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Abstract
The nuclear factor Y (NF-Y) transcription factor (TF) family consists of three subfamilies NF-YA, NF-YB and NF-YC. Many 
studies have proven that NF-Y complex plays multiple essential roles in stress response in Arabidopsis and other plant species. 
However, little attention has been given to these genes in peanut. In this study, thirty-three AhNF-Y genes were identified in 
cultivated peanut and they were distributed on 16 chromosomes. A phylogenetic analysis of the NF-Y amino acid sequences 
indicated that the peanut NF-Y proteins were clustered in pairs at the end of the branches and showed high conservation 
with previous reported plant NF-Ys. Evolutionary history analysis showed that only segmental duplication contributed to 
expansion of this gene family. Analysis of the 1500-bp regulatory regions upstream the start codon showed that, except 
for AhNF-YB6, peanut NF-Ys contained at least one abiotic stress response element in their regulatory region. Expression 
patterns of peanut NF-Ys in 22 tissues and developmental stages were analyzed. A few NF-Ys showed universal expression 
patterns, while most NF-Ys showed specific expression patterns. Through RNA-seq and qRT-PCR analyses, expression of 
six AhNF-Y genes was induced under salt stress in leaves or roots. In addition, AhNF-YA4/8/11, NF-YB4 and NF-YC2/8 also 
responded to osmotic stress, ABA (abscisic acid) and salicylic acid (SA) treatment.

Keywords Cultivated peanut (Arachis hypogaea L.) · NF-Y gene family · Phylogenetic analysis · Expression patterns · 
Abiotic stress

Introduction

Nuclear factor Y (NF-Y) transcription factor, also known 
as heme activator protein (HAP) or CCAAT-binding factor 
(CBF), is present in almost all higher eukaryotic genomes. 
Eukaryotic NF-Ys consist of three subfamilies (NF-YA, 
NF-YB and NF-YC), and each NF-Y subunit is encoded 

by a single gene with multiple splicing isoforms in ani-
mals and yeast (Li et al. 1992). In contrast, each subunit 
of NF-Y is encoded by a family of approximately 10 genes 
in plants (Petroni et al. 2012). Eukaryotic NF-Ys function 
as a heterotrimeric complex to regulate the expression of 
downstream target genes (Nardini et al. 2013). NF-YB and 
NF-YC first dimerize in cytoplasm to create a molecular 
scaffold and then move into the nucleus to recruit an NF-YA 
component and subsequently bind to the CCAAT-box spe-
cifically (Myers et al. 2018). The NF-YB-YC-YA trimer 
can further recruit other TFs, such as CONSTANS (CO) 
or bZIP28 (Cao et al. 2014; Liu et al. 2010). In addition, 
other TFs, such as bZIP67, CO2 and VRN2, can also bind 
to the NF-YB-YC heterodimer competitively with NF-YA 
subunits (Li et al. 2011; Yamamoto et al. 2009). The func-
tion of NF-Ys in Arabidopsis thaliana, wheat, rice, maize, 
legume plants and tomato have been reported to regulate 
a variety of growth and developmental processes includ-
ing male gametogenesis, embryogenesis, seed develop-
ment and germination (Huang et al. 2015; Mu et al. 2013), 
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photosynthesis and photomorphogenesis (Myers et al. 2016; 
Stephenson et al. 2011), root growth (Ballif et al. 2011; 
Sorin et al. 2014; Zanetti et al. 2017), nodule formation 
(Bu et al. 2020; Hossain et al. 2016; Ripodas et al. 2019), 
flowering and yield regulation (Hwang et al. 2019; Muday 
et al. 2016; Shen et al. 2020; Su et al. 2018; Zhang et al. 
2019), and fruit maturation (Li et al. 2016).

Environmental stresses such as drought, salinity, and heat 
are the main challenges affecting the development, growth, 
and productivity of field crops, resulting in crop yield losses. 
A significant number of studies have revealed that NF-Ys 
are crucial regulators of plant stress response. AtNF-YA5, 
AtNF-YB1, GmNF-YA3 and PdNF-YB7 positively modulate 
drought tolerance of transgenic Arabidopsis (Chen et al. 
2007; Han et al. 2013; Li et al. 2008; Ni et al. 2013), and 
OsNF-YA7 and ZmNF-YB2 confer drought tolerance to trans-
genic rice (Lee et al. 2015; Nelson et al. 2007). Overexpres-
sion of AtNF-YA1 and TaNF-YA10-1 significantly increased 
sensitivity to salt stress (Li et al. 2013; Ma et al. 2015a), and 
in constrast, SiNF-YA5 and GhNF-YA10/23 enhance the salt 
tolerance of plants (Zhang et al. 2020). AtNF-YA2, AtNF-
YC10, SlNF-YA9/10 were reported to participate in heat 
tolerance regulation in Arabidopsis and tomato (Rao et al. 
2021; Sato et al. 2014). Moreover, some NF-Y subunits are 
involved in multiple stress responses. AtNF-YB2 and AtNF-
YB3 positively regulate the heat stress response in Arabidop-
sis, but play negative roles in drought tolerance and exhibit 
functional redundancy in both processes (Sato et al. 2019). 
Rice OsHAP2E confers salinity and drought tolerance and 
increases photosynthesis and tiller number (Alam et al. 
2015). Although some aspects of plant NF-Y research have 
advanced sufficiently to provide a mechanistic understand-
ing, the regulatory mechanisms of most plant NF-Ys in stress 
response remain less well understood.

