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Abstract
Climate change and its impact on agriculture are one of the ongoing research areas, and the major task among agricultural
managers is to meet the food demand in the future in the context of the production gap of major food grain crops. Literature
analysis is carried out to understand the climate resilience of cassava, one of the major tuber crops and is considered to bridge the
food demand gap in the near future. Systematic analysis of literature includes influence of changing environmental parameters
such as temperature, solar radiation, photoperiod, air humidity, soil water deficit, salinity, elevated ozone and CO2, combined
effects of elevated CO2 with temperature, water deficit and salinity to the growth and yield of cassava along with its resilience to
biotic stresses and its climate suitability. Studies indicate cassava can tolerate a temperature level of up to 40 °C, and thereafter the
rate of photosynthesis decreases. Cassava can be cultivated in regions with variations in solar radiation without much compro-
mise in its yield in the context of global dimming of sunshine duration. The resilience to water stress and air humidity variations
are adapted by reducing stomatal conductance without influencing the rate of photosynthesis. Cassava has also an inbuilt
mechanism to cope with water scarcity by leaf drooping. Already established cassava can tolerate a salinity level of up to
150 mM and the younger ones can tolerate up to a level of 40 mM. Studies also indicate a strong positive influence of elevated
CO2 of up to 700 ppm on the rate of photosynthesis and yield of cassava. Elevated CO2 enhances the resilience of cassava to
water stress and salinity. Similarly, the combined effect of elevated CO2 and higher temperatures also increases the yield attributes
of cassava. These all indicate the resilience of cassava to the changing climate and it ensures as an insurance crop as well as food
security crop in the near future. Studies show its resilience to biotic stresses as well. Climate suitability studies also show its
suitability in the present locations in the near future as well as its adaptation to other areas. However, the research gap is identified
in areas of influence of elevated ozone on growth characteristics of cassava. This study also recommends identifying the extent of
tolerance level of cassava to the influence of the combined effect of salinity and elevated CO2. Further, researchers need to
concentrate on developing biotic as well as abiotic stress-tolerant genes in cassava varieties to increase its production irrespective
of the changing climatic conditions.
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Introduction

Climate change and its impact on agriculture are one of the
ongoing research areas worldwide. Studies already indicated
the necessity of adaptation measures in agriculture in the

context of climate change (Lobell et al. 2008; Malanson
et al. 2014). Based on IPCC (2013), the temperature, concen-
trations of CO2, and ozone (O3) will continue to increase and
the increase in temperature will be 2.6 to 4.8 °C under elevated
CO2 produced due to global warming by 2100. The increase
in temperature, CO2, and O3 affect crop growth parameters,
and hence there will be a reduction in food grain production
and nutritive values of major food crops (Jarvis et al. 2012; El-
Sharkawy 2014; Thornton et al. 2014; Mikkelsen et al. 2015).
The expected population of 9 billion by 2050 demands an
increase of 60–110% more agricultural production (Ray
et al. 2013; Bedoussac et al. 2015; De Souza et al. 2017).
The likely gap in demand-supply can be bridged by tuber
crops, especially cassava (Manihot esculenta Crantz) which
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is a concentrated source of carbohydrate (Sabitha et al. 2016;
Tironi et al. 2017; Manners and van Etten 2018).

Cassava (Manihot esculenta Crantz) is originated from
Mexico and Central America (Olsen and Schaal 1999;
Allem 2002). This crop is widely cultivated by small farmers
in the marginal lands of Africa, Asia, and Latin America, and
now it is emerging as a commercial crop in many developing
countries. Figure 1 shows that Nigeria is the highest producer
of cassava in the world followed by the Democratic Republic
of Congo and Thailand (FAOSTAT 2017). Cassava can be
cultivated in a wider range of climatic conditions as well as
soils in regions from Tropic of Cancer and Tropic of
Capricorn (Byju and Suja 2020). The range of temperature
required for sprouting are observed as 12–17, 28–30, and
36–40 °C respectively for minimum, optimum, and maximum
temperatures. Cassava can survive in areas with high variabil-
ity in rainfall of 500 to 5000mm (Allem 2002). Rather than its
adaptability to poor soil conditions, a wider range of meteo-
rological conditions, and minimum field management condi-
tions, this crop has diverse utilization in food (Table 1), feed as
well as fuel industry, and this makes cassava farmer-friendly
in terms of economy. More about the cassava’s physiological
and climatic conditions, please refer to Byju and Suja (2020).

