
Principles and approaches of association mapping in plant breeding

Aminu Kurawa Ibrahim1,2
& Liwu Zhang1

& Sylvain Niyitanga1,2 & Muhammad Zohaib Afzal1,2 & Yi Xu1,2
&

Lilan Zhang1,2
& Liemei Zhang1,2

& Jianmin Qi1,2

Received: 21 November 2019 /Accepted: 2 April 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Association mapping (AM) is an approach that accounts for thousands of polymorphisms to evaluate the effects of quantitative
trait loci (QTL). It is an important instrument for identification of alleles and new genes as well as dissection of complex
characters. AM is more advantageous than linkage analysis due to the comparatively high-resolution provided, which is based
on the structure of linkage disequilibrium (LD). Marker density, population, sample sizes and population structure are among the
critical factors that should be considered when AM is used. It is necessary to note that, the choice of germplasm, genotypic and
phenotypic data quality, the use of appropriate statistical analysis for marker-phenotype association detections and verifications
are key to association analysis. Great potentials to enhance crop genetic improvement are offered byAM. However, to understand
its application, extensive research is needed, such as improvements in computational and statistical methods and its integration
with gene annotation data or functional analysis. Statistical apparatuses that are user-friendly and genetic resources are also
needed and must be enhanced. Rare allele/variant analysis is an important area to be considered to enhance AM studies. Joint
linkage association mapping has now been proposed to improve linkage-based QTL mapping and AM limitations. In the future,
new candidate genes and QTL can be easily identified if genome-wide association studies (GWAS) are combined with functional
genomics. As such, this review describes association mapping, its utilization in plant breeding, limitations as well as advantages
over linkage mapping.
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Introduction

Association mapping (AM) as a complement to linkage map-
ping (Breseghello and Sorrells, 2006a) overcomes the limita-
tions of bi-parental population. Loci controlling the traits of
interest in bi-parental population escape detection due to their
inability to identify loci from similar parents. This technique
requires the utilization of different individuals that raises allele

numbers examined as well as multiple historical recombinant
events. Rare alleles are difficult to be detected in AM and to
get higher alleles frequency that includes the genetic diversity
of the crop species. AM panels must be suitably chosen. This
will effectively decrease duration and costs while detecting
markers connected to quantitative characters. AM considers
the use of panels with diverse cultivars for the purpose of
recording more recombination events that contribute to a
higher resolution to find regions associated with trait than
linkage mapping (Zhu et al. 2008; Stich and Melchinger
2010). AM is divided into two components: Genome-wide
associat ion studies (GWAS) and candidate gene.
Quantitative trait loci (QTL) obtained through interval map-
ping are validated using GWAS. Markers sharing an associa-
tion with traits are identified in AM. However, diversity be-
tween the sample and the number of chromosomes affects the
genotype study. Markers such as Simple Sequence Repeats
(SSR), Expressed Sequence Tag (EST), Restriction
Fragment Length Polymorphism (RFLP), Random
Amplified Polymorphic DNA (RAPD), Amplified Fragment
Length Polymorphism (AFLP), Diversity Arrays Technology
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(DArT), and Single Nucleotide Polymorphisms (SNP) have
contributed to AM. To determine if any relationship exists
between phenotypes and markers, GWAS scans the whole
genome. Nevertheless, more markers are required to cover
the genome, considering the anticipated rate of linkage dis-
equilibrium (LD) decay. Most AM activities are done using
GWAS with SNPs. Nevertheless, this method has several re-
strictions. First, knowledge about the genome is needed for
designing SNP arrays and the location of SNPs in the genome.
Second, the phenotype might be caused by rare variants that
are not on the SNP chip. Another restriction is the existence of
structural variations. However, high throughput sequencing
data are utilized to overcome some of these limitations.
Mapping all the reads to the reference genome, followed by
variant calling using mapping by sequencing (MBS) (includ-
ing RNA-Seq, Whole-genome sequencing WGS and Bulked
Segregant Analysis (BSA)) are used to overcome such limita-
tions (Hartwig et al., 2012). These variants are then tested for
association. But this needs a reference genome, and the re-
gions not in the reference genome will not be captured in the
study and it may induce biases in variant calling. Moreover,
genotype calling will be complicated when sequencing depth
is low (Nielsen et al. 2012) due to the sequencing errors and
repetitive regions. An alternate approach is genotyping using
tools such as Cortex and simultaneous de-novo assembly
(Iqbal et al. 2012). However, it should be noted that both
approaches are computational and costly. Sequence identifica-
tion which is significantly diverged from the reference genes,
like R genes, is complicated in GWAS. But, the use of traits
association on sub-sequences (k-mers) overcomes such limi-
tations. Needle in the k-stack (NIKS) for mutation identifica-
tion was introduced by comparison of sequencing data from
two strains using k-mers (Nordström et al., 2013). Based on
counting and identifying k-mers associated with the pheno-
type, the overlapped k-mers are then assembled to obtain se-
quences corresponding to associated regions.K-mer-based as-
sociation genetics was used by Arora et al. (2019) to clone R
genes from plant diversity panel. The data were then com-
bined with R gene enrichment sequencing (AgRenSeq) to
identify Sr genes in the phenotyped group. However, the au-
thors observed that complete Nucleotide-binding Leucine-rich
Repeat (NLR) contigs would not be generated if local assem-
bly approaches that use only those k-mers that are strongly
linked to the trait were used.