Peanut (Arachis hypogaea L.) is an important oil and food 
crop worldwide (Zhang et al. 2018). More than half of the 
global peanut production comes from semiarid areas, where 
drought and soil salinity are the main limitations for peanut 
growth (Banavath et al. 2018). Cultivated peanut, which 
evolved from the hybridization and subsequent chromosome 
doubling of Arachis duranensis (A) and Arachis ipaensis 
(B), is an allotetraploid (AABB genome, 2n = 4x = 40) with 
a total genome size of approximately 2.7 Gb (Bertioli et al. 
2016; Grabiele et al. 2012; Robledo et al. 2009). There is 
much less knowledge about the NF-Y TF involved in pea-
nut stress response than the large genome. In the present 
study genome-wide identification and systematic analysis of 
the NF-Y gene family in cultivated peanut were performed. 
We identified the AhNF-Y gene family and analyzed their 
sequence features, phylogenetic relationships, chromo-
somal locations, gene duplication during the expansion. 
The expression profiles in 22 tissues and developmental 
stages and under salt stress were also investigated through 

reanalysis of published RNA-seq data. In addition, using 
quantitative real-time PCR (qRT-PCR), we analyzed the 
expression profiles of AhNF-Y genes under salt stress and 
identified several candidate genes responsive to abiotic stress 
and hormone treatment. The present results will facilitate 
future investigations on the functional characterization of 
NF-Y genes in peanut.

Materials and Methods

Identification of NF‑Y Coding Genes in Peanut 
and Sequence Analysis

The genomic sequence of A. hypogaea cv. Tifrunner (Bertioli 
et al. 2019) and the annotated gene models were downloaded 
from PeanutBase (Version 1, https:// www. peanu tbase. org/ 
peanut_ genome). The NF-Y protein sequences of A. thali-
ana (Siefers et al. 2009) and Glycine max (Quach et al. 2015) 
used in this research (Additional file 4) were downloaded 
from the National Centre for Biotechnology Information 
(NCBI) database (http:// www. ncbi. nlm. nih. gov/). The hidden 
Markov model (HMM) profile of CBFB_NFYA (PF02045) 
was obtained from the Pfam protein family database (http:// 
pfam. xfam. org). The HMMER website server and BLASTP 
were used to search for NF-YA genes (p < 0.01) (Finn et al. 
2015). The amino acid sequences of Arabidopsis, soybean 
and rice NF-Ys were used for BLAST of peanut NF-Y can-
didates. The putative AhNF-Y proteins were uploaded to the 
online Conserved Domain Database (https:// www. ncbi. nlm. 
nih. gov/ Struc ture/ bwrpsb/ bwrpsb. cgi) (Marchler-Bauer et al. 
2017), Pfam and SMART (http:// smart. embl- heide lberg. 
de/) tools to verify the conserved NF-Y domain. DNAMAN 
software (LynnonBiosoft USA, version 6) was employed to 
perform multiple sequence alignments to determine whether 
the candidate genes could encode proteins carrying com-
plete NF-Y subunit binding and DNA-binding domains. The 
ExPASy proteomics server (http:// prosi te. expasy. prg/) was 
used to acquire the sequence lengths, molecular weights and 
isoelectric points (Letunic et al. 2018; Robert et al. 2014).

Phylogenetic Analysis and Sequence Analysis

MEGA7 (Kumar et al. 2016) was used to perform sequence 
alignment and maximum-likelihood phylogenetic tree con-
struction using the bootstrap method (number of bootstrap 
replications = 1000). iTOL (http:// itol. embl. de/) was used 
for visualization and further editing of the phylogenetic 
tree. The MEME program (http:// meme- suite. org/ tools/ 
meme) (Bailey et al. 2009) was employed to detect the con-
served motifs in the full length of identified AhNF-Y pro-
teins with the following parameters: the maximum number 
of motifs was 20 and the length range was 6—100 amino 

330 Tropical Plant Biology (2021) 14:329–344

https://www.peanutbase.org/peanut_genome
https://www.peanutbase.org/peanut_genome
http://www.ncbi.nlm.nih.gov/
http://pfam.xfam.org
http://pfam.xfam.org
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://prosite.expasy.prg/
http://itol.embl.de/
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme


1 3

acids. Exon–intron structure visualization was performed 
by comparing cDNA sequences with their corresponding 
full-length genomic DNA sequences using the online tool 
Gene Structure Display Server version 2.0 (gsds. cbi. pku. 
edu. cn/) (Hu et al. 2015).

Chromosomal Distribution and Gene Duplication 
Analysis

The Multiple Collinearity Scan toolkit (MCScanX)(Wang 
et al. 2012) was employed to detect gene duplication events 
with the default parameters. The visualization of chromo-
somal distribution and synteny analysis were performed 
by Circos and Mapchart (Krzywinski et al. 2009; Voorrips 
2002). The amino acid sequences of duplicated gene pairs 
were first aligned and used to guide the alignment of cDNA 
sequences with in-house Perl-scripts. KaKs calculator was 
used to compute the nonsynonymous (Ka) and synonymous 
(Ks) substitution values of each duplicated gene pair using 
the YN model. The divergence time (million years ago, 
Mya) was calculated with the formula T = Ks/2r. The r (rate 
of divergence for nuclear genes) was taken to be 1.5 ×  10–8 
synonymous substitutions per site per year for dicotyledon-
ous plants (Koch et al. 2000).

