 
H2O2, which was further converted to oxygen and nontoxic 
water (Isabel A. Abreu and Cabelli 2010b). SOD can be 
divided into three types in terms of different binding metal 
cofactors, namely Cu/Zn-SOD, Fe-SOD, and Mn-SOD 
(Zelko et al. 2002). Numerous researches showed that SOD 
could improve the tolerance of plants to different abiotic/
biotic stresses, such as drought, salinity, and pathogen infec-
tion (Han et al. 2019; Jianhui Wu et al. 2016). The member 
of family has been identified in various plant species, includ-
ing Arabidopsis thaliana (7) (Kliebenstein et al. 1998), 
Oryza sativa (7) (Dehury et al. 2013), wheat (26) (Jiang 
et al. 2019), banana (13) (X. Feng et al. 2015), tomato (8) 
(K. Feng et al. 2016), cucumber (9) (Zhou et al. 2017), and 
cotton (18) (Wang et al. 2017).

CATs and APXs are capable of converting H2O2 into water, 
however, the catalytic mechanism is different (Mittler 2002). 
APXs show the strongest affinity with H2O2 and require ascor-
bate as an electron donor to complete the catalytic process 
(Liao et al. 2020). CATs also play an important role in decom-
posing of H2O2 and do not need cellular reductants to catalyze 
the dismutase reaction (Mhamdi et al. 2010; Abreu and Cabelli 
2010a). There is a compensating mechanism between CAT and 

APX (Apel and Hirt 2004). In higher plants, CAT and APX are 
usually encoded by small multigene families. APX family have 
been identified in Oryza sativa (6), Arabidopsis thaliana (8), 
and Zea mays (8) (Ozyigit et al. 2016). CAT family also have 
been identified in Arabidopsis thaliana (3) (Du et al. 2008), 
Oryza sativa (3) (Joo et al. 2014), Zea mays (3) (Guan and 
Scandalios 1995), and Gossypium hirsutum (7) (Wang et al. 
2019). Numerous researches have revealed that CAT and APX 
are associated with plant tolerances to different abiotic/biotic 
stresses. For example, OsAPx8 overexpression enhanced rice 
resistance to salt stress (Hong et al. 2007). AtAPX1 plays an 
important role in plant response to drought and heat stresses 
(Koussevitzky et al. 2008; Davletova et al. 2005). Overexpres-
sion of OsCatA and OsCatC in rice increased drought resist-
ance (Joo et al. 2014). AtCAT1 acted as an important scavenger 
to reduce H2O2 content during various abiotic stresses (Mhamdi 
et al. 2010). The amount of H2O2 increased dramatically when 
AtCAT2 was knocked out in Arabidopsis (Queval et al. 2007).

Cassava (Manihot esculenta) is an important crop in Latin 
America and Africa, and regards as staple food for more than 
750 million. Cassava shows excellent drought resistance dur-
ing the growth process (Okogbenin et al. 2013). Neverthe-
less, the storage roots are very easy to appear postharvest 
physiological deterioration (PPD) within 72 h after harvest 
(Hu et al. 2016). ROS content is highly associated with abi-
otic/biotic stresses response and PPD. For example, MeCu/
ZnSOD and MeCAT1 were used to delay postharvest physi-
ological deterioration of cassava tuberous (Zidenga et al. 
2012; Vanderschuren et al. 2014; Xu et al. 2013a). Cu/Zn-
SOD and CAT​ were simultaneously overexpressed in cassava 
also improving the tolerance to drought and cold stresses (Xu 
et al. 2013b). MeRAV5 functions on controlling H2O2 content 
and improving drought stress resistance in cassava through 
regulating MePOD (Yu Yan et al. 2021). Overexpression of 
MeCu/ZnSOD and MeCAT1 in cassava increased the resist-
ance to Tetranychus cinnabarinus (Lu et al. 2017). However, 
the mechanism underlying cassava response to abiotic and 
biotic stresses as well as sensitivity to PPD process remains 
less known. In this research, the comprehensive analysis of the 
cassava SOD, CAT, APX family and their potential functions 
associated with stresses response and PPD were discussed. 
Our findings would lay a solid foundation for genetic improve-
ment of cassava using antioxidant enzymes.