Linkage analysis and AM

Recombination number is very few within pedigree and fam-
ilies in linkage mapping (Zhu et al. 2008), which leads to low
mapping resolution.While recombination tends to be high and
diverse in AM, natural genetic diversity is exploited, leading
to higher resolutions. Wu and Zeng (2001) proposed Joint

linkage-association mapping (JLAM) to overcome low reso-
lution and power in bi-parental mapping and AM limitations,
respectively, to harness their potentials. Equally,
Chromosomal crossing over has been used in association
and linkage mappings to break up allele associations into
new haplotypes that link to phenotypic variations (Myles
et al. 2009). The key difference between the two methods lies
on the degree (either through mating design or selection of the
set of germplasms) at which the researcher has overcome the
recombination events. Usually, in linkage mapping, the re-
searcher makes use of biparental populations, thereby making
it more feasible to control the possibility for recombination
events in the progeny, though having a corresponding loss in
mapping resolution related to the AM. Association panels in
AM can be regarded as a more natural experiment because
there is no control over the number of recombination events
that produce the tested genotypes (Álvarez et al., 2015).
Diverse panels such as the bi- and multi-parent populations,
as well as breeding populations are used in both AM and
linkage studies, though they have their own advantages and
limitations (Xiao et al. 2017). Thus, AM assesses correlations
between phenotypes and genotypes, from which QTL can be
detected in traits that show variation. The main advantages of
AM over linkage mapping are resolution power and accom-
modation of multiple alleles to be tested for associations.
Moreover, the probability of creating populations with posi-
tive versus negative alleles exists in linkage mapping, whereas
only phenotypic range values for the alleles are involved in
AM present in a population (Álvarez et al., 2015). It should
not be assumed that the frequency distribution of alleles at
functional loci be the same as that of the distribution of alleles
at random loci. Instead, it will be tough to account for most
phenotypic differences using AM, because rare alleles usually
cause most of it.

Tomeasure the LD decay rate in AM, different germplasms
should be used. Therefore, the density of the marker is typi-
cally higher than that of linkage mapping (Álvarez et al.
2015). LD decay is slightly higher in Recombinant Inbred
Lines (RIL) than in F2 populations. Nevertheless, the resolu-
tion power is lower than that of the AM population (Álvarez
et al. 2015). The order of 5–10 cM is the resolution required to
locate the QTL in linkage mapping, from which many genes
within each QTL are present (Buckler IV and Thornsberry
2002). In addition, for those germplasm panels with low LD,
the diagnostic power of a single marker will only extend a
short way. Thus, high number of markers is needed for
whole-genome scan. Additionally, the population in AM is
obtained either by a strategy that is advantageous for sampling
or breeding objectives, whereas in linkage mapping, the pop-
ulation structures are usually constructed and maintained. The
breeding lines are challenging to keep in QTL mapping
(Myles et al. 2009), but the germplasm accessions are support-
ed adequately in AM due to the excessive number of alleles
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contained in them. Generally, AM is an alternate to QTLmap-
ping, that does not need the screening of progeny generation
or the development of bi-parental crosses.

Limitations

The detection power of AM relies on the phenotype under
study and the association of the marker locus (Álvarez et al.
2015). However, in most germplasm collections, relevant al-
leles are found and are frequently very significant sources of
desirable alleles (Rafalski 2010). Likewise, in some
germplasms, the existence of different individuals with di-
verse growing condition will be a barrier to its usage. As such,
in association study, phenotypic evaluation for diverse germ-
plasm must be given due considerations (Myles et al. 2009).
Gupta et al. (2019) stated that identification of false positives
or negatives and the issue of missing heritability are the main
problems in GWAS. Recently, however, some approaches are
employed to overcome such limitations. They include epige-
netics, the use of expression profiles re-sequencing, identifi-
cation of candidate genes and functional characterization
using reverse genetic approaches such as gene silencing or
retrotransposon-mediated gene disruption among others.
Furthermore, analysis of rare alleles and rare variants are also
among the approaches used to enhance GWAS. The advan-
tage of association over linkagemapping in populations where
LD is vast and does not occur rapidly across most of the
genome appears to be common in many self-pollinating spe-
cies. In this case, no dependable relationships can be attained
among traits and for specific genes. However, the genome of
the entire region is associated due to lack of haplotype chunk
disintegration. Alternatively, some replacements that take ad-
vantage of AM still exist in such crops where there is low
resolution due to restrictions to AM or high LD.
Nevertheless, population structure and rare allele limitations
can be overcome. This limitation can be achieved by crossing
breeding lines to form a multi-parent population, from which
functional allele combinations are identified and are used di-
rectly to identify marker x trait associations effectively (Kover
et al. 2009). AM utilizing Q +K model has been modified to
deal with large p, multiple testing and small n limitations in
GWAS (Yu and Buckler, 2006).With the development of high
throughput technology, haplotypes and SNP-sets (instead of
single SNPs) are being used for GWAS, thereby overcoming
the limitations of multiple testing and enhancing the identifi-
cation of candidate genes which in turn facilitate gene-set-
based and gene-based association mappings.

Genomic technology

The technology involved in manipulating and analyzing ge-
nomic information is referred to as genomic technology. It was
initiated following the invention of DNA cloning in the 1970s