Analysis of Regulatory cis‑elements Upstream 
of AhNF‑Y Genes

The 1.5-kb upstream sequences of the initiation codon (ATG) 
of each AhNF-Y gene were submitted to the PlantCARE data-
base (http:// bioin forma tics. psb. ugent. be/ webto ols/ plant care/ 
html/) to identify six regulatory elements (Lescot et al. 2002).

Plant Materials and Growth Conditions

The plant material used in this study, A. hypogea L. cultivar 
Fenghua 2 (Spanish type), was bred and preserved by our 
group. Mature seeds were germinated on distilled water-wet 
degreasing cotton extended in seedling cultivation disks. 
These disks were placed at 26 °C in darkness for 3 days and 
then exposed to long-day conditions (LD; 16 h light and 8 h 
dark cycle). Two-functional-leaf seedlings were transplanted 
to a hydroponic box and cultured with 1/5 Hoagland’s nutri-
ent solution (Pan et al. 2017).

Stress Treatment, Total RNA Extraction and Reverse 
Transcription

To analyze the expression pattern of AhNF-Y genes, two-
week-old seedlings were treated with nutrient solution 
containing 200 mM NaCl, 20% (w/v) mannitol, 100 mM 
abscisic acid (ABA) and 100 mM salicylic acid (SA), respec-
tively. The leaves and roots of seedlings treated with NaCl 

were harvested at 0 and 16 h. Leaves of seedlings treated 
with mannitol were collected at 0, 2, 4, 6, 8, 12 and 24 h. 
For ABA and SA treatment, the leaves of seedlings were 
harvested at 0, 1, 2, 4, 6 and 8 h. All samples were frozen 
immediately in liquid nitrogen for RNA extraction. For each 
sample, leaves or roots from ten seedlings were harvested. 
Three independent biological replicates were performed for 
each treatment.

Total RNA was isolated with Quick RNA Isolation Kit 
(Waryong, Beijing, China) following the manufacturer’s 
instructions. The concentration of the total RNA in each 
sample was quantified by a NanoDrop 2000 microvolume 
spectrophotometer (Thermo Fisher Scientific, Massachu-
setts, USA). Reverse transcription was performed using 
Advantage RT-for-PCR Kit (TaKaRa, Dalian, China) 
according to the manufacturer’s instructions. Total RNA and 
cDNA samples were stored at -80°Cand -20 °C, respectively.

Expression Profile Analysis of AhNF‑Ys

The expression atlas of 22 A. hypogaea tissues was down-
loaded from PeanutBase (https:// www. peanu tbase. org/ 
gene_ expre ssion/ atlas) (Clevenger et al. 2016; Dash et al. 
2016). In these RNA-Seq data, the normalized reads were 
mapped to an in silico amphidiploid genome assembled 
from the genome of the diploid ancestor A. duranensis 
and A. ipaensis (Clevenger et al. 2016). BLAST was per-
formed to identify homologous genes of AhNF-Y in the 
A. duranensis and A. ipaensis genomes. For each tetra-
ploid peanut AhNF-Y, only when the A. duranensis or A. 
ipaensis NF-Y gene showed the highest similarity in amino 
acid sequence was it defined as the homologous gene. IDs 
of the homologous gene were used to extract the frag-
ments per kilobase of transcript per million mapped reads 
(FPKM) values from the tissue expression atlas. Tran-
scriptome data under salt stress were archived from the 
public repository of the NCBI (https:// www. ncbi. nlm. nih. 
gov) under BioProject accession number PRJNA560660 
(unpublished data from part of another work of our group, 
BioSample SAMN12594512-14, SAMN12594518-20, 
SAMN12594524-26, SAMN12594530-32). The heatmap 
was created using TBtools (Chen et al. 2020) with log2- 
transformed FPKM values, and row clustered.

SYBR Green real-time PCR was carried out using TB 
Green Premix Ex Taq (Tli RNaseH Plus, TaKaRa, Dalian, 
China) on a StepOne Plus system (Applied Biosystems, 
Waltham, USA) in a 20μL reaction volume according to 
the manufacturer’s instructions. Three technical replicates 
were performed for each sample. The primers were designed 
using Beacon Designer 7.9. Actin was used as the inter-
nal reference gene. Sequences of the primers and actin 
are shown Table S1. The relative expression levels of the 
AhNF-Ys were evaluated by the  2–ΔΔCt method. Statistical 
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differences were determined by Student’s t-test (**P < 0.01, 
*P < 0.05, n = 3) using Excel.

Protein–protein Interaction Network Analysis

All differentially expressed genes (DEGs) encoding DNA-
binding proteins detected under salt stress were screened 
from the online transcriptome data mentioned in “Expres-
sion profile analysis of AhNF-Ys”. The interaction networks 
were created by the online software STRING (Version 
11.0, https:// string- db. org/) using the amino acid sequences 
of DEGs and visualized by Cytoscape 3.7.1. The interac-
tion database of A. thaliana and G. max were selected as 
references.