Results

Identification and Phylogenetic Analysis 
of the Cassava Sods, Cats, and Apxs

Genomic analysis identified 7 SOD, 6 CAT, and 6 APX proteins 
from the cassava genome. The physicochemical properties of 
the predicted proteins were shown in Table S1. The subcellular 
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prediction results were shown in the Table S2. Phylogenetic trees 
were constructed to investigate the phylogenetic relationship of 
SOD, CAT, APX proteins from Arabidopsis, rice, and cassava 
(Fig. 1). According to the phylogenetic analyses, the SOD, CAT, 
and APX families could be divided into 3 (subgroup 1–3), 2 (sub-
group A, B), and 3 (subgroup 1–3) subgroups, respectively. SOD, 
CAT, APXs in cassava showed a closer relationship with those 
in Arabidopsis compared with those in rice, which is consistent 
with plant phylogenetic research.

Conserved Motifs and Gene Structure Analyses 
of the Cassava SODs, CATs, and APXs

In order to analyze essential feature of the SOD, CAT, APX 
families, conserved motifs of these gene families were identi-
fied using MEME database and annotated with InterPro data-
base. There were 10 conserved motifs for each gene family 
(Fig. 2, Table S3). For the SOD family, all the MeSODs con-
tained motif 7. Subgroup 1 and 2 (MeSOD-3, -7, -1, and -2) 
commonly contained SOD-related motifs 4, 6, 7, and 9. Sub-
group 3 (MeSOD-4, -5, and -6) commonly contained SOD-
related motifs 1, 2, 3, and 7. For cassava CAT family, all the 
CATs included motifs 3–10, of which 5 motifs (motifs 3, 5, 6, 
7, and 9) related with catalase domain. MeCAT-2, -3, -4 and 
-6 contained other two catalase-related motifs (motifs 1 and 
2). For cassava APX family, all the APXs contained motifs 2, 
3, 6, 8, and 9, in which motifs 2 and 3 were related with per-
oxidase. These results showed that cassava SOD, CAT, APXs 
contained the typical motifs of the corresponding family.

The exon–intron features of cassava SOD, CAT, APX 
families were examined by GSDS database (Fig. 3). The 
number of exons was 6–9, 5–8, and 8–13 in SOD, CAT, and 

APX families, respectively. For the SOD family, subgroup 
1 and 3 were almost 6 exons, except for MeSOD-5 with 7 
exons; subgroup 2 were  8-9 exons. For the CAT family, 
subgroup A was 5 or 8 exons; subgroup B were 8 exons. For 
the APX family, subgroup 1 and 2 were 9 exons, except for 
MeAPX-2 with 8 exons; subgroup 3 were 11 or 13 exons. In 
general, cassava SODs, CATs, APXs in the same subgroup 
presented similar exon–intron organization.

Expression Analyses of SOD, CAT, and APX Genes 
in Different Tissues of Cassava

To detect the expression levels of cassava SOD, CAT, APX 
genes in different tissues, the expression data set contained 11 
cassava tissues was downloaded from public database (Wilson 
et al. 2017). These 11 tissues included friable embryogenic calli 
(FEC), organized embryogenic structure (OES), root apical 
meristem (RAM), fibrous root (FR), storage root (SR), shoot 
apical meristem (SAM), lateral bud, stem, petiole, midvein, 
and leaf. As shown in Fig. 4 and Table S4, all MeSODs had 
gene expression based on transcriptomic data, of which four 
MeSOD genes (MeSOD-2, -3, -4, and -6) showed high expres-
sion level (FPKM value > 20) in the 11 tissues. All MeAPXs 
showed gene expression based on transcriptomic data, except 
for MeAPX5. For the expressed MeAPXs, only MeAPX-4 
showed high expression (FPKM value > 20) in the 11 tissues, 
and MeAPX-6 showed high expression in stem, petiole, SR, 
and SAM (FPKM value > 20). For the MeCATs, only MeCAT1 
and MeCAT2 presented gene expression, with high expression 
levels (FPKM value > 20) in leaf and leaf/midvein, respectively. 
These results should provide clues for further study of tissue 
development and function.