(Galas and McCormack 2003). The availability of model spe-
cies and their genome annotations as well as the application of
genomic technology provide sequences for various complex
traits and candidate genes for further association analysis (Zhu
et al. 2008). Genome re-sequencing, reduced representation
sequencing and pool-seq are very accessible and inexpensive
approaches for population genomic studies (Therkildsen and
Palumbi 2017). Targeting Induced Local Lesions in Genomes
(TILLING, a method in molecular biology that allows direct
identification of mutations in a specific gene) and Ecotype
TILLING (EcoTILLING, a modification of TILLING tech-
nique that looks for natural mutations in individuals, usually
for population genetics analysis) are among the genomic
methods used for germplasm collections and screening allelic
variant mutants in target genes. Genome re-sequencing is very
useful for genome-wide discovery of markers for high-
throughput genotyping, such as SNPs and SSRs or for the
construction of high-density genetic maps. These, in turn, en-
hance genetic diversity study, and make identifications of
markers linked to genes and QTL achievable via a variety of
approaches including fine genetic mapping, bulked segregant
analysis (BSA) and association mapping (M Perez-de-Castro
et al. 2012). Currently, whole genome sequencing and charac-
terization have been achieved using molecular markers and
play a role in marker-assisted breeding (Song et al. 2010).
High-density markers are needed to detect alleles that are in-
volved in agronomic traits (Tardivel et al. 2014). Genetic im-
provement of complex characters (especially drought and salt
tolerance) has now been achieved with genomic technology.
Today, detection of specific genes is effectively accomplished
at faster rate by combining marker-assisted selection (MAS)
with genomic technology as compared to classical breeding
(Saade et al. 2016).

Natural diversity

Introgression library (IL) and advanced backcross QTL (AB-
QTL) techniques are used to explore natural diversity. They
are used to remove alleles from germplasm to improve quality,
productivity, nutritional value and adaptation of crops (Zamir
2001). Interestingly, large scale functional diversity of a crop
species can be evaluated using AM, which makes it different
from AB-QTL and IL (Breseghello and Sorrells 2006b).
Generally, information derived from association mapping ap-
plies to a broader germplasm base while that of bi-parental
mapping is specific to the same or genetically similar popula-
tion (Zhu et al. 2008).

Different phases of association mapping

Five stages are involved in AM as illustrated in (Fig. 1): (i)
Individuals for the population are selected, (ii) the selected
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population are genotyped, (iii) Population structure based
on the genotyping is analyzed, (iv) phenotypic traits of interest
among the population are characterized (phenotyping), and
lastly, (v) phenotype versus genotype relationships are deter-
mined (Association analysis).

Selection

In the AM process, an important component to consider is the
careful selection of the population, and the resolution power of
the study would be better if more recombinations are ob-
served. Generally, a diverse population must be considered
rather than classified or structured (Álvarez et al. 2015).
Association analysis can be successfully achieved by a careful
selection of the population (Breseghello and Sorrells 2006b).
Appropriate techniques for association analysis and the power
of statistics to detect marker-phenotype association depend on
the genetic germplasm diversity, the LD level in genome-wide
association, and population structure level and population re-
latedness under study (Stich and Melchinger 2010).

Plant population can be classified in two dimensions: (a)
the extent of population structure and (b) relatedness of the
family (Yu and Buckler 2006). Based on these dimensions, the
populations are further classified into the following categories:
(i) ideal sample with familial relatedness and subtle population
structure, (ii) multifamily without considering population
structure, (iii) population structured sample that does not con-
sider relatedness of the family, (iv) samples that consider re-
latedness of the family with that of population structure, and
(v) severe population structured sample and relatedness of the
family. Therefore, the existence of a population in one of the
categories mentioned will determine the kind of statistical

methods to be applied for the association analysis.
Furthermore, AM populations can also be categorized accord-
ing to the source of materials (Breseghello and Sorrells
2006b). These sources could be from germplasm collection
bank, elite breeding lines, natural population, or synthetic
population. These sources of population materials are expect-
ed to vary according to the extent of LD, genotypic and phe-
notypic diversity and the importance of structured population
and relatedness of the family.

Genotyping

GWAS and candidate genes analysis are the two approaches
used in AM (Fig. 1). However, the selection of each depends
upon the amount of marker for the association. GWAS usually
tests for an association that represents most of the segments of
the genome, and considers genotype of population of individ-
uals that are densely distributed across genetic marker loci
covering all the chromosomes (Rafalski, 2010). However, in
candidate gene association analysis, markers are chosen based
on their location in the genome and based on previous QTL
studies/functions of the genes involved that led to the final
variation.

Unlinked neutral background markers are selectively
mounted for successful coverage and are considered in asso-
ciation studies (Zhu et al. 2008). They have been actively
engaged in characterizing the genetic composition of individ-
uals. Additionally, these markers are highly beneficial in con-
veying individuals to populations (Pritchard and Rosenberg
1999). As such, population structure and relatedness limita-
tions are overcome (Yu and Buckler 2006), and inbreeding
and kingship are determined (Lynch and Ritland 1999).

Germplasms

Samples are selected

Popula�on of associa�on mapping

Genotyping Phenotyping

Genome-wide 
scan

Background 
markers

Linkage disequilibrium decay Polymorphisms of 
candidate genesGenome-wide polymorphisms