Results

Identification and Phylogenetic Analysis of AhNF‑Y 
Genes

In the allotetraploid peanut cultivar, 42 AhNF-Y candidates 
(19 AhNF-YAs, 14 AhNF-YBs and 9 AhNF-YCs) were iden-
tified. 33 of them (14 NF-YAs, 10 NF-YBs and 9 NF-YCs), 
which could encode NF-Y proteins with complete NF-Y 
subunit binding and DNA-binding domains, were defined 
as AhNF-Ys (Table 1, Fig. S1). All these genes were named 
according to chromosome name and chromosomal location 
(Fig. S2). Basic information on the AhNF-Y family members 
is listed in Table 1, including the IDs of the AhNF-Y-coding 
genes in A. hypogaea cv. Tifrunner genome (version 1), gene 
loci on the chromosome, length of the open reading frame 
(ORF), molecular weight (MW) and isoelectric point (pI). 
AhNF-YA12 was the largest protein with 492 amino acids 
and an MW of 55.45 kDa, while the smallest protein was 
AhNF-YB2 with 171 amino acids and an MW of 18.88 kDa. 
The pI ranged from 5.19 (AhNF-YC9) to 9.64 (AhNF-YA5).

To investigate the phylogenetic relationships of NF-Y 
genes in plants, phylogenetic tree was generated from 33 
peanut NF-Ys (Table S2), 33 A. thaliana NF-Ys (AtNF-
Ys) and 58 G. max NF-Ys (GmNF-Ys, Table S3). All the 
NF-Y proteins were clustered into three main clades, and 
each clade was equivalent to a single subfamily. AhNF-Y 
proteins tend to be present in pairs at the ends of branches, 
except AhNF-YC1, AhNF-YC2, and AhNF-YC8 (Fig. 1). 
Most of the pairs of peanut NF-Y genes were located at simi-
lar positions on the corresponding chromosome of the two 
subgenomes (Fig. S4). However, there were a few exceptions 
in the NF-YC subfamily, including AhNF-YC2, AhNF-YC4, 
AhNF-YC5, AhNF-YC6, and AhNF-YC8. Furthermore, as 
shown in Fig. 1, each subfamily consisted of a few second-
ary clades (from clade I to clade XII). NF-Ys from all three 
species were clustered in clades II, IV, VI, VII, IX, and XII. 

At the branch ends of clade I and XI, there were only NF-Ys 
from legume (soybean and peanut), while NF-Y proteins 
from peanut were not clustered in clades III, V, VIII, and X 
(gray strips in Fig. 1).

Chromosomal Distribution and Gene Duplication 
of AhNF‑Ys

The chromosomes of the A. hypogaea genome are numbered 
Arahy.01-Arahy.20 (Bertioli et al. 2019). The 33 AhNF-Y 
genes were distributed on 16 chromosomes, that is on all 
chromosomes except Arahy.02, 05, 12 and 15 (Table 1, 
Fig. 2, Fig. S2). Arayh.01, Arayh.11, Arayh.14 and Arayh.18 
carried 3 AhNF-Y genes, respectively, and only one AhNF-Y 
gene was located on Arahy.17, Arahy.19 and Arahy.20. Most 
of the AhNF-Ys were located near the end of the chromo-
some (Fig. S2).

Some studies indicated that both segmental duplica-
tion and tandem duplication played important roles in the 
generation of gene families during evolution, as well as 
crop domestication(Cannon et al. 2004; Kondrashov 2012; 
Salman-Minkov et al. 2016). We analyzed the gene dupli-
cation events of AhNF-Y genes in the A. hypogaea genome 
(Fig. 2). Duplication events occur only within subgenomes. 
Two duplicated pairs were detected in the A and B subge-
nomes, respectively (Table 2). The pairwise synonymous 
distances (Ks values) within the collinear blocks and diver-
gence time of the segmental duplicated gene pairs were cal-
culated (Table 2). The divergence of NF-YB6 and NF-YB7 
occurred much earlier than that of the other pairs, and all 
the duplication events of peanut NF-Y occurred before spe-
ciation of the two wild diploids at approximately 2 Mya 
(Chen et al. 2019).

Gene Structure and Conserved Motif of AhNF‑Ys

Phylogenetic analysis was performed for peanut NF-Y pro-
teins, and most of the AhNF-Ys were clustered in pairs, 
except AhNF-YC4, AhNF-YC5 and AhNF-YC6 (Fig. 3A, 
Table S4). All the paired genes shared similar locations 
on the homologous chromosomes of the two subgenomes 
(Fig. S2). Furthermore, the gene structures of the paired 
genes showed a high degree of similarity, including the num-
bers and positions of both introns and exons (Fig. 3B). For 
example, there was an intron in the 5’ untranslated region 
(UTR) of both AhNF-YA7 and AhNF-YA14. The members of 
the AhNF-YA subfamily contain a larger number of introns 
(from 4 to 7), while there are only one or two introns in the 
AhNF-YC subfamily, except in AhNF-YC1 (Fig. 3B).

