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Abstract
MADS-box transcription factors are essential mediators of the vegetative and reproductive development of seed plants.
Although MADS-box genes have been extensively characterized in angiosperms, their functions are not well-understood
in gymnosperms, especially the Gnetales, due to an ambiguous phylogeny of seed plants. Here, we performed a genome-
wide search for MADS-box genes in Gnetum luofuense and found 11 Type I and 38 Type II MADS-box members (i.e.
three MIKC* and 35 MIKCc genes). The relative abundance of the Type I Mα and Type II MIKCC subgroups (including
the DEF/GLO and TM8-like genes) were mainly contributed by tandem duplications. Comparisons of the gene expres-
sion levels among members of the MIKCc subgroup reveal that the DEF/GLO-like genes and several TM8-like genes
were exclusively expressed in reproductive organs, whereas TM3-like, StMADS11-like and other TM8-like genes exhib-
ited a broad expression pattern in both vegetative and reproductive organs in G. luofuense. In addition, 14 Type II
MIKCc genes were found in the stem transcriptome of Ephedra equisetina and we made an attempt to assess the
homology to the MIKCc genes within Gnetales. The results of this study provide valuable information for understanding
the phylogenies and functions of MADS-box genes in seed plants.
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Abbreviations
K-domain Keratin-like domains
MEF myocyte enhancer factor
ML maximum likelihood
TF transcription factors
SRF serum response factor

Introduction

Members of the MADS-box family encode transcription fac-
tors (TFs) in seed plants (Garcia-Maroto et al. 2003; Gramzow
and Theissen 2010; Gramzow et al. 2014; Masiero et al. 2011;
Melzer et al. 2010) that likely originated from the common
ancestor of extant eukaryotes (Alvarez-Buylla et al. 2000;
Gramzow and Theissen 2010). There are two types of
MADS-box genes—Type I (SERUM RESPONSE FACTOR,
SRF-like) and Type II (MYOCYTE ENHANCER FACTOR,
MEF-2 like). Type I MADS-box genes can be further divided
into the Mα, Mβ, and Mγ groups based on phylogeny. Type
II MADS-box genes are classified into two groups, namely
MIKC* and MIKCC, depending on phylogeny and the length
of their Keratin-like (K) domains (Kwantes et al. 2012;
Parenicova et al. 2003). Type I MADS-box TFs are known
to participate in female gametophyte as well as embryo and
seed development (Colombo et al. 2008; Masiero et al. 2011;
Wuest et al. 2010), whereas the MIKC-type TFs regulate al-
most all aspects of sporophytic and gametophytic develop-
ment in seed plants (Gramzow and Theissen 2010;
Gramzow et al. 2014; Smaczniak et al. 2012).
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Order Gnetales comprises three extant genera—
Ephedra, Welwitchia and Gnetum (Kubitzki 1990b;
Price 1996). Gnetum contains approximately 40 species,
including trees, shrubs and lianas distributed in pantrop-
ical forests (Kubitzki 1990a; Markgraf 1930; Price
1996). Previous phylogenetic studies based on molecular
data revealed that South American, African, and Asian
Gnetum constitute three major lineages (Hou et al.
2015; Won and Renner 2003, 2006). Except for
African Gnetum, almost all extant species have bisexual
but functionally unisexual structures—reproductive or-
gans are typical male and female strobili that bear mul-
tiple layers of involucre collars (Fig. 1). Each collar of
the female strobilus has one roll of fertile reproductive
units whereas the male strobilus bears one roll of sterile
ovules subtended by four to five rolls of microsporangia
(Endress 1996; Jörgensen and Rydin 2015; Markgraf
1930). Phylogenies based merely on morphological data
suggest that Gnetum is closely related to angiosperms
(Crane 1985; Doyle and Donoghue 1986), but a grow-
ing body of molecular data suggest that this genus is a
sister group to conifers (Ran et al. 2018; Wan et al.
2018; Wickett et al. 2014). This ambiguity in seed plant
phylogeny warrants further investigation of the MADS-
box TFs to better understand their functions in the re-
productive evolution of Gnetales.

Previous studies of Gnetum MADS-box genes mainly
focused on the diversity and functions of MIKCC mem-
bers. For example, three genes, GpMADS1, GpMADS3
and GpMADS4 were found to part icipate in the

deve lopmen t o f f ema l e r ep roduc t i v e un i t s i n
G. parvifolium (Shindo et al. 1999). Functions of
19 G. gnemon MIKCC genes (i.e. GGM1-GGM19) were
inferred by comparing their expression profiles in leaves,
female strobili and male strobili (Becker et al. 2003;
Becker et al. 2000; Winter et al. 1999). GGM2, GGM3,
GGM9, and GGM11 were found to form a quartet-like
complex that determines the sexual ident i ty of
G. gnemon (Wang et al. 2010). In addition, a recent study
using transcriptome data identified 35 MIKCC genes in
G. gnemon , half of which were TM8- l ike genes
(Gramzow et al. 2014). Furthermore, GpMADS3 regulates
the transition from shoot meristem to floral primordium in
a FLORICAULA/LEAFY-dependent manner (Shindo et al.
2001).