Fig. 1   Phylogenetic analysis of SOD A, CAT B, and APX C from cassava, Arabidopsis, and rice
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Expression of SOD, CAT, and APX Genes in Response 
to ABA, MT, and PEG Treatments

Expression of cassava SOD, CAT, APX genes were exam-
ined after abscisic acid (ABA), melationin (MT), and PEG 
treatments (Fig. 5, Table S5). For ABA treatment, MeAPX-1, 
MeCAT5, MeSOD1, and MeSOD7 showed significant upreg-
ulation, whereas MeSOD2 showed significant downregula-
tion. For MT treatment, MeAPX1 showed significant induc-
tion, whereas MeSOD2 showed significant repression. For 
PEG treatment, MeAPX1, MeCAT5, and MeSOD7 showed 
significant upregulation, whereas MeAPX3, MeCAT2, and 
MeSOD2 showed significant downregulation. Interestingly, 
MeAPX1 showed common upregulation after ABA, MT, and 
PEG treatments, whereas MeSOD2 showed common down-
regulation upon the three treatments.

Expression Analyses of SOD, CAT, and APX Genes 
During PPD Process

PPD seriously reduces the industrial value of cassava. Pre-
vious physiological and biochemical analyses showed that 
production of ROS is the first step during PPD develop-
ment. Reduction of ROS is benefit for delay of PPD. The 
expression of SOD, CAT, and APX genes were examined 

during PPD in cassava storage roots after harvest (Fig. 6, 
Table S6). Compared with 0 h postharvest (HP), MeAPX-
2, -4 (log2 based fold change > 1), but MeAPX-1, MeCAT-
1, -2, MeSOD-2, -3 showed repression (log2 based fold 
change < -1) at 6 HP. MeAPX-2, -4, -5, -6, MeCAT-4, -6, 
and MeSOD-4, -6 showed upregulation (log2 based fold 
change > 1), whereas MeCAT-1, -2, and MeSOD-2 showed 
downregulation at 12 HP (log2 based fold change < -1). 
MeAPX-5, -6, MeCAT-6, and MeSOD-3 showed induction 
(log2 based fold change > 1), while MeAPX-1, MeCAT-1 
and MeCAT-2 showed repression at 48 HP (log2 based fold 
change < -1). Of these genes, MeCAT-1, -2 showed repres-
sion during 6–48 HP. These results suggested that MeSOD, 
CAT​, APX genes are involved in PPD process, and more 
member are induced than repressed at 12 and 48 HP.

Expression Profiles of SOD, CAT, and APX Genes 
in Response to Xanthomonas Axonopodis pv. 
Manihotis (Xam) Infection

Cassava bacterial blight (CBB) caused by Xanthomonas 
axonopodis pv. Manihotis (Xam) infection have most severe 
threats to cassava production. Expression of MeSOD, CAT​
, APX genes upon infection with pathogenic (TALE1Xam) 
and non-pathogenic (ORST4) Xam strains were investigated 

Fig. 2   The motif analyses of MeSOD, CAT, APX in cassava on the basis of their phylogenetic relationship
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using available transcriptomic data (Fig. 7, Table S7). At 
0 d after infection, only MeAPX-2 was suppressed (log2 
based fold change < -1). At 5 d after infection, MeAPX-2 
and MeCAT-1, -5 was suppressed. At 7 d after infection, 
MeAPX-2 and MeCAT-1 was suppressed, whereas MeSOD-
4, -6 was induced (log2 based fold change > 1). In these 
genes, MeAPX-2 always showed suppression during the 
infection process. These results showed that more genes 

were suppressed than the genes induced in response to Xam 
infection, which is coincided with improving ROS content 
to resist infection.