Associa�on analysis

Popula�on structure

Candidate 
genes

Fig. 1 Simple illustration of
association mapping
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Molecular markers easily trace genetic loci that can be com-
puted in a population and may be related to a specific trait or
gene of interest (Hayward et al. 2015). Generally, heritable
differences within a population are affected by mutations in
the form of translocation, inversion or insertion, which can be
noticed and screened using molecular markers (Hayward et al.
2015). Markers can be used to identify the true uniqueness of
individual plants. 1 cM distance is an ideal location for an
active marker for MAS of the anticipated characteristic and
is capable of high throughput and reproducibility genotyping
(Mohan et al. 1997). AFLP and RAPD Markers have poor
genomic distribution, reproducibility, and low polymorphism
and these limit their application in MAS (Vos et al. 1995;
Williams et al. 1990). They need unique statistical methods
if intended to be used for estimating genetic population pa-
rameters. On the other hand, SNPs and SSR are profoundly
revealed markers and are used in determining the relative kin-
ship matrix and population structure which make them appear
more powerful (Zhu et al. 2008). When calculating genetic
parameters using SSR and in the presence of size homoplasy,
high mutation rate and size of the alleles may be serious chal-
lenges especially if the population is large (Estoup et al. 2002).
However, for a valid selection of genotyping technology
(Syvänen 2005) SNP markers and scored individuals are re-
quired. The rate of mutation per generation in SNPs is shallow
compared to that of SSR (Li et al. 2002). Consequently, the
biallelic nature of SNPs makes them less informative than
multiallelic SSRs. It should be noted that in SNPs, expected
heterozygosity is lower (and therefore are required) than SSR
background markers for the successful attainment of a practi-
cal assessment of population structure and family relatedness
of most crops. Additionally, SNPs are distributed widely
throughout the genome and inexpensive to score than SSRs.
Wessinger et al. (2018) established that the effectiveness of
detecting SNPs to explain phenotypic variation depends on
some genetic factors of the population such as allele frequency
of the population, size effect, sampling effects along with
epistasis and genotype uncertainty. SNPs are the most herita-
ble and fine mapping markers (Singh et al. 2001).
Polymorphic markers of large sets can be screened through
SNPs even in complex polyploid species and large-scale se-
quencing (Collard and Mackill 2007), and, as such, support
genome-wide association studies.

Population structure

Changes in allele frequencies occur due to non-random mat-
ing within a species in population structure (Ersoz et al. 2007),
which is considered a limiting factor in association mapping.
It produces false positives (spurious associations), and it is
complicated to follow up on perceived signals through expen-
sive biochemical and independent studies as well as molecular
analyses to replicate significant results (Zhu et al. 2008).

Recently, approaches such as principal component analysis
(PCA), mixed model approach and structured association
and genomic control (GC), among others, are used to justify
family relatedness and structure of the population (Price et al.
2006; Yu and Buckler 2006). False positives from population
structure can be overcome through explicit (e.g., mixed model
and SA) or ad hoc adjustment approaches (Zhao et al. 2007).
To take care of problems arising from population structure in
most association studies, structured association has recently
emerged as a method of choice. For this, individuals in popu-
lation substructures are calculated and assigned through ran-
dom unlinked markers (Pritchard et al. 2000). Population
structure is often calculated using STRUCTURE software
(Pritchard et al. 2000), through which the proportion of an
individual’s genome that initiated from different inferred pop-
ulations is calculated using Bayesian algorithm. Different
groups of individuals are then clustered based on their genome
classification. STRUCTURE 20 assumes that all individual
population is in Hardy-Weinberg equilibrium and unrelated.
The degree of population admixture of each individual is cal-
culated through this program. Additionally, PCA is also used
to estimate population structure as reported by Price et al.
(2006), which is quicker and more effective than
STRUCTURE (Zhao et al. 2007). Generalized linear model
(GLM, one of the various structured association models) usu-
ally correlates genotypes with phenotypes using subpopula-
tions (Q) as covariates in a regression model (Thornsberry
et al. 2001). However, this may not control false positives
even when used along with GC model (Yu and Buckler
2006). Subpopulations (Q) are usually assigned as covariates
in a unified mixed-model (or Q + K model; K = kinship ma-
trix); nevertheless, they use covariate in the regression as K
(Yu and Buckler 2006). It has been concluded that Q +K is
more advantageous than Q model (Zhao et al. 2007) in
Arabidopsis studies and is therefore recommended in most
GWAS. Currently, GWAS analysis can be achieved using
Trait Analysis by Association, Evolution and Linkage
(TASSEL) Software (Bradbury et al. 2007).

Linkage Disequilibrium (LD) decay

Non-random associations of alleles at diverse loci are referred
to as LD (Oraguzie et al. 2007), through which the resolution
of AM studies is determined. It should be noted that the res-
olution is expected to be very high when the LD decays are
displayed in a short distance, even though they need many
markers. Additionally, mapping resolution will be low when
the LD spreads in long-distances, but it requires only a few
markers here. Generally, low resolutions reveal high LD, and
vice versa. Many factors affect LD. They include population
subdivision and population size, genetic isolation among lin-
eage, recombination rates, mutation and amount of inbreed-
ing, among others (Mackay and Powell 2007; Gupta et al.
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2005). Under linkage disequilibrium, variation between the
observed and expected gamete haplotype frequencies is mea-
sured as LD (Soto-Cerda and Cloutier 2012). Graphics’ view
of LD is used to present r2 (the Pearson’s squared value
(product-moment) correlation coefficient) over genetic dis-
tances among polymorphic sites (Bradbury et al. 2007) within
the loci/gene along a chromosome (Bradbury et al. 2007). r2 is
usually preferred to decay plot D whenmeasuring LD through
pair-wise measurements between markers due to fewer biases
(Soto-Cerda and Cloutier 2012). The LD decay rate over dis-
tances must be understood for the most straightforward deter-
mination of the number of markers that would be required for
GWAS. The number of marker required to saturate the ge-
nome for GWAS should be known prior to measuring the
LD in AM. LD is used to identify genomic areas of the can-
didate related to a specific character or diseases and can offer a
more exceptional resolution more than that of linkage-based
mapping (Mackay and Powell 2007). Generally, to quantify
genetic diversity, LD is used and can easily be explored to
make extrapolation about the populations’ evolutionary histo-
ry (Zhu et al. 2015; Slatkin 2008). Genetic drift, population
growth, admixture (introduction of genes from a previously
distinct population to another) or migration, population struc-
ture, natural selection, gene conversion, variable recombina-
tion, and rate of mutation are among the factors that influence
linkage disequilibrium (Ardlie et al. 2002). Additionally, the
level of LD in a varied population will be determined from the
species mode of reproduction (Flint-Garcia et al. 2003).
Crops, such as self-pollinated ones, have much longer LD
distances than cross-pollinated ones (like wheat and maize,
respectively). For LD generated by population structure, there
should be careful consideration of the sample to avoid faulty
analyses of the results (Ersoz et al. 2007). Bilton et al. (2018)
reported that evolutionary and genetic forces affect LD, as
such, its pattern is utilized in computing genetic diversity
and can make inferences about the evolutionary history of
natural populations (Bilton et al., 2018). In addition, the asso-
ciation between the map distance and LD level can be used to
estimate adequate population size (Sved et al. 2013; Waples
2006). Sequencing data of low coverage that accounts for
under-called heterozygous genotypes was used to calculate
pairwise disequilibrium by establishing new likelihood
methods and Genotyping Uncertainty with Sequencing data
- Linkage Disequilibrium (GUS-LD) (Bilton et al. 2018). The
authors concluded that using GUS-LD, reliable estimates were
obtained whereas the results will be underestimated for link-
age disequilibrium if no adjustment is made for the errors.
Many authors studied gene controls by one or few loci with
significant effects, especially in areas concerning the bio-
chemical basis of essential phenotypes like abiotic and biotic
stress tolerance. These phenotypes have greater impacts on
enhancing crop production, especially in MAS breeding
(Foolad and Panthee 2012). But, complex trait differences