Despite these previous reports, our knowledge of
Gnetum MADS-box genes is still limited. Firstly, the total
number of Type I MADS-box genes is not known, pre-
sumably because they express at low levels, lack obvious
mutant phenotypes, and may be functionally redundant in
many plants (Gramzow and Theissen 2010; Gramzow
et al. 2014; Masiero et al. 2011). Secondly, tandem dupli-
cations of TM3, SQUA, AGL6 and TM8 (Zhao et al. 2017)
have been detected among subgroups of angiosperms,
whereas those of the MIKCc members in Gnetum remain
to be characterized. Thirdly, the functions of MIKCc

genes—e.g., StMADS11, TM3 and TM8—in sex determi-
nation and the development of female and male strobili in
G. gnemon have not been well understood, let alone their
functions in other vegetative and reproductive organs, e.g.
roots, stems, and seeds. Finally, studies of the MADS-box
genes in other gnetalean genera, such as Ephedra and
Welwitschia, are scare, and only five MADS-box TFs
have been characterized in W. mirabilis thus far
(Moyroud et al. 2017).

To address these questions, we surveyed Type I and Type II
MADS-box genes in nuclear genome of G. luofuense (which
was mis-identified as “G.montanum”, see details below)(Wan
et al. 2018). The availability of genome makes it possible to
accurately identify the MIKCc members in Gnetum, which
potentially avoids the scenario that many pseudogenes were
detected in conifers (Gramzow et al. 2014). We also conduct-
ed phylogenetic analyses on both types ofMADS-box genes as
well as the TM8 genes (MIKCC genes), which have not been
extensively investigated in previous studies. These analyses
were carried out using sequences derived from genome-wide
screening of other seed plants and previous studies. Moreover,
we analyzed the transcript profiles of the G. luofuenseMIKCc

genes in three vegetative and three reproductive tissues to
infer their functions and evolutionary histories. In addition, a
genome-wide search was performed to detect tandem dupli-
cations. Finally, we identified the MIKCc genes in Ephedra

a

b

c

d

Fig. 1 a Mature and developing female strobili of Gnetum luofuense. b
Mature and developing male strobili of Gnetum luofuense. c Female
strobili with secreted pollination droplets d Male strobili with secreted
pollination droplets. White bars represent 10 mm
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equisetina and determined their homology to those found in
G. luofuense.

Results

Diversity of the MADS-Box Genes in G. luofuense
and E. equisetina

This is the first time of conducting genome-wide search for
MADS-box genes in the Gnetales. We identified a total of 49
candidateMADS-box genes inG. luofuense, including 11 Type I
and 38 Type II genes, accounting for 22.4% and 77.6% of all

MADS-box genes found, respectively (Figs. 2 and 3). The Type
IIG. luofuenseMADS-box genes consisted of threeMIKC* and
35 MIKCc members, which were further divided into 12 sub-
groups including StMADS11(“1” indicates gene numbers there-
after),GpMADS4 (2),GGM19 (1),AGL15 (2),DEF/GLO (4),B-
sister (1), AGL6 (2), SQUA (1), AG (1), AG12 (1), TM3 (1), and
TM8 (18). In addition, 14 MIKCc genes were identified in
E. equisetina based on the transcriptome data and these were
divided into ten subgroups, including StMADS11 (2),
GpMADS4 (1), GGM19(1), GGM5 (1), DEF/GLO (3), B-sister
(1), AGL6 (2), SQUA (1), TM3 (1), and TM8 (1)(Fig. 3). The
elucidation of the numbers of MADS-box genes inG. luofuense
and E. equisetna paves pathways for the subsequent analyses.
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plotted by the maximum likelihood method. Bootstrap values ≥50 are

present on each node of the phylogeny. The accession information used
for phylogenetic reconstructions was provided in the supplementary
material
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Phylogenies of the G. luofuense and E. equisetina
MADS-Box Genes

Phylogeny of Type I and Type II MIKC* Genes

To elucidate the evolution of MADS-box genes in
G. luofuense and E. equisetna, we conducted three phyloge-
netic analyses for different types of MADS-box genes. In
general, the deep divergence of the phylogenies based on
Type I and Type II MADS-box genes in different seed plant
groups all had low statistical support (see Figs. 2, 3 and 4). We
identified eleven Type I MADS-box genes in G. luofuense