Cassava is an important source of carbohydrate after
rice, sugarcane, and maize and is a staple food for
800 m people in the tropics and sub-tropics (McCallum
et al. 2017; Putpeerawit et al. 2017). Cassava ranks first
position in terms of energy production followed by maize
and sweet potato (de Vries et al. 1967). Studies indicate
that 70% of cassava production is utilized for human con-
sumption, and the remaining 30% is used in the industry
such as in adhesives, textiles and paper in the form of
starch, glucose, and alcohol (Nguyen et al. 2007; Xie
et al. 2017). The global area of cassava cultivation in-
creased from 13.6 to 19.6 mha, and the production en-
hanced from 124 to 252 mt and it came to the fifth posi-
tion in terms of production along with other major food
crops such as maize, rice, wheat, and potato (FAO 2013).
Figure 2 illustrates the percentage increase in global pro-
duction of major crops and cassava from 1980 to 2015,
and among them, the increase in cassava production
reached near to that of Maize, one of the major foods

grain crops. Studies indicate cassava cultivation has the
least impact on environmental parameters compared to the
other major food crops such as rice, maize, and sorghum
(Reynolds et al. 2015). All these indicate the wider adapt-
ability of cassava to cope with the food demand for the
future due to the impact of climate change. This study
reviews more about the resilience of cassava with the
changing climate. A detailed literature analysis is carried
out from the available 136 published articles to under-
stand the influence of climate variability on growth and
yield characteristics of cassava.
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Fig. 1 Top 10 cassava producing countries and their production

Table 1 Nutritional values of cassava

Parameters Raw cassava Cassava roots Cassava leaves

Food energy (kcal) 160 110–149 91

Moisture (g) 59.68 45.9–85.3 64.8–88.6

Dry weight (g) 40.32 29.8–39.3 19–28.3

Protein (g) 1.36 0.3–3.5 1.0-10.0

Lipid (g) 0.28 0.03–0.5 0.2–2.9

Carbohydrate (g) 38.06 25.3–35.7 7–18.3

Dietry fiber (g) 1.8 0.1–3.7 0.5–10

Ash (g) 0.62 0.4–1.7 0.7–4.5

Vitamins

Thiamin (mg) 0.087 0.03–0.28 0.06–0.31

Riboflavin (mg) 0.048 0.03–0.06 0.21–0.74

Niacin (mg) 0.854 0.6–1.09 1.3–2.8

Ascorbic acid (mg) 20.6 14.9–50 60–370

Vitamin A (MICRO G) 5.0–35.0 8300–11,800

Minerals

Ca (mg) 16 19–176 34–708

P (mg) 27 6–152 27–211

Fe (mg) 0.27 0.3–14 0.4–8.3

K (%) 0.25(0.72) 0.35(1.23)

Mg (%) 0.03(0.08) 0.12(0.42)

Cu (ppm) 2(6) 3(12)

Zn (ppm) 14(41) 71(249)

Na (ppm) 76(213) 51(177)

Mn (ppm) 3(10) 72(252)
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Fig. 2 Percentage increase in cultivation of major food crops from 1980
to 2015 (Source: FAOSTAT)
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Climate Change and Cassava

Cassava can be cultivated in areas with limited rainfall, high
temperature, low fertility soils (El-Sharkawy et al. 1993;
Ceballos et al. 2011) and hence it is considered as a food
security crop or insurance crop for smallholder farmers
(Lebot 2009; Polthanee 2018). However, climate variability
can influence the growth and yield of cassava. The environ-
mental parameters that change with changing climate are tem-
perature, solar radiation, rainfall, concentrations of CO2 and
ozone, and soil salinity. Therefore, the following sections dis-
cuss the impact/influence of each environmental parameter
(abiotic stresses) on growth and yield of cassava followed
by the resilience of cassava to biotic stresses and its climate
suitability.