Fig. 3   The exon–intron organization analyses of MeSOD, CAT, APX genes in cassava according to the phylogenetic relationship

Fig. 4   Expression data of MeSOD, CAT, APX genes in various tissues
Fig. 5   The expression data (log2-based values) of the MeSOD, CAT, 
APX genes after various abiotic stress treatments
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Discussion

Cassava is an important crop in subtropical and tropical 
regions, which is considered as a staple food for more 
than 750 million people around the world (Okogbenin 
et al. 2013). Due to its high starch production, cassava 
is also regarded as a raw material for food processing 
industry. However, the PPD restricts cassava to apply 
in large-scale industrial production (Hu et  al. 2016). 
Numerous studies have shown that large amount of ROS 
appears in the early stage of PPD. Lower ROS accumula-
tion results in delayed PPD development by manipulating 
ROS-scavenging-related genes or exogenous application 
of chemicals (Vanderschuren et al. 2014; Zidenga et al. 
2012). SOD, CAT, APX genes are directly associated with 
controlling ROS content and also related with abiotic and 
biotic stresses (Hasanuzzaman et al. 2020). Hence, it is 
necessary to analyze the principal members of antiox-
idant enzymes in cassava. The POD family in cassava 
were identified by our previous study (C. Wu and Ding 
2019). In this study, 7 SODs, 6 CATs, and 6 APXs were 
identified from the cassava genome and were divided 
into 3, 2, and 3 subgroups based on their phylogenetic 

relationship (Fig. 1). The number of SOD, CAT, APX 
genes in cassava was similar with that identified in other 
species, such as Arabidopsis and rice (Dehury et  al. 
2013; Kliebenstein et al. 1998; Ozyigit et al. 2016; Joo 
et al. 2014; Du et al. 2008). The phylogenetic classifica-
tion of SOD, CAT, APX genes in cassava was consistent 
with that in rice, Arabidopsis, and cotton (Dehury et al. 
2013; Kliebenstein et al. 1998; Ozyigit et al. 2016; Joo 
et al. 2014; Du et al. 2008; Wang et al. 2019, 2016). The 
results of phylogenetic classification were also confirmed 
by conserved motif and gene structure analysis. Cassava 
SOD, CAT, APXs contained the typical motif of SOD 
domain, catalase domain, peroxidase domain, respectively 
(Table S3), which were also identified in other plant spe-
cies. The analysis of phylogenetic relationship, conserved 
motifs, and gene structure showed that the identification 
and grouping of SOD, CAT, APX genes in cassava were 
reliable. The subcellular localization of MeSOD, CAT, 
APX genes was predicted (Table S2). The same subgroup 
generally presented similar subcellular localization. Sub-
group 1 and 2 of MeSODs localized in mitochondrion, 
and subgroup 3 located in cytoplasm. However, the sub-
cellular localization of MeAPXs in different subgroup 

Fig. 6   The expression data (log2-based values) of the MeSOD, CAT, 
APX genes during PPD process

Fig. 7   The expression data (log2-based values) of the MeSOD, CAT, 
APX genes in response to Xam infection
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presented inconsistent, with localization in cytoplasm, 
chloroplast, or mitochondrion. In rice and Arabidopsis, 
the member of APX family were also found to be local-
ized in peroxisome (Teixeira et al. 2004; Shigeoka et al. 
2002). MeCATs almost localized in the peroxisome. This 
phenomenon also existed in other species (Mittler 2002).

Reactive oxygen species are signaling molecules to regu-
late programmed cell death, pathogen defense, and abiotic 
stress responses. However, it is important to maintain a sta-
ble level of ROS, excessive ROS will cause oxidative dam-
age to organelles and cell membranes (Mittler et al. 2004). 
There were several antioxidant defense mechanisms to main-
tain homeostasis of ROS content during biotic and abiotic 
stresses, such as antioxidant enzymes, including SOD, CAT, 
APX, and POD, etc. (Hasanuzzaman et al. 2020). SOD, 
CAT, APX genes are associated with stresses responses of 
plants. PaSOD (Potentilla atrosanguinea) played a positive 
role in tolerance to salt stress in Arabidopsis (Shafi et al. 
2015). Transgenic plums showed salt stress tolerance by 
overexpression of SOD and APX genes. APX amount and 
activity is associated with increasing drought tolerance in 
soybean (Kausar et al. 2012). AtWNK8 endowed the salt tol-
erance by improving the activity of CAT (Zhang et al. 2013). 
Overexpression of CatA and CatC in rice improved drought 
stress tolerance (Joo et al. 2014). Increased SOD, CAT, 
APX activities are associated with gene expression regula-
tion, and lower oxidative damage was perceived in different 
plants accompanied with higher SOD, CAT, APX activities 
(Hasanuzzaman et al. 2020). Cu/Zn-SOD and CAT​ play a 
positive role in improving cassava tolerance to drought and 
cold stresses (Xu et al. 2013b). In this research, MeAPX1, 
MeCAT5, MeSOD7, MeAPX3, MeCAT2, and MeSOD2 pre-
sented significant changes at transcriptional levels after PEG 
treatment. Of which, MeAPX1 was also upregulated by ABA 
and MT treatments, and MeSOD2 was also downregulated 
by ABA and MT treatments. Many studies have showed that 
MT increases drought tolerance by improving the antioxi-
dant capacity to keep ROS homeostasis (Shi et al. 2016). 
ABA levels is also associated with the formation of ROS in 
plants (Ye et al. 2011). These results suggested that MeAPX1 
and MeSOD2 might be commonly involved in osmotic, ABA 
and MT responses.