(Fig. 2). The phylogeny of Type I genes reveals that seven
Mα genes in G. luofuense clustered into one clade with a
bootstrap value (BS) of 65, designated clade A, which was
nested within a clade that consists of 24 Arabidopsis thaliana
Mα genes and 11Oryza sativa genes. ThreeG. luofuenseMβ
genes formed a monophyletic clade (designated clade B),
which is nested within a group of 21 and four Mβ genes in
A. thaliana and O. sativa, respectively. In addition, one
G. luofuense Mγ gene fell into a clade that comprised 15
A. thaliana and ten O. sativa Mγ genes. In addition, three
G. luofuense MIKC* genes were identified, of which one
formed an S-clade with three A. thaliana and two O. sativa
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Fig. 3 Phylogenetic relationships among theMIKCC genes plotted by the
maximum likelihood method. The resulting phylogeny representing 16
MIKCC subgroups was built using nine seed plant species including
Amborella trichopoda (Atr), Arabidopsis thaliana (Ath), Ephedra
equisetina (Eeq), Gnetum gnemon (Ggn), Gnetum luofuense (Glu),
G. parvifolium (Gpa), Pinus taeda (Pta), Oryza sativa (Osa) and

Welwitchia mirabilis (Wmi). Bootstrap values ≥50 are given at each node.
The MIKCC genes identified in G. luofuense and E. equisetina are indi-
cated by red and yellow dots, respectively. The accession information
used for phylogenetic reconstructions was provided in the supplementary
material

Tropical Plant Biol. (2020) 13: –4936 39



GGM4

GgMADS17

GgMADS25

GgMADS28

TnS000980857t03

GgMADS34

TnS000983259t02

GGM14

TnS000310781t01

GgMADS20

PpiMADS1_Ppi

TnS000061251t02

SvMADS13_Sve

TnS001003199t03

PcMADS4_Pco

GgMADS2

TnS000655931t01
GgMADS5

PtaMADS36_Pta

GgMADS6

TnS000655931t02

TnS000980857t06

PpiMADS5_Ppi

ChMADS28_Cha

PbMADS1_Pba
PtaMADS27_Pta

SvMADS18_Sve

PaMADS15_Pab

Gb_19178_Gbi

TnS000983259t01

Gb_39109_Gbi
CeMADS8_Cel

ChMADS35_Cha

GgMADS32

GgMADS22

GgMADS19

GgMADS23

TnS000220241t01

TnS000980857t02

TnS013912549t01

CeMADS6_Cel

GgMADS21

GgMADS31

PtaMADS28_Pta

Gb_30604_Gbi

ChMADS2_Cha

TnS000113989t06

ChMADS13_Cha

GgMADS3

PaMADS13_Pab

GGM8

TnS000061251t01

TnS000980857t01

EeMADS40

GgMADS4

Gb_01884_Gbi

GgMADS24

PsMADS1_Psi

GgMADS15

TnS001008199t01

TnS001003199t02

SvMADS17_Sve

WnMADS3_Wno

ERN09882_Atr

TnS000005915t02

72

94

68

87

100

99

61

98

68

85

98

98

94

100

51

100

99

100

58

56

69

97

79

77

56

76
98

100

52

61

77
83

91

51

100

77

97

93

99

99

82

63

99

94

76

86

66

100

66

82

0.2

Fig. 4 Phylogenetic relationships among TM8-like genes plotted using
the maximum likelihood method. The phylogeny was built based on 18
TM8-like genes from G. luofuense, 21 from Gnetum gnemon, one from
Ephedra equisetina (Eeq) and 23 from the following representative land
plants: Amborella trichopoda (Atr), Cephalotaxus harringtonia (Cha),
Cycas elongate (Cel), Ginkgo biloba (Gbi), Picea abies (Pab), Picea

sitchensis (Psi), Pinus banksiana (Pba), Pinus contorta (Pco), Pinus
pinaster (Ppi), Pinus taeda (Pta), Sciadopitys verticillata (Sve),
Solanum lycopersicum (Sly) and Wollemia nobilis (Wno). Bootstrap
values≥50 are given on each node. The accession information used for
phylogenetic reconstructions was provided in the supplementary material.
A scale bar was provided at the right corner
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MIKC* genes; whereas the other two G. luofuense MIKC*
genes formed a P-clade with three A. thaliana MIKC* genes
(BS = 97).