The MEME analysis tool was used to predict the con-
served motifs in AhNF-Y genes (Fig. 3C and Table S5). 
A total of 20 motifs were identified. Motifs 7 and 8 were 
identified only in the AhNF-YA subfamily, and they consist 
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the NF-YB/C interaction and DNA-binding domains of the 
NF-YA subunit (Fig. S1A) together with Motif 1. Motifs 
2, 4 and 11 correspond to the NF-YA/NF-YC subunit 
interaction and DNA-binding domains of NF-YB protein 

(Fig. S1B), which were unique to the AhNF-YB subfamily. 
Motifs 3, 6 and 10 existed only in the AhNF-YC subfam-
ily and corresponded to the NF-YA/NF-YB subunit inter-
action and DNA-binding domains in the NF-YC subunit 

Fig. 1  Phylogenetic tree of NF-Y proteins from peanut, Arabidopsis 
thaliana and Glycine max. NF-Ys from the three subfamilies are indi-
cated by different color ranges: NF-YA in pink, NF-YB in purple and 
NF-YC in light green, respectively. Genes from each individual spe-

cies are denoted by circles with different colors. The colored strips 
on the outside represent the main clades of each subfamily. The boot-
strap values are shown on the branches
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(Fig. S1C). These results indicated the high conversion of 
the protein–protein and protein-DNA interaction structures 
of the NF-Y family in peanut, which is consistent with pre-
vious reports (Myers et al. 2018). In addition, some motifs 
were identified only in a few proteins; for example, motif 
15 was observed only in NF-YA4/11 and NF-YA5/12, and 
motif 16 was identified only in NF-YB3/8 (Fig. 3C). The 
specificity of these motifs may result in functional differ-
ences between NF-Y subunits within each subfamily.

Tissue/organ‑specific Expression Analysis of AhNF‑Ys

To determine the expression patterns of AhNF-Y genes, we 
used published RNA-seq data, which covered 22 tissues 
throughout the life cycle of peanut (Clevenger et al. 2016). 
Genes with the most similar expression patterns were clus-
tered together by TBtools, and all the AhNF-Ys were classi-
fied into four main groups (Fig. 4, Table S6). Group 1 (G1) 
contained 3 genes (AhNF-YA3, A10 and C6), which showed 

Fig. 2  Chromosome distribution and synteny analysis of NF-Y genes 
in peanut. Chromosomes are drawn in different colors. The approxi-
mate location of AhNF-Y genes is shown by the short red lines on the 

circle. The duplicated AhNF-Y paralogs were linked by red lines. The 
NF-Y orthologs between the A and B subgenomes are linked by blue 
lines. All synteny blocks are indicated by light grey lines
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low expression levels in most tissues except seed. Group 2 
(G2) comprised 8 genes. The expression of these genes was 
hardly detected in most tissues/organs except a few, such as 
AhNA-YB1/6 in seeds. The third group (G3) included only 
2 genes (AhNF-YC1 and C8), with extremely high expression 

levels throughout the life cycle and nearly all organs/tissues. 
Group 4 (G4) was composed of the other AhNF-Ys. These 
genes showed higher expression levels than genes belonging 
to group 1 and group 2 and displayed diverse expression pat-
terns. For example, AhNF-YB4, B9 and C3 were expressed 

Table 2  Ka, Ks, and Ka/Ks 
values for duplicated NF-Y 
gene pairs in Arachis hypogaea 
genome

Gene 1 Gene 2 Subgenome Ka Ks Ka/Ks P-value (Fisher) Divergence-
time (Mya)

AhNF-YA2 AhNF-YA3 A 0.96208 1.10194 0.87308 0.0119115 36.731
AhNF-YC1 AhNF-YC4 A 1.01304 0.95165 1.06451 0.18375 31.721
AhNF-YA9 AhNF-YA10 B 0.95219 1.13067 0.842148 0.0011769 37.689
AhNF-YB6 AhNF-YB7 B 0.41487 2.01636 0.20575 0 67.212

Fig. 3  Phylogenetic relationships, gene structures and motif compo-
sitions of AhNF-Y genes. A Unrooted maximum likelihood phyloge-
netic tree. B Exon/intron organization. Exons are shown as yellow 
boxes, and introns are shown as black lines. C Schematic represen-

tation of conserved MEME motifs of full-length NF-Y proteins. 
Colored boxes indicate different conserved motifs, while the black 
lines represent sequences no MEME motifs detected
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in all the examined tissues and developmental stages, but 
the expression levels are quite different; AhNF-YB2 and B7 
were highly expressed in nodules only. The above results 
indicated that AhNF-Y genes showed diverse expression pat-
terns in peanut.

Expression and Protein–protein Interaction 
Analyses of AhNF‑Y Genes under Salt Stress

Using the high-throughput RNA-seq data of peanut culti-
var Fenghua 2, heatmap of the AhNF-Ys expression pattern 
under salt stress was established (Fig. 5A, Table S7). Cluster 
analysis showed that the expression of 11 AhNF-Y genes 
(AhNF-YA1, A4, A6, A8, A9, A11, B7, C1, C2, C7 and C8) 
was upregulated in leaves, whereas the expression levels of 
3 genes (AhNF-B4, B9 and C5) were downregulated. Three 
AhNF-Y genes (AhNF-YA3, A7 and A14) showed decreased 
expression in roots. The expression level of AhNF-YB2 was 
upregulated in leaves but downregulated in roots. Further-
more, AhNF-YB4 was upregulated in both leaves and roots. 
In contrast, 11 other AhNF-Ys (AhNF-YA2, A5, A12, B3, B5, 
B8, B10, C3, C4, C6 and C9) could not be induced by salt 
stress. In addition, the expression of AhNF-YA10 and AhNF-
YB1 was not detected. This distinction in the expression 

patterns indicated that members of the AhNF-Y family might 
have different responses and regulatory mechanisms under 
salt stress.