have proven to be very difficult to understand, as the genetic
architecture of these essential traits (especially salt and
drought tolerance) involves many loci with small effects asso-
ciated with one another and the environment (Buckler et al.
2009; Collard and Mackill 2007). Grouping of statistical tools
is now being used to distinguish such small effects. Among
them, LD is used to survey genetic variances with a limited
resolution to a mapping population rather than the density of
the marker. The relationship between polymorphisms in a
population is usually stated by LD. Myles et al. (2009) stated
that the distance between any two markers functionally relies
upon the strength of the relationship between them (Myles
et al., 2009). The faster the rate of LD decays over distance
signifies how far the resolution from which QTL can be
mapped. Thus, the first stage in the design of AM studies
could be structural analysis of LD.

Identification of candidate genes

Genes that are indirectly or directly affecting the developmen-
tal process of characters with known biological functions that
can be valid by assessing the effects of the causative gene
differences in association analysis are referred to as candidate
genes (Zhu and Zhao 2007). It has been used and applied for
genetic association studies, research for biomarkers, gene-
disease and drug target selection in many organisms from
animals to humans (Tabor et al. 2002). Apart from genome
scan, candidate gene analysis is also used for position cloning
of QTL regulating main genetic differences of characters of
interest. It should be noted that the causative genes are the
QTL that show significance in a region of chromosome affect-
ing the genetic variations of characters under study. This re-
gion of QTL consists of several genes gathered at about
~20 cM confidence interval (Zhu and Zhao 2007). The highest
resolution power for mapping QTL and in LD was offered by
SNPs with the causative polymorphism; for this reason, they
are usually prepared as a candidate-gene variant to genotype
in AM (Rafalski 2002). SNPs within specific genes and be-
tween line identifications are necessary for candidate-gene
AM. Consequently, candidate gene SNPs identification pro-
cedure depends on the amplicons resequencing from numer-
ous individuals that are genetically diverse from a larger asso-
ciation population and within specific Genes (Zhu et al. 2008).
Generally, to identify rarer SNPs, individual SNP panel is
required while in identifying common SNPs, fewer are need-
ed. For identifying a candidate gene, promoter SNPs, exon,
intron and untranslated 5′/3′ regions are all reasonably
targeted, with coding regions that have less level of nucleotide
diversity than the non-coding part (Zhu et al. 2008). The SNPs
number per unit length required to detect significant associa-
tions is dictated by a candidate gene locus, which depends on
the rate of LD decay (Flint-Garcia et al. 2003). Hence, the
Locus of the candidate gene is entirely reliant on SNP
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distribution and LD as well as amplicon numbers and the pair-
based length needed to sample it adequately. Seven hundred
and thirteen upland kinds of cotton (Gossypium hirsutum L.)
accessions of a natural population were evaluated for salt
tolerance-related characters (Sun et al. 2018). From the
GWAS result, the authors obtained seven genomic regions
that were represented from 23 SNPs. Salt-tolerance and sur-
vival rate are among the significantly associated traits. These
traits were simultaneously related to two SNP markers on the
D09 chromosome (i47388Gh and i46598Gh). Two hundred
and eighty possible candidate genes were also screened based
on all loci under salt stress (Sun et al. 2018). Genes such as
MYB, NAC, WD40, NXH, CDPK, CIPK and LEA are in-
volved in plant salt tolerance and are transporters that partic-
ipate in numerous enzymatic and transcriptional activities.
Because of the limitation of including all causative genes
and low repetition of results, the candidate gene approach
has been disapproved (Tabor et al. 2002). The digital candi-
date gene approach (DigiCGA) has been developed to over-
come some bottleneck limitations for successful detection of
candidate genes in some studies (Zhu and Zhao 2007).