Phylogenies of the Type II MIKCc Genes

TheMIKCC phylogeny corroborates the delimitation between
gymnosperm and angiosperm MIKCc genes (Fig. 3). For ex-
ample, the TM3-like genes were subdivided into two clades,
clade A (BS = 59) contained one G. luofuense, one
G. gnemon, one E. equisetina and three P. taeda genes; where
a clade B consisted of six A. thaliana, one Amborella
trichopoda and two O. sativa MIKCc genes (BS = 78).
Another example shows that three SQUA-like genes, one from
G. luofuense , one from G. gnemon and one from
E. equisetina, were excluded from clade C (BS = 75), which
contained four A. thaliana, one A. trichopoda and four
O. sativa SQUA-like genes. Moreover, clade D (BS = 95)—
comprised three AGL12-like genes from G. luofuense,
G. gnemon and P. taeda—was sister to clade E (BS = 100),
which comprised one A. thaliana, one A. trichopoda and two
O. sativa AGL12-like genes. Five StMADS11-like genes in
gymnosperms formed two paraphyletic groups, each was sis-
ter to clade F (BS = 76), which consisted of two A. thaliana,
one A. trichopoda and three O. sativa StMADS11-like genes.

In general, these results evidenced the homology among
the MIKCc genes in Gnetales (Fig. 3). For example, three
AG - l ike genes—one from G. gnemon , one from
G. luofuense and one fromW. mirabilis—formed a clade (des-
ignated clade G, BS = 82), which segregated from that in
P. taeda. The AGL6-like genes clustered into one group (des-
ignated clade H), which consisted of two G. luofuense, two

G. gnemon, one G. parvifolium, one W. mirabilis and two
E. equisetina AGL6-like genes. Nevertheless, one
E. equisetina DEF/GLO-like gene fell into clade I (BS = 88),
which comprised one A. thaliana, one A. trichopoda and two
O. sativa genes. Moreover, 18 G. luofuense, three G. gnemon
and one E. equisetina TM8-like genes clustered into clade J,
which was separate from the two A. trichopoda genes.
However, another phylogenetic analysis (Fig. 4) placed the
TM8-like genes in one large clade—namely clade K (BS =
77), which contained 19 G. gnemon, 17 G. luofuense and one
E. equisetina genes—and a small clade—designated clade L
(BS = 100), which consisted of two G. gnemon and one
G. luofuense TM8-like genes; these results support the split-
ting of TM8-like genes in the Gnetales.

Gene Expression and Tandem Duplication

The further comparisons of expression profiles among the
detected MIKCc genes lead to better understand their potential
roles in regulating reproductive and vegetative organs in
G. luofuense. The expression profiles of the 35 G. luofuense
MIKCC genes and their clustering based on RPKM (reads per
kilobase per million mapped reads) values are summarized in
Fig. 5a. Except for one AGL12-like gene, the G. luofuense
MIKCC genes clustered into three groups. Group I contained
one AGL6-like, one AG-like, two AGL15-like, one
GpMADS4-like and two TM8-like genes that were exclusively
and strongly expressed in reproductive tissues. We also found
four DEF/GLO-like genes that were exclusively and highly
expressed in male strobili. Group II had one AGL6-like, one
SQUA-like, one GpMADS4-like, one B-sister-like, one
GGM19-like and seven TM8-like genes that were expressed

 R
oo

t  
 L

ea
f 

 F
em

al
e 

 S
ee

d 

 TnS000393325t08     AGL12           
 TnS000310781t01     TM8
 TnS000061251t01     TM8
 TnS000061251t02     TM8
 TnS000005915t02     TM8 
 TnS000069483t10     StMADS11
 TnS000220241t01     TM8 
 TnS001003199t02     TM8 
 TnS000113989t06     TM8
 TnS000980857t01     TM8
 TnS000222675t05     TM3
 TnS000980857t06     TM8
 TnS000064931t01     AG
 TnS000222675t04     AGL6  
 TnS000980857t03     TM8 
 TnS000622401t03     AGL15 
 TnS000622401t04     AGL15
 TnS000077603t01     DEF/GLO  
 TnS000843651t08     DEF/GLO 
 TnS000843651t05     DEF/GLO 
 TnS000843651t06     DEF/GLO
 TnS000843651t07     GpMADS4
 TnS001008199t01     TM8
 TnS000229425t02     AGL6
 TnS000495759t01     B-sister 
 TnS000967423t06     GpMADS4   
 TnS013912449t01     SQUA
 TnS001003199t03     TM8  
 TnS000655931t02     TM8
 TnS000655931t01     TM8
 TnS000983259t02     TM8
 TnS000980857t02     TM8
 TnS000640815t04     GGM19 
 TnS000983259t01     TM8
 TnS013912549t01     TM8Expression (RPKM)