To further validate the RNA-seq data, the expression of 6 
typical AhNF-Y genes (AhNF-YA4, A8, A11, B4, C2 and C8) 
in both leaves and roots was analyzed by qRT-PCR (Fig. 5B 
and C). After 16 h of salt treatment (200 mM NaCl), the 
expression levels of AhNF-YA4/A8/C8 were upregulated in 
both leaves and roots, while AhNF-YC2 was induced only in 
leaves. These results are consistent with the RNA-seq data. 
In addition, the expression pattern of AhNF-YA11 in leaves 
was not affected by salt stress, and the expression levels of 
AhNF-YB4 in leaves and roots showed no significant change. 
The expression patterns of AhNF-YA11 and AhNF-YB4 were 
inconsistent with the RNA-seq data. The expression of the 
other 6 genes under salt stress was also detected by qRT-
PCR (Fig. S4A). Correlation analysis between the RNA-seq 
and the qRT-PCR result of the 12 genes were performed, and 
the Pearson’s coefficient was 0.8375 (Fig. S4B).

It has been reported that plant NF-Y proteins perform 
their functions by recruiting other TFs to specific promoter 
sequences. For example, Arabidopsis NF-YC3 could inter-
act with ABF3/4 to promote flowering by inducing the 
transcription of SOC1 under drought stress (Hwang et al. 

Fig. 4  Expression profiles of AhNF-Y genes in 22 peanut tissue types. 
The colored round rectangles indicate the log2-transformation of 
the transcripts. The visualization and clustering were performed by 

TBtools. Blue, yellow, green, and red indicate the different expression 
profile categories
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2019). In addition, the CO protein could even interact with 
NF-YB2-YC9 dimer instead of the NF-YA subunit to binding 
the CORE element of the FLOWERING LOCUS T promoter 
(Gnesutta et al. 2017). To further obtain an overview of the 
transcriptional regulation function of AhNF-Ys in peanut 
under salt stress, we established a protein–protein interaction 
(PPI) network among the salt stress-induced DNA-binding 
protein encoding genes in peanut (Table S8). As shown in 
Fig. 5D, peanut NF-Ys could interact with NF-Y proteins 

belonging to other two subfamilies (red node). In addition to 
the AhNF-YA and AhNF-YC subunits, the predicted AhNF-
YB1 could interact with other kinds of TFs directly, includ-
ing a bZIP TF (arahy.63C1KK), AP2 TFs (arahy.4K8YXT, 
arahy.F0M2KT), a MADS-box TF (arahy.XIQ273), and 
plant hormone-responsive TFs (arahy.HP6LSM, arahy.
HB4W2S). The above TFs further interact with TFs involve 
in plant hormone response, stress response, flowering regu-
lation, circadian clock and so on (Fig. 5D, Table S9).

Fig. 5  Expression profile and protein–protein interaction analysis 
of AhNF-Y genes under salt stress. A Expression pattern of AhNF-Y 
genes in response to salt stress. The color scale indicates the log2-
transformation of the transcript values. B, C qRT-PCR profiles of 6 
AhNF-Y genes in leaves B  and roots C  under salt stress. Leaves of 
two-week-old seedlings were sampled at 16  h under a 16-h light/8-

h dark cycle. Bars reflect the means ± SDs of three replicates. Aster-
isks indicate that the corresponding gene was significantly up- or 
downregulated compared with the untreated control (**P < 0.01 and 
*P < 0.05, Student’s t-test). D Protein–protein interaction network of 
differentially expressed AhNF-Ys and other transcription factors. The 
size of the node indicates the value of change ratio under salt stress
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Abiotic Stress‑related Response of AhNF‑Ys

To investigate the potential regulatory mechanisms of 
AhNF-Ys in the abiotic stress response, the sequences 1.5 kb 
upstream from the initiation codon of the AhNF-Y genes 
were detected using the PlantCARE database to identify 
regulatory elements. Six stress-related regulatory elements, 
including ABA response element (ABRE), CGTCA-motif, 
MYB binding site (MBS), TCA-element, TC-rich repeat and 
TGACG-motif, are shown in Fig. S3. ABRE elements were 
detected in promoter regions of 18 AhNF-Ys. The methyl 
jasmonate (MeJA)-responsive elements CGTCA-motif and 
TGACG-motif were both detected in 22 AhNF-Ys. A total 
of 12 AhNF-Ys contained TCA-elements (SA responsive-
ness). In addition, MBS (drought responsiveness) and TC-
rich repeats (defence and stress responsiveness) were found 
in 7 and 10 AhNF-Ys, respectively. At least one regulatory 
element was identified in the promoter region of the NF-Y 
genes, except in that of AhNF-YB6. These results suggested 
that AhNF-Y genes may be involved in many different abiotic 
stresses.