Previous researches suggested that reducing ROS accu-
mulation leads to a delayed PPD process. MeCu/ZnSOD and 
MeCAT1 have an effect on delaying postharvest physiologi-
cal deterioration of cassava tuberous root (Vanderschuren 
et al. 2014; Zidenga et al. 2012). SOD, CAT, APX genes 
are directly associated with controlling ROS content; thus, 
SOD, CAT, APX genes are directly associated with PPD 
process. ROS was also as a signal in the post-harvest losses 
of N. nucifera (Dong et al. 2015). PPD resistant cultivars 
showed higher expression and activity of CAT than PPD 
susceptible cultivars in cassava (Reilly et al. 2001). In this 

research, 4 SOD (MeSOD-2, -3, -4, and -6), 4 CAT (MeCAT-
1, -2, -4, and -6), and 5 APX (MeAPX-1, -2, -4, -5, and -6) 
presented significant changes at transcriptional levels during 
PPD process. Of which, the number of induced SODs, CATs, 
APXs are significantly more than the repressed SODs, CATs, 
APXs at 12 and 48 HP. This is consistent with previous stud-
ies showing the activation of antioxidant system during PPD 
process for ROS scavenging (Hu et al. 2016; Vanderschuren 
et al. 2014). These genes may be regarded as candidate genes 
for manipulating to delay PPD process.

Xam caused cassava bacterial blight and led to a substan-
tial loss of production (Y. Yan et al. 2018). SOD, CAT, APX 
genes are directly associated with controlling ROS content 
that is associated with the resistance to pathogen infection. 
In this research, MeSOD-4, -6 were significant induced 
after pathogen infection. Overexpression of ZmCAT2 and 
pepper APX-like-1 in tobacco enhanced capacity of trans-
genic lines to remove H2O2 and resist pathogen (Polidoros 
et al. 2001; Sarowar et al. 2005). In tomato, the SOD and 
CAT activity were improved to resist Fusarium oxysporum 
through up-regulating SOD genes (Aamir et al. 2019). In 
sweet potato, swAPX1 was strongly induced in the leaves 
following treatment with Pectobacterium chrysanthemi, 
which might be associated with H2O2-detoxification and 
thus helpful for overcoming the oxidative stress induced by 
biotic stresses (Park et al. 2004). Overexpression of MeCu/
ZnSOD and MeCAT1 in cassava enhanced the resistance 
to Tetranychus cinnabarinus (Lu et al. 2017). The results 
indicate the involvement of cassava antioxidant enzymes in 
Xam infection.

Conclusions

In conclusion, 7 SODs, 6 CATs, and 6 APXs were identi-
fied from cassava, and their basic classifications, conserved 
motifs, and exon-introns were analyzed. Transcriptional pro-
files presented the involvement of cassava SOD, CAT, APX 
genes in tissue development, PEG and ABA responses, Xam 
infection and PPD process. Together, this study increases our 
understanding of cassava SOD, CAT, APX genes feature and 
their potential function in biotic and abiotic stress responses 
as well as PPD process in cassava, laying a solid foundation 
for further function characterization of cassava SOD, CAT, 
APX genes and genetic improvement of cassava.