 0  4
 

 8  1
2

 1
6

 2
0 

St
em

M
al

e

Group I

Group II

Group III

Scaffold633747

Scaffold843651

Scaffold980857

Scaffold655931

Scaffold983259

Scaffold61251

Scaffold1003199

AGL15

a b

Fig. 5 a Expression patterns of MIKCc genes from six different tissues of G. luofuense. b Tandem duplications of MADS-box genes identified in the
assembled scaffolds of the G.luofuense genome

Tropical Plant Biol. (2020) 13: –4936 41



at high levels (RPKM values>12) in reproductive tissues but
at low levels (RPKM values<12) in vegetative tissues. Finally,
Group III contained one TM3-like, one StMADS11-like, and
nine TM8-like genes that were all ubiquitously and strongly
expressed in vegetative and reproductive organs (i.e. RPKM
values>12). In addition, the AGL12-like genes were strongly
expressed in both roots and male strobili. In addition, the
assessment of tandem duplications is helpful of understanding
the diversity of MADS-box genes in G. luofuense. Tandem
duplications were identified among Type I and Type II MIKC
members (Fig. 5b). Taken together, these data suggest at least
one tandem duplication event that generated Mα-like and
DEF/GLO-like genes but five events gave rise to TM8-like
genes in G. luofuense.

Discussion

Type I MADS-Box Genes in Gnetum

A total of 11 G. luofuense Type I MADS-box genes were
identified, more than those found in other conifers (with
P. taeda as an exception) but less than those found in angio-
sperms (Table 1). Among the Type I MADS-box genes iden-
tified in G. luofuense, seven were Mα genes, three were Mβ
genes and one was the Mγ gene (Fig. 2). The higher number
of Mα than Mβ/Mγ genes was likely the result of tandem
duplications (Fig. 5b). Type I MADS-box genes participate
in endosperm and embryo development (Colombo et al.
2008; Day et al. 2008; Wuest et al. 2010) and control post-
zygotic compatibility in angiosperms (Walia et al. 2009).
Moreover, the Mα TFs preferably form heterodimers with
the Mβ and Mδ proteins, suggesting their essential roles in
stabilizing higher-order heterodimer complexes (Immink et al.
2009;Masiero et al. 2011). Besides, TFs of Type IMADS-box
genes posses simpler structure than those of Type II MADS-
box genes, they may be generated and degraded relatively fast
in seed plants (Nam et al. 2004). Compared to those in angio-
sperms, less is known about the functions of gymnosperms
Type I MADS-box genes. In general, Mα is expressed in
various shoot tissues, whereas Mβ/Mδ expressions were de-
tected in the buds, male cones, and embryos of conifer species
(Gramzow et al. 2014). Further studies are required to inves-
tigate the functions of Type I MADS-box genes in Gnetum
and the remaining gnetalean genera.

The MIKC* Genes in G. luofuense

Our results well illustrated that the three G. luofuenseMIKC*
genes could be subdivided into two clades (Fig. 2). This result
is consistent with the phylogeny of MIKC* genes, which
identified two major clades—the S- and P-clades (Gramzow
et al. 2014). The MIKC* transcription factors also play an

important role in the gametophytic and sporophytic develop-
ment of bryophytes (Kwantes et al. 2012; Zobell et al. 2010).
In conifers, P-clade MIKC* TFs have been shown to be
broadly expressed in both female and male reproductive or-
gans, whereas those in the S-clade are typically expressed
exclusively in male reproductive organs (Gramzow et al.
2014). Thus, Type II MIKC* TFs may have a broader regula-
tory role in gymnosperm species but mainly regulate male
gametophyte development, such as pollen maturation and pol-
len tube growth in angiosperms (Adamczyk and Fernandez
2009; Gramzow et al. 2014; Kwantes et al. 2012). More ef-
forts are needed to survey the diversity and functions of
MIKC* genes in the Gnetales.

Diversity of the MIKCC Genes in G. luofuense
and E. equisetina

The total number of Type II MADS-box genes inG. luofuense
was 38, including three MIKC* and 35MIKCc genes (Fig. 3).
The number ofG. luofuenseMIKC* genes was different from
that of G. gnemon, whereas the latter is consistent with the
published data (Gramzow et al. 2014) (Table 1). Moreover, 14
E. equisetinaMIKCc genes were identified based on the tran-
scriptome data of stem; this result is consistent with a previous
study in which 14–16 Type II MADS-box genes were pro-
posed in the most recent common ancestor of gymnosperms
(Gramzow et al. 2014). In addition, E. equisetina and
G. luofuense had ten and 12 MIKCc members, accounting
for 62.5% and 75% of all 14 identified members, respectively.
The diversity of the MIKCC genes in the Gnetales corrobo-
rates the ancestry of MADS-box genes prior to the diversifi-
cation of land plants (Alvarez-Buylla et al. 2000; Gramzow
and Theissen 2010). Further studies, especially those on the
Type I and Type II MADS-box genes in Ephedra and
Welwitschia, are required to further assess the diversity of
the MIKCC genes in the Gnetales.