To further investigate whether the expression of these 
predicted AhNF-Y genes was influenced by other stress 
treatments (mannitol), ABA and SA, qRT-PCR was used 
to survey the transcript levels in leaves (Fig. 6). The results 
revealed that the transcript levels of AhNF-YA4 and AhNF-
YA8 were downregulated, and both reached the lowest lev-
els under osmotic stress at approximately 8 h. In contrast, 
AhNF-YA11, AhNF-YC2 and AhNF-YC8 had similar expres-
sion profiles and showed a trend toward upregulation. Under 
the same treatment, the expression level of AhNF-YB4 was 
upregulated until approximately 12 h. The transcript levels 

of all 6 predicted AhNF-Y genes were increased under ABA 
treatment and peaked at approximately 2 h, except for those 
of AhNF-YB4. In addition, all these genes responded signifi-
cantly to SA treatment. All the above results indicated that 
these 6 AhNF-Y genes responded to osmotic stress, ABA and 
SA with distinct expression patterns.

Discussion

The NF-Y TF family is widely distributed in eukaryotes and 
plays important roles in development and stress responses. 
Studies have shown that the protein–protein interaction 
domains of NF-Y proteins are highly similar within each 
subfamily (Laloum et al. 2013). Therefore, the NF-Y pro-
tein could theoretically interact with members from other 
subfamilies, and these interactions have been proven using 
yeast two-hybrid assay (Hackenberg et al. 2012). For exam-
ple, there are at least 10 genes encoding each subunit type 
in Arabidopsis; therefore, up to 1690 theoretical NF-Y com-
plexes can be formed (Siefers et al. 2009). This amplification 
creates a flexible formation, leading to new and divergent 
functions (Myers et al. 2018; Petroni et al. 2012). The com-
plex interactions within NF-Y family, as well as between 
NF-Ys and other TFs, make functional analysis difficult. In 
addition, the overlapping functionality between NF-Y subu-
nits resulted in inefficiency of the forward genetic mutant 
screen. Therefore, the function of more than one-third of 
NF-Y subunits has not been reported, and only a few NF-Y 
complexes have been described (Zhao et al. 2016). Before 
further study of the biological function of the NF-Y protein 
in peanut, it is necessary to obtain an overview of the NF-Y 

Fig. 6  Expression analysis of 6 AhNF-Y genes in response to 
mannitol A, ABA B  and SA C  in peanut leaves. Bars reflect the 
means ± SDs of three replicates. Asterisks indicate the corresponding 

gene significantly up- or downregulated compared with the untreated 
control (**P < 0.01 and *P < 0.05, Student’s t-test)
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family, including the gene structures, homology between 
members, and expression patterns in tissues and under stress.

In this study, we identified 33 NF-Y-coding genes 
throughout the peanut genome. The number of AhNF-Ys 
is similar to that in diploid plants such as Arabidopsis and 
rice (Siefers et al. 2009; Thirumurugan et al. 2008). Pea-
nut is an allotetraploid crop with a genome size of approxi-
mately 2.7 Gb. Compared with crops, such as soybean (Shen 
et al. 2018), maize (Li et al. 2019) and cotton (Wang et al. 
2019), peanut has fewer NF-Ys (Chen et al. 2018; Quach 
et al. 2015; Zhang et al. 2020, 2016). Similar situations 
have been reported in other gene families of peanut as well. 
For example, although cotton (Gossypium hirsutum, more 
than 60 K protein coding genes) and peanut are both tetra-
ploid crops, there are 306 NAC TFs in cotton and only 162 
in allotetraploid peanut (Mohanta et al. 2020; Wang et al. 
2019). Furthermore, the numbers of Hsf genes in soybean 
and cotton were 38 and 40 (Li et al. 2014; Wang et al. 2014), 
which are further more than the total number of Hsf genes 
in the diploid ancestors of peanut (Wang et al. 2017). Gene 
duplication events are the main reason of gene family expan-
sion. The genome of both diploid ancestors of the peanut 
cultivar underwent the early papilionoid whole-genome 
duplication (WGD) approximately 58 Mya (Bertioli et al. 
2016), and WGD events occurred after tetraploidization 
have not been reported yet. Additionally, divergence time 
of the four duplication pairs identified in peanut NF-Y family 

were 36.731, 31.721, 37.689 and 67.689 Mya respectively 
(Table 2), which were long before speciation and hybridi-
zation of the two diploids ancestors reported (Chen et al. 
2019; Zhuang et al. 2019). Therefore, number of NF-Y cod-
ing genes in allotetraploid peanut may mainly determine by 
those of the two diploid ancestors. BLASTP analysis of the 
NF-Y protein coding genes showed that, the total number 
of NF-Y in the two diploid ancestors is similar with that of 
allotetraploid peanut (Table S10), which is consistent with 
the above prediction. It is reported that, a new allele of the 
duplicated genes has a small probability to be fixed in a dip-
loid population compared with pre-existing alleles (Cagliari 
et al. 2011). According to the phylogenetic analysis (Fig. 1), 
AhNF-Ys were missing on several branches and only GmNF-
Y and AtNF-Y were presented. However, according to current 
knowledge about diploid and allotetraploid peanut genome, 
it is difficult to determine whether there were duplications 
not fixed by natural selection or massive gene lose in diploid 
ancestors. In conclusion, it can be inferred that the fewer 
number of peanut NF-Ys may due to the origin and evolution 
of NF-Ys in two diploid ancestors, and it will be an interest-
ing area for further study.