Abiotic Stresses

Temperature

Recent studies indicate there is a trend in the increase in max-
imum (Tmax) and minimum temperatures (Tmin) due to glob-
al warming (Choi et al. 2018; Herold et al. 2018). Tmax and
Tmin are the two most important parameters determining the
crop’s physiological changes and hence the final yield.
Cassava can be cultivated in wider climatic conditions
(Irikura et al. 1979), even though; the variations in tempera-
ture can affect the growth and yield parameters of cassava.
Based on the climate projections, studies indicate an increase
in temperature reduces crop production by increasing the res-
piration (Asante and Amuakwa-Mensah 2015; Boansi 2017).
However, the projections of temperature changes positively
influence the growth and yield of cassava in the presence of
elevated CO2 (Gabriel et al. 2014). The optimum temperature
for cassava is observed as 28 °C and a temperature range of 25
to 29 °C is favorable for its growth (Irikura et al. 1979;
Keating and Evenson 1979). Ravi et al. (2008) reported that
cassava yield is increased from 29.3 to 36.8 t ha−1 with the
increase in mean annual temperature from 27.7 to 28.9 °C in
one of the major cassava producing states in India. Cassava
can tolerate a temperature range of 16 to 38 °C (Cock 1984)
due to the presence of heat stress genes (Sakurai et al. 2007)
compared to the other major food crops. According to Ravi
et al. (2008), cassava can tolerate higher temperatures up to
40 °C, after that the photosynthetic rate will decline, and at
50 °C the rate is observed as zero (El-Sharkawy et al. 1984b).
Lower temperature increases the leaf life (Irikura et al. 1979)
and higher temperature (>30 °C) affects flowering as well as
the life span of the leaves (El-Sharkawy 2004; Ravi and
Ravindran 2006). The variations in the rate of photosynthesis
with temperature are presented in Fig. 3. The increasing rate of
photosynthesis is observed as 1.4 μmoles CO2 m−2 s−1 for

1 °C rise in temperature in the range of 21.5 to 26.5 °C, and
the increasing rate is 0.2 to 0.6 for 1 °C rise in temperature in
the range of 25 to 35 °C (Ravi et al. 2008). The temperature
requirement of cassava for its optimum growth and yield pa-
rameters are listed in Table 2.

Solar Radiation and Photoperiod

The crop growth increases with an increase in intercepted
solar radiation in the leaf canopy and vice-versa (Iizumi and
Ramankutty 2015; Jhajharia et al. 2018). Cassava reaches its
full photosynthetic capacity only at a hot humid climate with
high solar radiation (Gleadow et al. 2009). The flowering in
cassava can be affected by changes in photoperiod (Keating
et al. 1982), and the optimal photoperiod for cassava is found
to be 12 h (Bolhuis 1966). Long day promote the growth of
shoots and decrease storage root development, at the same
time, short day increase storage root growth, and reduce
shoots. Climate studies indicate a global decline in solar radi-
ation (Yang et al. 2009; Jhajharia et al. 2018). The initiation
and development of tubers depend on solar radiation, and
hence shading can negatively influence crop growth (Fukai
et al. 1984). Shading decreases shoots but increases plant
height and the leaves tend to be adapted to low light condi-
tions. However, field studies on cassava yield under shades
indicate their adaptability in regions with variations in incom-
ing solar radiation (Aresta and Fukai 1984; Nedunchezhiyan
et al. 2012). Similarly, limited literature is available in case of
the influence of UV-B on cassava. Ziska et al. (1993) indicate
a significant reduction in root weight (32%) due to the impact
of UV-B, even though further research is needed to make a
generalized conclusion.