In Gnetum, we identified more Type II genes than Type I
MADS-box genes. The scenario is consistent with the com-
parisons between the two type genes observed in several co-
nifer species (Table 1). By contrast, more Type I than Type II
MADS-box genes were observed in several angiosperms such
as A. thaliana, Capsella rubella and Solanum tuberosum
(Table 1). The relatively higher number of Type II MADS-
box genes present in G. luofuense was presumably owing to
the large genome size of gymnosperms like conifers
(Gramzow et al. 2014). It is also possible that tandem dupli-
cations of MIKCC genes occurred more frequently in gymno-
sperms, which was reflected by the expansions commonly
seen in StMADS11-like, TM3-like, and TM8-like groups
(Gramzow et al. 2014). In the present study, DEF/GLO-like
and TM8-like genes constituted the majority (62.6%) of
MIKCC genes found in G. luofuense. At least one and five
tandem duplication events in theDEF/GLO-like and TM8-like
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Table 1 The numbers of MADS-
box genes identified in different
seed plant species

Plant

group

Plant species Type I
MADS-box
genes/se-
quences

Type II
genes in
total

Type II
MIKC*
genes

Type II
MIKCC

genes

References

Gnetophyta Gnetum luofuense 11 38 3 35 The present
study

Gnetophyta Gnetum gnemon 0 37 2 35 Gramzow
et al. 2014

Gnetophyta Welwitschia mirabilis 0 5 0 5 Moyroud
et al. 2017

Gnetophyta Ephedra equisetina 0 14 0 14 The present
study

Gnetophyta Ephedra sinica 0 2 0 2 Chen et al.
2017

Pinophyta Piceaabies 12 50 4 46 Gramzow
et al. 2014

Pinophyta Picea glauca 3 58 0 58 Gramzow
et al. 2014

Pinophyta Pinus taeda 17 59 1 58 Gramzow
et al. 2014

Pinophyta Pinus sitchensis 1 16 0 16 Gramzow
et al. 2014

Pinophyta Pinus palustris 0 21 0 21 Gramzow
et al. 2014

Pinophyta Pinus pinaster 0 10 0 10 Gramzow
et al. 2014

Pinophyta Pseudotsuga menziesii 0 40 0 40 Gramzow
et al. 2014

Pinophyta Cedrus atlantica 0 13 0 13 Gramzow
et al. 2014

Pinophyta Podocarpusmacrophyllus 1 15 0 15 Gramzow
et al. 2014

Pinophyta Taxus baccata 0 3 0 0 Gramzow
et al. 2014

Pinophyta Wollemia nobis 0 11 1 10 Gramzow
et al. 2014

Pinophyta Sciadopitys verticillata 1 21 0 21 Gramzow
et al. 2014

Pinophyta Cephalotaxus

harringtonia

0 29 0 29 Gramzow
et al. 2014

Pinophyta Cryptomerica japonica 0 9 0 9 Gramzow
et al. 2014

Pinophyta Sequoia sempervirens 0 16 0 16 Gramzow
et al. 2014

Ginkgoales Ginkgo biloba 0 11 0 11 Chen et al.
2017

Cycadales Encephalartos

barteri

0 3 0 3 Chen et al.
2017

Cycadales Stangeria eriopus 0 4 0 4 Chen et al.
2017

Cycadales Dioon edule 0 2 0 2 Chen et al.
2017

Cycadales Cycas micholitzii 0 4 0 4 Chen et al.
2017

Angiosperms Oryza sativa 31 41 4 37 Duan et al.
2015

Angiosperms Zea mays 32 43 4 39 Duan et al.
2015

Angiosperms Sorghum bicolor 30 35 2 33 Duan et al.
2015

Angiosperms Aquilegia coerulea 37 26 2 24 Duan et al.
2015

Angiosperms Solanum lycopersicum 56 39 6 33 Duan et al.
2015
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subgroups, respectively, were detected (Fig. 5b), suggesting
the major contribution of tandem duplication to the expansion
of these two subgroups.