Methods

Plant Materials and Treatments

Cassava Arg7 can survive under the severe environment 
of high-latitude of Argentina, and the SC124 is a widely 
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cultivated cassava cultivar in China. Arg7 were cultured in 
the glass house (16/8-h light/dark cycle under 70% relative 
humidity, 35 °C/20 °C day/night, 200 μmol m−2 s−1 photo-
synthetic photon flux density). After 90 days, Arg7 small 
plantlet with consistent growth were irrigated with 100 μM 
abscisic acid (ABA) for ABA, 20% polyethylene glycol 
(PEG) 6000 solution for drought, and 100 μM melatonin 
(MT) solution for MT treatment, respectively. After 0, 3, 5, 
and 7 d or 9 d treatment, the second unfolded leaves from 
cassava small plantlet were provided for RNA-seq (three 
replicates for each sample) (Ding et al. 2019). To detect the 
expression changes of SOD, CAT, APX genes during PPD, 
SC124 storage roots from 10 months were sliced into 5 mm 
thick pieces for RNA-seq according to Hu et al. (three rep-
licates for each sample) (Hu et al. 2016).

Identification and Phylogenetic Analyses

OsSOD/OsCAT/OsAPX and AtSOD/AtCAT/AtAPX pro-
tein sequences were downloaded from RGAP and TAIR 
databases, respectively. The whole protein and genome 
sequences of cassava was downloaded from Phytozome 
database (cassava genome version 6.1). Hidden Markov 
models (HMM) (http://​www.​hmmer.​org/) were built by 
known SOD, CAT, APX sequences which through by blast 
by known HMM (PF00080, PF00081, PF02777, PF00199, 
PF00141). BLAST analysis was used to confirm MeSOD/
MeCAT/MeAPX genes by the sequences of OsSOD/OsCAT/
OsAPX and AtSOD/AtCAT/AtAPX. Pfam database and 
conserved domains database were used to confirm the identi-
fied MeSOD/MeCAT/MeAPX genes. The phylogenetic tree 
was constructed using cassava, Arabidopsis, and rice SOD, 
CAT, APXs using MEGA 5.0 and Clustal X2.0 softwares 
with the pair-wise deletion option. One thousand bootstrap 
replicates were used to assess tree reliability.

Protein Properties and Gene Structure Analyses

Molecular weight and isoelectric points of MeSOD, CAT, 
APX proteins were predicted by the ExPASy database. 
The conserved motif of MeSOD, CAT, APX proteins were 
censored with MEME database. All the motifs structure of 
SOD, CAT, APX proteins were annotated using InterPro-
Scan databases. The Exon/intron organization of cassava 
SOD, CAT, APX genes were examined by Gene Structure 
Display Server (GSDS) database.

Xam Infection

Culture and inoculation of Xam (pathogenic (TALE1Xam) 
and non-pathogenic (ORST4) strains) were according to 
Yan et al. (2018). After Xam inoculation, the plants with 

Xam infection were cultured in the glass house. At every 
indicated timepoint, leaves were harvested for samples, 
and three biological repeats were performed for analysis. 
The leaves were gently mixed in 70% ethanol solution for 
1 min and washed in sterile distilled water for 1 min; there-
after, the leaves were provided for RNA-seq.

Transcriptomic Analysis

The samples of storage roots collected for RNA-seq and 
the specific analysis process according to Hu et al. (2016). 
RNA samples collected from Arg7 by Plant RNA Purifica-
tion Reagent kit (Invitrogen, Carlsbad, CA, USA) (Ding 
et al. 2019). Total RNA was used for library preparation, 
and sequencing platform was HiSeq 4000. Adapter and 
low-quality sequences were removed by FASTX-toolkit 
from the raw reads. Clean sequences were aligned to the 
cassava genome by Tophat v.2.0.10 (Ding et al. 2019), 
and transcriptome assemblies were performed with Cuf-
flinks (Ding et al. 2019). Finally, the heat map reflected 
the FPKM (fragments per kilobase of transcript per mil-
lion mapped fragments) values was created with MeV 4.9 
software.
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