There were relatively few NF-Y coding genes in peanut, 
and most of the NF-Ys existed as homologous gene pairs 
possibly indicating low functional redundancy among non-
homologs within each subfamily. Homologs from differ-
ent subgenomes usually share similar gene structures and 

Fig. 7  Schematic diagram of 
the probable function of peanut 
AhNF-Ys. According to the 
tissue/organ expression patterns 
and the qRT-PCR data under 
stress, the probable biologi-
cal processes peanut AhNF-Ys 
involved in were summarized. 
AhNF-YC1 and AhNF-YC8 
showed relatively high expres-
sion level, but low differences 
between tissues/organs, there-
fore they are not included in this 
diagram
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MEME motifs (Fig. 3). Some MEME motifs are conserved 
at the subfamily level, and they usually correspond to the 
DNA-binding and NF-Y interaction domains of NF-Y pro-
teins. The MEME motifs that did not exhibit subfamily-
level conservation will provide clues for NF-Y functional 
analysis. We performed row clustering for heatmap analy-
sis, and the homologs showed high similarity in expression. 
There were 12 homologous pairs in the NF-YA and NF-YB 
subfamilies (Fig. 3A), seven of which (NF-YA4/11, NF-
YA1/8, NF-YA7/14, NF-YA2/9, NF-YB5/10, NF-YB4/9 and 
NF-YB2/7) showed the same tissue and salt stress-induced 
expression pattern (Figs. 4 and 5A) and the same MEME 
motifs within pairs (Fig. 3A). These pairs may play similar 
roles in most conditions; for example, AhNF-YA4 and AhNF-
YA11 represent similar expression patterns under ABA and 
SA treatment (Fig. 6B, C). It has been reported that even 
if two NF-Y genes share very high sequence similarity and 
functional redundancy, some functional divergence remains 
(Sato et al. 2019). Under osmotic stress, the expression pat-
tern of AhNF-YA4 and AhNF-YA11 were different (Fig. 6A). 
Although some homologous pairs carried the same MEME 
motifs, they presented different expression patterns, such 
as NF-YA6/13, NF-YA3/10, NF-YB3/8 and NF-YB1/6. This 
difference may be due to the cis-elements in the promoter 
region (Fig. S3). AhNF-YA5 and AhNF-YA12 are homologs 
carrying different MEME motifs. There is a copy of motif 4 
in NF-YA5, while motif 1 is present at a position similar to 
that in NF-YA12 (Fig. 3). These difference in promoter or 
function-unknown motifs may result in functional diversity 
of the NF-YA and NF-YB homologs. The NF-YC subfamily 
showed relatively low similarity in protein structure (Fig. 3) 
and expression in tissues (Fig. 4), which indicated that there 
may be low functional redundancy between NF-YCs and that 
NF-YC subunits may be the important determinants of NF-Y 
complex function in peanut.

According to the tissue/organ expression patterns and 
the qRT-PCR analysis under stress, the probable biological 
processes peanut AhNF-Ys involved in were summarized 
(Fig. 7). AhNF-Ys involve in both vegetative and repro-
ductive, including shoot tip and root growth, flower and 
seed development. In addition, AhAF-Ys also play roles in 
abiotic stress response, disease resistance (SA-responsive 
genes) and nodule formation. Their functions in salt stress 
response were focused. Overexpression of NF-YA and NF-
YB subunits could enhance the salt tolerance of Arabidop-
sis and Paspalum vaginatum O. Swartz (Li et al. 2013; 
Ma et al. 2015b; Wu et al. 2018). However, the regulatory 
mechanisms, especially the interaction proteins and down-
stream targets, have rarely been reported. In this study, we 
established a protein–protein interaction network includ-
ing differentially expressed TFs under salt stress (Fig. 5D). 
In this network, AhNF-Ys could interact with multiple 
TFs and participate in several biological processes. These 

results will help in functional studies of plant NF-Ys under 
salt stress. NF-Ys in Medicago truncatula, Phaseolus vul-
garis, Lotus japonicus and Parasponia andersonii play 
important roles in nodule formation, including PvNF-YA1, 
LjNF-YA1, MtNF-YA1, PanNF-YA1, PvNF-YB7 and PvNF-
YC1 (Bu et al. 2020; Combier et al. 2006; Hossain et al. 
2016; Laloum et al. 2014; Ripodas et al. 2019; Soyano 
et al. 2013; Zanetti et al. 2010). According to phylogenetic 
analysis (Fig. S5), their homologs genes in peanut, namely 
AhNF-YA1/7/14, AhNF-YB2/7, and AhNF-YC1/7 showed 
relatively high expression levels in nodules, particularly 
AhNF-YB2/7 (Fig. 4, Fig. 7). These proteins may partici-
pate in processes associated with peanut-rhizobia symbio-
sis in the form of NF-Y trimers or NF-Y-TF complexes.

In conclusion, here, we provide an overview of peanut 
NF-Y genes. The information described here will help in 
further investigation of the plant NF-Y gene family, espe-
cially in the context of salt stress response regulation and 
symbiosis with rhizobia.
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