Phenotyping

In association mapping, diverse accessions must be relatively
needed in large numbers, thereby making it challenging while
taking the phenotypic replicated data across environments and
years. However, for the inhomogeneous field, careful consid-
eration of QTL x environment interactions, employing incom-
plete block design and appropriate statistical methods enhance
mapping power (Eskridge 2003). Influences of variabilities
within and between years, environments and seasons may
complicate trait phenotyping for G x interactions (Atlin et al.
2011). For abiotic stress responses in plants, further improve-
ment is achieved under controlled environment (Negin and
Moshelion 2017). Nevertheless, observations of the actual
field conditions under this environment, particularly in
drought, are challenging (Passioura 2012). Phenotyping in
association mapping has not been given much consideration
compared to genotyping (Zhu et al. 2008). For large-scale
association mapping, obtaining vigorous phenotypic data re-
mains very difficult. Since AM often comprises relatively
large and diverse accessions, phenotypic data collection with
enough replications across multiple locations and years is
equally challenging. Therefore, the experimental area must
be effectively laid out with latex design (incomplete block
design) due to its potential to increase the mapping power
(Piepho et al. 2006). In addition, if unbalanced plant breeding
trials are used as sources of phenotypic data, appropriate sta-
tistical modeling of the experimental design as well as geno-
type x environment and marker x environment interactions,
must be taken into consideration (Malosetti et al. 2008). As
such, mapping power will be increased (Stich et al. 2008). As

stated by Cobb et al. (2013) for reliable phenotyping ap-
proaches based on quantitative measurements, proper quanti-
tative characterization is needed to dissect genetic differences
precisely. Heritability is usually calculated individually to un-
derstand the ratio of genetic variances explained by the detect-
ed QTL. Some phenomics systems have been established and
used for some data like biomass content, photosynthesis, pig-
ment content and attributes of the canopy using rapid and
guided-GPS (Simko et al. 2016), responses due to abiotic
stress factors (Cobb et al. 2013), flowering (Guo et al. 2015)
and pathogenesis (Mahlein 2016). Phenotypic variation rela-
tionships under field and control environments must be ob-
served critically so that important information is provided to
enhance phenotyping techniques in the control environment.

Statistical analysis

The most straightforward statistical approach for association
analysis of quantitative traits is the analysis of variance (Yu
and Buckler 2006). However, restrictions of AM studies, es-
pecially arising from population structure quantitative trans-
mission disequilibrium test (QTDT), were modified to apply
to inbred populations of plants (Stich et al. 2006). Genomic
control and structured association are now in use for both
human and plant association studies for population-based
samples. Random effects such as multiple background QTL
and population membership estimates of Q-matrix are com-
bined in a mixed model for correction of false association at
the same vain, considering covariances due to relatedness
(Bradbury et al. 2007). Kinship (K) derived from random
markers or pedigree can be used to estimate the average rela-
tionship between individuals. However, the most effective one
is that which combined both Q and K (Yu and Buckler 2006).
In population structure diagnosis, PCA is used for genetic
diversity study in an association mapping context (Patterson
et al. 2006). In structure association analysis, the implemented
Q method has been utilized in GLM function in TASSEL
software. STRUCTURE program and PCA have been used
to derive covariates in the model using population member-
ship estimates (Pritchard et al. 2000; Zhao et al. 2007). To
calculate the structure of the population and use the outcome
for further analysis, a set of random markers must be initially
utilized in structured association (Falush et al. 2003; Pritchard
and Rosenberg 1999). Logistic regression has been used for
the modified structured association (Thornsberry et al. 2001).
Chhatre (2013) reported the use of StrAuto v0.3.1. It is a
Python-based structure with an automated procedure software
for Linux-based computers, and is recently been utilized for (i)
discovery of genetic structure in sample populations for med-
ical purposes (Pritchard and Donnelly 2001); (ii) population
structure studies (Randi and Lucchini 2002); and (iii) detec-
tion of cryptic genetic structure of natural populations
(Caizergues et al. 2003). PCA and Multiple Correspondence
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Analysis (MCA) are performed for 3D or 2D space to observe
the relative distribution of subpopulation (Rahim et al. 2018).
They require less computing time than maximum likelihood
estimation. Therefore, Rahim et al. (2018) concluded that
PCA and discriminate analysis are the most frequently used
analytical techniques in population structure analysis (Rahim
et al., 2018). However, STRUCTURE is frequently used in
Bayesian clustering method.

Software packages

A number of software/statistical packages have been used in
AM studies. Theses include TASSEL, Statistical Analysis
System (SAS), R package, STRUCTURE, Spatial Pattern
Analysis of Genetic Diversity (SPAGeDi), EINGENSTRAT,
Multiple Trait Derivative-Free Restricted Maximum
Likelihood (MTDFREML), and Residual Maximum
Likelihood (ASREML) (Zhu et al. 2008). Additionally,
STRAT, Bimbam and GEN STAT 11 software have been
added recently (Álvarez et al. 2015). Summary-data-based
Mendelian randomization (SMR) and heterogeneity in depen-
dent instru-ments (HEIDI) tools have been used to test pleio-
tropic interaction between gene expression level and complex
traits using expression quantitative trait loci (eQTL) and
GWAS data (Zhu et al. 2016). Moreover, these tools can be
employed to assess the size of the effect of SNP on phenotype
mediated by the expressed gene.

Application of association mapping in plant
breeding

AM sustains breeding practices that capture superior alleles
and support their introgression into elite breeding germplasm
from diverse individuals. It is noted that most studied charac-
ters are abiotic stresses, quality, yield, and morphological pa-
rameters (Table 1). Liu et al. (2018) identified 122 and 134
QTL for yield-related traits and fiber quality in cotton, respec-
tively (Liu et al., 2018). The same authors also identified 139
quantitative trait nucleotides (QTNs) for yield components
and 209 QTNs for fiber quality among which 74 were ob-
served in two environments using GWAS. Four were possibly
“pleiotropic” among the 35 common candidate genes ob-
served. Patishtan et al. (2018) used a panel of 306 diverse rice
accession to perform GWAS and identified transcription fac-
tors and components of the ubiquitination pathway as an im-
portant source of genetic diversity (Patishtan et al. 2018).
RD2, HAT22, PIP2 and PP2C genes were proposed to be
potentially significant for drought tolerance in cotton using
RNA-seq and were verified through a Quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) (Hou
et al. 2018). Resende et al. (2018) carried out Regional