Air Humidity, Vapour Pressure Deficit and Soil Water
Stress

Prolonged drought results in low air humidity with higher air
vapour pressure deficit (VPD). The inherent mechanism of
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Fig. 3 Rate of photosynthesis vs leaf temperature (Source: Mahon et al.
1977)
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cassava to adapt changes in air humidity, as well as soil water
deficits, makes this crop suitable for a wider range of climatic
conditions. Studies indicate that cassava is sensitive to air
humidity and it is better explained in terms of the presence
of a large number of stomata (>400 stomata mm−2) in the
leaves (El-Sharkawy and Cock 1984a; El-Sharkawy and
Cock 1984b; El-Sharkawy et al. 1985). Stomata tend to close
under higher VPD, i.e., under dry air conditions. Wind can
also intensify the stomata closure due to higher VPD and
stomata closure is highly observed under upwind leaves com-
pared to the downwind leaves (less exposed leaves) due to the
reduced moisture boundary (El-Sharkawy 1990). The uptake
of CO2 and water loss is also decreased during higher VPD
with reduced leaf conductance by partial closing of stomata
without affecting the leaf potential as well as rate of photo-
synthesis by slow depletion of available soil water and the
heliotropic response of leaves reduces the energy interception
during mid-day (El-Sharkawy and Cock 1987; El-Sharkawy
1990; Calatayud et al. 2000). In addition, there observed a
strong correlation between leaf conductance/ yield and VPD/
air humidity, and the biomass and root yield increases in the
humid environment due to higher leaf photosynthesis (El-
Sharkawy and Cock 1987, 1994). Similarly, a decrease in air
humidity causes a decline in canopy conductance and transpi-
ration (Oguntunde and Alatise 2007). However, the air humid-
ity can be increased by artificial misting, and studies indicate
an increased dry matter production under the application of
artificial misting (El-Sharkawy and Cock 1987).

The prolonged dry periods cause plants to adapt themselves
by changing physiological characteristics. Stomatal closure is
the primary adaptation of plants to water stress by reducing
guard cell’s turgor without affecting the rate of photosynthesis
(Yamaguchi-Shinozaki and Shinozaki 2006; Ceballos et al.
2011; Osakabe et al. 2014). Also, the accumulation of epicutic-
ular wax over the leaf covers stomatal pores in cassava and
enhances its resistance to water stress (Zinsou et al. 2006).

Experimental reports indicate the leaf drooping or folding prop-
erty of cassava reduces transpiration with a reasonable photo-
synthetic rate. This phenomenon in cassava mitigates the water
stress and makes the crop tolerant to prolonged drought (El-
Sharkawy 2004, 2007). The rate of leaf formation also decreases
during prolonged dry periods with the abscission of existing
leaves (El-Sharkawy 2004; Liao et al. 2016). Duringwater stress
conditions, the PEP (phosphoenolpyruvate carboxylase) activity
is higher and the activity of RUBP (Ribulose bisphosphate) is
reduced to around 42%, and this makes cassava an intermediary
plant of C3-C4 group. This higher PEP activity enhances its
resilience to water stress by reducing photorespiration (El-
Sharkawy 2006). Water stress induces more abscisic acid
(ABA) in the leaves and they decrease the rate of leaf area
growth (Alves and Setter 2000). Cassava has a higher photosyn-
thetic rate immediately after the recovery of water stress with
higher leaf nutrient content (El-Sharkawy et al. 1993; El-
Sharkawy 2007; Ravi et al. 2008). Cassava can also maintain
a photosynthetic rate of 50% during prolonged drought condi-
tion, and this makes cassava adaptable to the changing climatic
conditions (Ravi and Saravanan 2001).

The fine root system of cassava is another factor that makes
this crop tolerant to water stress. The fine root system of the
crop can penetrate to a depth of 2 m, hence it can exploit water
at deeper soil layers (hydraulic lift) with low depletion rate,
and hence it increases seasonal crop’s water use efficiency
(Alves and Setter 2000; El-Sharkawy 2004, 2007). Also, cas-
sava can shift its optimum temperature to a higher level and
thereby reduces its water requirement for growth stages (Long
1991; El-Sharkawy 2014). Studies also indicate that aquapo-
rin genes in cassava are down-regulated during water stress, as
they are highly responsible in stomatal opening and closing.
Aquaporins, the intrinsic protein family transports water
across the cell membrane and regulates the movement of wa-
ter in response to osmotic gradients (Yu et al. 2016; Luang and
Hrmova 2017). By regulating aquaporin, the water loss due to

Table 2 Temperature and growth
stages of cassava Temperature (°C) Growth stages

<18 or > 37 Sprouting impaired

28.5–30 Sprouting faster (optimum)

<15 Plant growth inhibited

16–38 Cassava can grow

25–29 Optimum for plant growth

<18 Reduction in leaf production rate, total and root dry weight

20–24 Leaf size and leaf production rate increased; leaf life shortened

28 Faster shedding of leaves, reduction in no of branches

25 Highest photosynthesis in controlled chambers

30–35 Maximum photosynthesis (90–100%)