Phylogenies of Gnetales MIKCC Genes

The two phenogenetic analyses of MIKCC genes yielded dif-
ferent results and the TM8-like genes had poor statistical sup-
port (Figs. 3 and 4), leading to confusions in the phylogenetic
analysis ofMIKCC genes based on extensive sampling of seed
plants. Nevertheless, some valuable information can be in-
ferred from these phylogenetic analyses. First, the MIKCC

genes from gymnosperms and angiosperms could be clearly
separated, which is consistent with previous studies (Becker
et al. 2000; Carlsbecker et al. 2013; Chen et al. 2017;
Gramzow et al. 2014; Melzer et al. 2010; Winter et al.
1999). In addition, the Gnetales MIKCC genes are likely
closely related to those found in gymnosperms (Fig. 3).
Thus, theMIKCC genes either form sister groups in subgroups
(e.g. TM3, SQUA and AGL12), or constitute paraphyletic
groups in subgroups (e.g. StMADS11 and AGL6) between
Gnetales and other gymnosperms (Fig. 3). Here, the delimita-
tion of MIKCC genes between gymnosperms and angio-
sperms is consistent with that reported in previous studies
(Moyroud et al. 2017; Shindo et al. 1999; Winter et al. 1999).

We also assessed the homology of MIKCC genes from
Gnetales to understand the evolution of MADS-box genes in
seed plants. According to a previous study, the AGL6-like
genes e.g. GGM11 from G. gnemon and WelAGL6 from
W. mirabilis are homologous (Moyroud et al. 2017), which
is consistent with that observed in this study. However, our
results did not support the homology of MIKCC genes within
Gnetales—we identified one AG-like gene, one AGL12-like
gene, and two AGL15-like genes that were Gnetum-specific
(Fig. 3). Moreover, some MIKCc genes in E. equisetina,
G. luofuense,G. gnemon andW. mirabilis did not fully cluster
into one monophyletic group, as we observed among the
DEF/GLO-like, StMADS11-like and B-sister-like genes.
Furthermore, the phylogenetic analysis based on extensive
sampling of gymnosperms placed G. luofuense and
G. gnemon TM8-like genes into separate clades (namely
clades K and M), although this result had low statistic support
(Fig. 4). Taken together, these results suggest that MIKCC

group genes in the Gnetales seemingly have multiple origins,
and more studies are required to validate such a statement.

Transcript Profiles of the MIKCC Genes in G. luofuense

In previous studies, the transcript profiles of G. gnemon and
G. parvifolium MIKCC genes were only tested in leaves,

Table 1 (continued)
Plant

group

Plant species Type I
MADS-box
genes/se-
quences

Type II
genes in
total

Type II
MIKC*
genes

Type II
MIKCC

genes

References

Angiosperms Solanum tuberosum 102 65 4 61 Duan et al.
2015

Angiosperms Vitis vinifera 42 42 6 48 Grimpletet al.
2015

Angiosperms Citrus clementina 35 49 5 44 Duan et al.
2015

Angiosperms Citrus sinensis 16 36 8 28 Duan et al.
2015

Angiosperms Brassica rapa 65 95 11 84 Duan et al.
2015

Angiosperms Thellungiella halophila 74 46 9 37 Duan et al.
2015

Angiosperms Capsella rubella 82 51 12 39 Duan et al.
2015

Angiosperms Arabidopsis lyrata 37 44 10 34 Duan et al.
2015

Angiosperms Arabidopsis thaliana 62 46 7 39 Duan et al.
2015

Angiosperms Prunus persica 40 32 3 29 Duan et al.
2015

Angiosperms Glycine max 75 89 7 82 Duan et al.
2015

Angiosperms Medicago truncatula 60 31 4 27 Duan et al.
2015

Angiosperms Populus trichocarpa 41 64 9 55 Duan et al.
2015
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female strobili and male strobili (Becker et al. 2000; Shindo
et al. 1999; Winter et al. 1999). In the present study, we ex-
amined the expression of 35 MIKCC genes in various vegeta-
tive and reproductive tissues inG. luofuense. The cluster anal-
ysis based on gene expression data classified the MIKCC

genes (except for AGL12) into three major groups (Fig. 5a),
which exhibits slight differences from the results of previous
tissue-specific gene expression analyses in other Gnetum spe-
cies. For an example, two DEF/GLO-like (B-class) genes
TnS000843651t08 and TnS000077603t01 were both specifi-
cally and strongly expressed in the male strobili of
G. luofuense. An ortholog of the former i.e. GGM2 was ubiq-
uitously expressed in the male strobili of G. gnemon, whereas
an ortholog of the later, i.e. GGM15 was weakly expressed
(Becker et al. 2000; Winter et al. 1999), probably because
GGM15 was restrictedly expressed to the antherophores
(Becker et al. 2003; Winter et al. 1999). In W. mirabilis, the
expression levels of two class B genes, WelAPs/PI-1 and
WelAPs/PI-2, were high in male strobili in early developmen-
tal stages but low in late developmental stages (Moyroud et al.
2017). This specific expression pattern of G. luofuense and
W. mirabilis B genes in male reproductive tissues makes them
reliable markers to distinguish between the male (where they
are up-regulated) and female strobili (where they are down-
regulated) in extant gymnosperms (Winter et al. 1999).