heritability mapping (RHM) and GWAS for lodging, produc-
tivity, and plant architecture across two environments using
188 common bean germplasms. The study detected three trait-
associated markers using GWAS, whereas 145 markers along
chromosomes 5 with eight QTL were identified using RHM.
The authors concluded that combining allelic differences of
QTL with the large effect could be successfully combined into
whole-genome prediction models and can easily be traced
using marker-assisted selection. Identification of salt tolerance
loci in rice was also carried using GWAS, where Na+/ K+
ratios with the major association were measured at the repro-
ductive stages and were equally detected and found to contain
saltol as the major QTL on chromosome I at the seedling
stage, regulating salinity tolerance (Kumar et al. 2015).
Maulana et al. (2018) Mapped QTL and identified SNP
associated with seedling heat tolerance in wheat. Their
findings revealed some effective QTL that are tolerant to
heat from seedling to reproductive stages. Interestingly,
however, new QTL that have never been reported previously
at the reproductive stage were found responding to seedling
heat stress. Analysis of candidate genes also indicated high
sequence resemblances of some loci with candidate genes
involved in plant stress responses, such as salt, heat and
drought stresses. Su et al. (2018) determined the genetic basis
of cotton plant architecture using GWAS, from which 30 sig-
nificant relations among five-plant architecture and 22 SNP
markers were identified. Additionally, more plant architecture
component traits concurrently associated with chromosome
D03 with four peak SNPs were identified. 37,901 SNP
markers in switchgrass were obtained and utilized for
GWAS (Taylor et al. 2018).Arabidopsis pseudo-response reg-
ulator 5 homolog was related to heading date across environ-
ments and years on chromosome 8a. The study found that
genetic deviations associated with floral enhancement influ-
ence the dates of flowering and productivity. Significant quan-
titative trait SNP markers comprising about 87, 21 and 16 for
fatty acid, oil and proteins, respectively, were identified (Du
et al. 2018). Protein contents have been controlled by epistasis
influence, accounting for a total variation of about 65.18%.
However, 16 chromosomes containing 20 QTNs were found
to contribute to six-drought tolerance. Moreover, Messenger
RNA (mRNA) expression levels of the genes were verified in
the target interval through which the potential loci/genes that
regulated branch number in Brassica napus expression were
identified (He et al. 2017). Two SNP markers i47388Gh and
i46598Gh on chromosome D09 were found to be associated
with salt tolerance level and relative survival rate in cotton,
respectively (Sun et al. 2018). Additionally, different expres-
sion levels of about 280 candidate genes under salt stress were
screened, from which CIPK, NXH, MYB, LEA, WD40 and
CDPK genes were responsible for plant salt tolerance.Most of
these genes are transcription factors, transporters or enzymes.
SNP markers and QTL were identified that could effectively
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be used for bio-fortification and breeding disease resistance in
rice (Descalsota et al. 2018). Breedingmaterial is used directly
in genetic studies, such as recurrent selection or multiple cross
pedigree programs. Nevertheless, for greater promising,
Marker Assisted Recurrent Selection (MARS) is used.
However, AB-QTL methods have been used for introgression
and genetic study for commercial production. Geneticist,
breeders and statisticians used breeding lines and populations,
from which they came-up with models for whole-genome
selection that are enhanced at each consecutive generation,
season and phenotyping exercise based on whole-genome
haplotypes rather than individual gene evaluation, also known
as genomic selection (GS). Since GS uses statistical modeling
coupled with high-throughput markers, the system has even-
tually transformed MAS. The GS strategy was recommended
in 2001 from several reports of statistical models (Hayes and
Goddard 2001). It has been used for enhancing preselection
precisions, especially using genomic information for complex
agronomic traits. The GS also uses data from genotypic and
phenotypic training population (TP), which can be used to
calculate genomic estimated breeding values (GEBVs) for
accurate selection of each individual from the breeding

population that is genotyped without phenotyping (Jonas
and de Koning 2013). All marker effects can be directly esti-
mated, and such loci with minor effects for complex charac-
teristics can be easily captured in the whole genome as the
main advantage of GS over others (Nakaya and Isobe 2012).
Additionally, the rate of annual genetic gain can be signifi-
cantly enhanced by reducing time, accelerating breeding cy-
cles and cost because selection depends on an individual’s
genotypes deprived of the required records of the phenotype
(Xu et al. 2017). To assess the performance of breeding
program in genomic selection, prediction accuracy
(rMG) is estimated as Pearson’s correlation (r) between
the GEBVs of candidate individuals and the true breeding
value. The prediction ability of GS is usually affected by
many factors that directly influence the accuracy of
GEBV. These include population structure, marker densi-
ty, performances of the model, association between breed-
ing population, target trait heritability, and size of the
population of both TP and breeding population (BP).
rMG also var ies wi th s ta t is t ica l models of GS
(Endelman 2011; Gianola 2013; Juliana et al. 2017;
Ornella et al. 2014; VanRaden 2008).