30–40 Highest rates of photosynthesis in the field

16–30 Transpiration rate increases linearly and then declines

(Source: Manrique 1992; Alves and Setter 2000; Ravi et al. 2008)
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transpiration reduces with the closure of stomata (Khan et al.
2015; Putpeerawit et al. 2017). Similar results are reported by
Zhang et al. (2008). During water stress conditions, the plant
reduces the production of shoot biomass and however, there is
not much reduction in root biomass with higher harvest index
(storage root yield/total biomass) values. This ability is ob-
served only in cassava and not with other major staple food
grain crops (Connor et al. 1981; El-Sharkawy and Cock
1987). Some studies also indicate the negative influence of
continuous drought on leaf area, shoot and root dry matter
production in cassava (El-Sharkawy and Cadavid 2002).
Supplementary irrigations can mitigate this influence, which
increases crop yield (Shanmugavelu et al. 1973). However,
the resilience level of cassava changes from one variety to
another (De Carvalho et al. 2016).

Salinity

Agricultural salinity leads to osmosis and the available plant
root water is transferred to the soil, which affects crop growth
and yield, especially the leaf hydration. Limited studies are
conducted on the sensitivity of cassava to salinity. In a study,
cassava plants tested in vitro has increased the biomass pro-
duction with a salinity level of up to 20 millimoles L−1 (mM)
of NaCl and in vitro cassava can tolerate up to 25.66 mM of
NaCl (Carretero et al. 2007; Cheng et al. 2018). However, this
resilience changes from one variety to another (Hawker and
Smith 1982; Shannon and Grieve 1999; Carretero et al. 2007)
and a level of above 20 mM causes a reduction in the crop
yield (Cruz et al. 2017). Advancement of biotechnology can
also enhance cassava production in dry areas with salinity to
cope with the future food demand. In a study, Carretero et al.
(2008) indicate the tolerance level of cassava is increased to a
level of 136.8 mM by arbuscular-mycorrhizal, AM (Azcon
and Barea 1997) colonization by Glomus intraradices.
Gleadow et al. (2016) also indicate that NaCl levels of up to
100 mM did not cause much reduction in the tuber mass of
already established cassava, and they can tolerate up to
150 mM of NaCl, but the younger ones can tolerate up to
40 mM of NaCl.

Elevated Ozone

Ozone (O3) is a greenhouse gas and is a major source of air
pollution. Climate projections indicate an increase in the level
of O3 as part of climate change (IPCC 2013; Ainsworth et al.
2012). Ozone reduces leaf area index, photosynthesis, and
increases senescence and finally reduces the crop yield
(Ainsworth et al. 2012; Ainsworth 2017). O3 (minimum
amount of 80 ppb) causes a rapid reduction in stomatal con-
ductance (Vahisalu et al. 2010) and then a full recovery is
observed within 30 to 40 mins (Kollist et al. 2007). Studies
also report that the sensitivity of stomata to abscisic acid is

compromised with elevated O3 (Wilkinson and Davies 2009,
2010). The study by Feng et al. (2008) and Tai and Martin
(2017) indicate elevated ozone reduces stomatal conductance
in one of the root crops potatoes with a yield reduction of
0.3% compared to other sensitive crops. The ozone impact
on major food grains is higher and the expected loss due to
the reduction in their production is 14–26 billion US dollars
(VanDingenen et al. 2009). Senescence reducing genes (ipt) is
available in the case of cassava (Zhang et al. 2008) and this
gives the scope of further studies on cassava breeding for its
resilience to the elevated O3 (Ainsworth et al. 2012).

Elevated CO2

Studies on climate change indicate an increase in the level of
present atmospheric CO2 and this will reach a value of
1000 ppm by 2100 (IPCC 2013; Meehl et al. 2007). This
increase in CO2 concentrations can influence photosynthesis
and thereby the growth stages and the yield of plants (Ziska
2008). Based on photosynthetic properties, i.e., the formation
of carbon compounds during photosynthesis, the plants are
classified as C3 and C4. Cassava comes under C3 plants based
on physiological and photosynthetic characteristics (Edwards
et al. 1990). Even though cassava is a C3 crop, the higher PEP
activity compared to other C3 crops makes cassava an inter-
mediary plant of C3-C4 groups and hence cassava is superior
to other C3 crops under different environmental conditions
(El-Sharkawy 2006). The elevated CO2 enhances the net pho-
tosynthetic CO2 uptake (Fig. 4), which results in an increase in
dry matter production and yield in cassava (Jia et al. 2015;
Cruz et al. 2016; Kimball 2016). Under elevated CO2, the
potential yield of cassava will reach up to 50 t ha−1 with the
availability of water and nutrients (Lebot 2009).