Table 1 Examples of AM studies in various plant species

Plant species Populations Sample size Background
Markers

Traits References

Cotton Diverse germplasm 319 55,060 SNPs drought tolerant (Hou et al. 2018)

Sorghum Diverse lines 648 183,989 genotype by
sequence markers

drought tolerant (Spindel et al. 2018)

common
bean

Diverse germplasm 188 17,850 DArTseq plant architecture, lodging, and
productivity

(Resende et al. 2018)

Rice Diverse germplasm 220 6000 SNPs Salinity tolerance (Kumar et al. 2015)

Wheat Diverse representative
lines

200 21,555 SNP Heat tolerance (Maulana et al. 2018)

Rice Diverse accessions 306 700,000 SNPs Salinity tolerance (Patishtan et al.
2018)

Cotton RIL population 231 122 SSR and 4729
SNP

fiber quality traits and yield
components

(Liu et al. 2018)

Cotton Diverse accessions 355 93,250 SNPs the genetic basis of cotton plant
architecture

(Su et al. 2018)

Barley Diverse accessions 206 408 Diversity arrays
technology
(DArT)

Salinity tolerance (Fan et al. 2016)

Brassica
napus

Diverse accessions 327 33,186 SNPs branch number (He et al. 2017)

Cotton Diverse germplasm 713 10,511 SNPs Salinity tolerance (Sun et al. 2018)

Rice MAGIC Plus lines 144 14,242 SNP Agronomic and bio-fortification
traits

(Descalsota et al.
2018)

Switchgrass
(Panicum
virgatum)

Four pseudo-F2 popula-
tions (two pairs of re-
ciprocal crosses)

588 tetraploid
genotypes.

37,901 single
nucleotide
polymorphisms

heading and anthesis (Taylor et al. 2018)

Rice core germplasm
collection

419 261,385,070
SLAF-seq

The genetic basis of Gelatinization
temperature (GLT), gel consistency
and pericarp colour (PC)

(Yang et al. 2018)

Cotton Accessions 316 390 K SNPs protein, oil and five fatty acids (Du et al. 2018)
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About 94 peach germplasm collections were used by Font
et al. (2019) and 347 significant associations were identified
between markers and traits, which appeared mapped within
the interval where many candidate genes are involved in
different pathways. Zhang and Yuan (2019) conducted AM
and GP (genomic prediction) analyses using 300 inbred lines
of maize from different collection zones. They found out that
1549 SNPs were significantly correlated to 12 trait-
environment combinations; the PVE of these significant
SNP was about 4.33%, and 541 of them had a phenotypic
variance explained (PVE) value greater than 5%. They ob-
served fewer numbers of significant associations and candi-
date genes with higher PVE values in haplotype-based asso-
ciation mapping than the single SNP-based association map-
ping. Arab et al. (2019) explored the genomic differences and
population structure of Persian walnut, from which loci un-
derlying the variation in kernel and nut-related traits were
identified using the new Axiom J. regia 700 K SNP genotyp-
ing arrays. Moreover, they uncovered 55 significant SNPs
associated with kernel and nut-related traits. Gao et al.
(2019) also identified 17 genes and 4 QTL correlated to 42
significant SNPs associated with thermos tolerance of seed-set
by GWAS and linkage mapping, respectively.

Future perspective

Association genetics studies in plants are still in progress;
and appropriate phenotyping methods, development of er-
ror free statistical software and accessibility to genotyping
still remain the major challenges to its effectiveness, despite
series of improvements to bridge the AM studies gaps and
enhance its efficacy in crop breeding and genetics develop-
ment. It must be noted that the use of AM in dissecting QTL
for evolutionary population studies requires full informa-
tion about the organism to identify the number markers
needed (Álvarez et al. 2015). If the knowledge about re-
combinational history in breeding populations is known
for several population types, The effectiveness of AM stud-
ies will be maximized. Additionally, GS and AM phenotyp-
ing remain challenging due to the need to capture the right
phenotype and differences that occur in different material or
breeding programs (Álvarez et al. 2015). Association can-
not be found within a single locus particularly when popu-
lation structure and morphological characteristics are cor-
related; however, associated prediction with epigenetic in-
teractions and multiple loci can easily be improved due to
GS approaches (Jannink et al. 2010). Where variability due
to phenotype is established within subpopulations and can-
didate genes are known, marker density is adequate and
AM approaches will be successfully implemented. The
low-marker density limitations in GWAS can be overcome
by increasing the marker numbers for all crops, although

this depends on the types of marker selected in relation to
representation and gene distribution in space and LD level.
However, large number of markers is not required in AM
studies. In the future, AM approaches should look at im-
provements in computational and statistical methods (such
as SNP imputation, Bayesian and haplotypes methods) and
their integration with gene annotation data or functional
analysis (Zhang et al. 2014). Additionally, advances in crop
genome re-sequencing and the expansions of mammalian
and other model organisms will influence GWAS (Visscher
et al. 2017). Generally, statistical tools that are user-friendly
and genomics resources need to be improved. While apply-
ing AM, all factors like the population size, the density of
marker as well as population structure, should be taken into
consideration. For the detecting marker-phenotype rela-
tionship, the choice of germplasm, quality of genotypic
and phenotypic data, use of the appropriate statistical anal-
ysis and verification of the marker-phenotype associations
are key to association analysis. To harness the linkage-
based QTL mapping and AM, joint linkage association
mapping is proposed. Bayesian regression method can be
used to overcome the genome-wide error rate (GWER), and
it is expected to be used more frequently in GWAS, espe-
cially if artificial intelligence networking is involved. It was
observed that markers with rare alleles in GWAS are often
excluded from the analysis that attributed to missing heri-
tability; as such, rare allele/variant analysis will be an im-
portant area to be considered to enhance AM studies.

Conclusion

AM is a tool used in plant breeding and genetics to compre-
hend QTL location and ascertain and monitor essential char-
acters. It provides a vast prospect to assess and discover di-
versity of plant species for modern agricultural production.
Many loci controlling the traits of interest escape detection
and failure to identify the loci from similar parents are among
the limitations of linkage based mapping. However, integrat-
ing it with AM produces high-resolution power and multiple
alleles can be tested easily in the same experiment.
Additionally, PCA and discriminate analysis are suitable for
population structurer while STRUCTURE is recommended
for Bayesian clustering method.
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