Sink (tissues that use or store carbohydrate) duration is one
of the limiting factors controlling photosynthesis. In tuber
crops, sinks last throughout the season compared to the major
food crops sinks. This makes cassava better adapt to the ele-
vated CO2 (Rosenthal and Ort 2012) and hence they have
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higher harvest index compared to the other grain crops (De
Temmerman et al. 2007). Also, compared to the grain crops,
tubers are already stable for the support of root structure, and
they don’t require any additional investments in supporting
the accumulated photosynthate which enhances the produc-
tion of tubers under elevated CO2 than grain crops (Imai and
Coleman 1983). The instantaneous transpiration efficiency for
cassava is also reported as higher (up to 83%) in case of
elevated CO2 (De Kauwe et al. 2013; Cruz et al. 2016).
These all indicate elevated CO2 has a positive impact on the
root yield of cassava (Gabriel et al. 2014).

The elevated CO2 reduces stomatal conductance by 30 to
60%, which improves leaf-water use efficiency, and hence
better plant growth for cassava during water deficit conditions
(Ainsworth and Long 2005; Morgan et al. 2011; Barton et al.
2012). Studies report a reduction in evapotranspiration in the
presence of elevated CO2 by 10% (Kimball 2016), and this
increases the water use efficiency of the crop. In a study, Ravi
et al. (2008) report that elevated CO2 increased the water use
efficiency from 3.3–4.5 to 10.5–17.1 mg CO2 g H2O

−1. The
elevated CO2 can stimulate photosynthesis, even during se-
vere water stress conditions (Warren et al. 2011; Bauweraerts
et al. 2013). A higher photosynthetic rate under water stress
conditions enhances dry matter production (Cruz et al. 2016;
Thinh et al. 2017). Elevated CO2 increases carbon allocation
to root growth, and this augments carbon assimilation during
water scarcity (Iversen 2010).

The increase of CO2 from 390 to 750 ppm in irrigated
plants resulted in a 20% increase in dry matter production.
The percentage increment in the case of water deficit condi-
tion is reported as 61% (Cruz et al. 2016). This indicating the
influence of elevated CO2 is predominant in the case of water
stress conditions. A similar conclusion is provided in a study
by Poorter and Pérez-Soba (2001) in the case of herbaceous
species. These all results indicate that elevated CO2 can miti-
gate the impact of drought to an extent and total dry matter
produced was higher compared to the plants under good water
availability (El-Sharkawy 2014; Cruz et al. 2016). Elevated
CO2 also promotes fine root growth (Iversen 2010) in the
deeper soil layers and hence they can extract water from
deeper layers of soil and can withstand drought (Aresta and
Fukai 1984).

Literature also shows elevated CO2 can rectify the issues
due to the limited solar radiation. During the low-light period,
the growth is mainly limited by the low availability of carbon.
Hence, the limited growth under low solar radiation can be
compensated with elevated CO2 (Kimball 1986; Idso and Idso
1994; Poorter and Pérez-Soba 2001).

Temperature and Elevated CO2

Studies show that the combination of elevated CO2 and opti-
mum temperature together can further enhance crop growth.

The crop dry matter production is highest with optimum tem-
perature, elevated CO2 than at lower temperatures, and elevat-
ed CO2 (Curtis and Wang 1998; Poorter and Pérez-Soba
2001). Elevated CO2 increases the rate of photosynthesis by
increasing the concentration of the substrate and by reducing
the oxygenation (Long 1994). The solubility of CO2 decreases
faster at high temperatures and this reduces the relative abun-
dance of CO2 in the chloroplasts (Jordan and Ogren 1984).
Hence, the effect of elevated CO2 is higher under warm tem-
peratures than cold conditions (Poorter and Pérez-Soba 2001;
https://www.fao.org). The elevated CO2 helps cassava to
adjust the canopy temperature by decreasing the stomatal
conductance and evapotranspiration. This leads to reductions
in cooling effect on leaves, and this results in an increase in
canopy temperature to about 0.4 to 1.7 °C provided sufficient
availability of water and nutrients (Kimball 2016).

Salinity and Elevated CO2

As previously stated, the elevated CO2 reduces stomatal con-
ductance without affecting the rate of photosynthesis. If tran-
spiration increases, the rate of uptake of saline water into the
plant also increases. Therefore, with reduced stomatal conduc-
tance, the elevated CO2 can mitigate the impact of salinity to
an extent (Schwartz and Gale 1981). Arp et al. (1993) reported
that in the C3 group (Sedge Scirpus), elevated CO2 enhances
the salinity tolerance level. This result supports the possibility
of wider cultivation of cassava in arid as well as semi-arid
regions to meet the future food demand. However, further
studies are needed to identify the extent of this positive impact
of elevated CO2 on the resilience of cassava to soil salinity
(Yeo 1999).

Resilience to Biotic Stresses

The wider agro-ecological adaptability of cassava can cause
the development of different biological problems such as dis-
eases and pests attack. Cassava has the property of cyanogen-
esis, i.e., the ability to generate hydrogen cyanide (HCN), and
this acts as a defense mechanism against pathogens, arthro-
pods, and mammalian pests. The cyanogen contents in the
root also act as a hindrance to the burrowing bugs (Mutisya
et al. 2013; Parsa et al. 2015a, 2015b). The changes in the
climatic conditions can also enhance the growth of these
pests and Bellotti et al. (2012) indicate a projected positive
trend is observed for these pests in Southeast Africa,
Madagascar, Coastal India, and Southeast Asia. This indicates
an extensive study is needed in cassava breeding for higher
resistance to these pests in these locations. Other than the
pests, cassava mosaic disease (CMD), cassava brown streak
disease (CBSD), and cassava bacterial blight are some of the
common diseases of cassava (Campo et al. 2011). Studies are
going on cassava breeding for its resistance to such viral
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diseases as viral attacks severely reduce the crop’s yield
(Carabalí et al. 2010; Legg et al. 2011). In a recent study,
Nzuki et al. (2017) clearly illustrated the cassava breeding
for its resistance to diseases and pests in Tanzania. They iden-
tified some varieties (e.g. Kiroba and Namikonga) that are
resistant to diseases and pests. This supports the scope of the
resilience of cassava to biotic stresses and the higher possibil-
ity to develop resilient varieties for future food security.
Studies also indicate the geographic locations where the pests
of cassava grow suitably in the context of climate change (Lu
et al. 2014; Parsa et al. 2015a, 2015b). They may help
decision-makers to select suitable site-specific pest manage-
ment practices for cassava.

Climate Suitability of Cassava

A few studies are also conducted to identify the climate suit-
ability of cassava in the context of changing climatic variables
(Kamukondiwa 1996; Ceballos et al. 2011). Liu et al. (2008)
analyzed the climate change impact on cassava, maize, wheat,
sorghum, rice and millet in Africa, and concluded that yield
variations are least for sorghum and cassava compared to
other crops. Ray et al. (2019) also support this statement.
Jarvis et al. (2012) also indicated that positive impacts are
observed for the climate suitability (−3.7 to 17.5%) of cassava
in Africa compared to other major food crops such as beans
(−16% ± 8.8), banana (−2.5 ± 4.9), potato (−14.7 ± 8.2), and
sorghum (−2.66 ± 6.45). A similar study is conducted by
Sabitha et al. (2016) in India to check the suitability of cassava
over the present cassava growing areas of India for the near
future, 2030. They also showed a significantly positive impact
on climate suitability with a percentage of −2.2 to 15%. In a
study, Mupakati and Tanyanyiwa (2017) also recommend the
adaptation of cassava in Zimbabwe in the changing climate. In
a study, Heumann et al. (2011) indicate cassava’s suitability in
uplands compared to low lands, as well as its suitability to-
wards the south and southwest area of the study location in
Thailand. This shows the possibility of shifting its suitability
towards higher elevations, and more studies are needed to
make generalized statements. In conclusion, as a solution to
climate change impact on other major food grain crops, cas-
sava can be extended in more areas in addition to the current
growing areas worldwide due to its resilience and adaptation
characteristics (Lobell et al. 2008; Schenkler and Lobell 2010;
Sabitha et al. 2016), and this will enhance its production in the
context of food security.

Conclusions

Climate change studies indicate a diminishing trend in the
production of major food grain crops, and this demands agri-
cultural experts to enhance the cultivation of climate-resilient

food crops, which can act as an alternative for these grain
crops. Among climate-resilient crops, cassava (Manihot
esulenta Crantz) is getting much attention and now it has
become the fifth major producing food crops in the world
other than Maize, rice, wheat, and potato (FAO 2013).
Studies indicate a tremendous reduction in the yield of major
grain crops by 2050 and this production gap can be bridged by
cassava, the major tuber crop (Bedoussac et al. 2015; De
Souza et al. 2017). Cassava can cultivate over a wider range
of climatic as well as soil conditions irrespective of the other
grain crops. The review of 136 published articles is carried out
to understand the physiological characteristics as well as the
yield of cassava in the context of changing climate. The var-
iations in the growth and yield of cassava with projected tem-
perature, solar radiation, air humidity and soil water stress,
salinity, elevated ozone and CO2, combined effects of CO2

and temperature, CO2 and salinity, biotic resilience of cassava
followed by its climate suitability are analyzed. Studies highly
recommend the adaptability of cassava in regions with higher
temperatures and it can tolerate up to 40 °C (El-Sharkawy
et al. 1984b; Ravi et al. 2008). However, significant yield
reductions are observed with temperatures >40 °C (El-
Sharkawy et al. 1984b). Climate studies indicate a declining
trend in the sunshine, but cassava cultivation can be extended
to regions with higher variations in solar radiation without
much compromise in its yield (Nedunchezhiyan et al. 2012).
The prolonged drought due to climate change enhances soil
salinity, and already established cassava can grow up to a level
of 150 mM, but the tolerance level of younger ones is limited
to 40 mM (Gleadow et al. 2016). The advancement of bio-
technology on cassava can also improve its tolerance to salin-
ity (Carretero et al. 2008). Compared to other crops, cassava
has an inbuilt mechanism to tolerate water stress by leaf
drooping as well as by partial closing of stomata. This results
in reduced transpiration, without much influence on the rate of
photosynthesis (Calatayud et al. 2000; El-Sharkawy 2004,
2007).

As cassava belongs to the intermediate level of C3-C4

groups, the elevated CO2 (up to 700 ppm) increases the pho-
tosynthetic efficiency compared to the C3 groups, and this
further improves the ability of cassava to tolerate water stress
(Cruz et al. 2016) and salinity (Arp et al. 1993). The combined
effect of elevated CO2 and higher temperatures also enhance
the growth and yield of cassava (Rawson 1992; Curtis and
Wang 1998; Poorter and Pérez-Soba 2001). The biotic resil-
ience of cassava is also giving its scope as a future insurance
crop as it already indicates its resilience to abiotic stresses. The
climate suitability studies also highlight its wider adaptability
irrespective of the agro-climatological conditions. A shifting
of cassava’s suitability towards higher elevations is also re-
ported and further studies are needed in this area to make
generalized statements. In summary, cassava is tolerant of
abiotic stresses in the context of changing climate (Jarvis
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et al. 2012, Sabitha et al. 2016) and it can bridge the future
food demand gap.

Research Gap

The major findings of this review for future research are listed
here one by one. Literature is available for the drought resil-
ience of cassava. Research articles are also available in case of
the influence of meteorological variables on cassava in the
context of climate change. However, research deficit is ob-
served in the case of elevated ozone tolerance of cassava.
The research gap is also observed under the area of salinity
tolerance of cassava. This study recommends an extensive
study on this issue as we need to increase the agricultural land
area to meet the food demand-supply gap (Ladeiro 2012).
Studies also needed in combination with biotechnology to
derive varieties with genes, which have a high tolerance to
biotic stresses such as pests and diseases (Zhang et al. 2008;
Ceballos et al. 2011). Out of a few climate suitability studies,
all are for African as well as Indian context. More studies are
needed to identify any significant shift/increase in the global
level production of cassava.
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