Besides the class B genes, one GGM3 from classes C and
D , wh i ch i s o r t ho l ogou s t o t h e AG- l i k e gene
TnS000064931t01, was found to express at a high level in
both female and male strobili in G. gnemon (Becker et al.
2003; Winter et al. 1999). GGM3 functions as a general pro-
moter in theearlystages of nucellus, antherophores and female
reproductive unit development in G. gnemon; while in later
developmental stages, the expression ofGGM3 is restricted to
the outer envelopes of fertile and sterile ovules (Winter et al.
1999). In Cryptomeria japonica, the AGL6-like gene
CjMADS14 is expressed in female and male strobili, suggest-
ing its role in reproductive organ development (Katahata et al.
2014). Our results show that the G. luofuense genes
TnS000229425t02 and TnS000222675t04—orthologs of the
G . g n e m o n AGL 6 - l i k e GGM9 a n d GGM11 ,
respectively—were strongly expressed in both female and
male strobili but not the vegetative reproductive organs (Fig.
5a).GGM9was known to express throughout the sterile ovule
primordium during early development but at a low level in
sporogenic tissues and the antherophores in latter develop-
mental stages (Becker et al. 2003; Winter et al. 1999). By
contrast, GGM11 was expressed in the upper envelopes sur-
rounding sterile ovules, and its expression increased with the
development of sterile reproductive units (Becker et al. 2000,
2003; Winter et al. 1999). Furthermore, transcription factors
GGM2, GGM3, GGM9 and GGM11 were found to form a
quartet complex that participates in the sex determination of
G. gnemon (Wang et al. 2010). A recent study has revealed

that genes in the B and C/D classes originated 339 and 332
Mya, respectively, before the emergence of gymnosperms that
occurred 305 Mya (Shen et al. 2019). Besides, the AGL6
genes originated 296 Mya and shared the most common an-
cestor with genes from classes A and E (Shen et al. 2019).

The transcript profiles of several MIKCc genes were differ-
ent between G. luofuense and other Gnetum species. For ex-
ample, the expression levels of B-sister-like gene
TnS000495759t01, SQUA-like gene TnS013912449t01 and
GGM19-like gene TnS000640815t04 were high in both the
female and male strobili of G. luofuense (Fig. 5a), but their
G. gnemon orthologs in correspondence i.e. GGM13,
GGM18, andGGM19were all weakly expressed in the female
and male strobili of G. gnemon (Becker et al. 2000). Another
study reported that the expression levels of GpMADS1 (an
ortholog of the TM8-like gene TnS013912549t01),
GpMADS3 (an or tho log of the AGL6 - l ike gene
TnS000229425t02) and GpMADS4 (an ortholog of the
GpMADS4-like gene TnS000967423t06) were low or moder-
ate in the female strobili of G. parvifolium (Shindo et al.
1999), which is different from what we observed in
G. luofuense. Furthermore, we found that one GpMADS4-like
gene, TnS000967423t06 (an ortholog ofGGM7), was strongly
expressed in both the female and male strobili ofG. luofuense.
This finding disagrees with that reported in a previous study of
G. gnemon, which showed that this gene was strongly
expressed in female strobilibut weakly expressed in male stro-
bili (Becker et al. 2000). GGM7 expression was similar
throughout the entire involucre but was relatively high in ster-
ile ovules and antherophores in G. gnemon; in later develop-
mental stages,GGM7 expression weakened and was restricted
to the base of antherophores (Becker et al. 2003).

The TM8-like genes constituted nearly half of the MIKCc

genes we identified in G. luofuense; they were also found to
have undergone more frequent tandem duplications than other
G. luofuense MIKCc genes (Fig. 5b). In addition, some TM8-
like genes were found to be broadly expressed in both vege-
tative and reproductive organs, while others were exclusively
expressed in the female and male strobili ofG. luofuense (Fig.
5a). Our results show that TnS013912549t01, an ortholog of
G. parvifolium GGM8 and GpMADS1, was strongly
expressed in the female and male strobili of G. luofuense,
consistent with the expression pattern of GGM8 in
G. gnemon (Becker et al. 2000), but remarkably different from
that ofG. parvifoliumGpMADS1, which was found to involve
in the differentiation of three envelopes of female reproductive
units and the initiation of their nucellus (Shindo et al. 1999). In
addition, the TM8-like genes were found to involve in the
development of arils (seed coats) in Ginkgo biloba and
Taxus baccata (Lovisetto et al. 2012). In angiosperms, the
TM8-like genes have been found to be widely expressed in
the leaves, roots and seedlings of tomato (Hileman et al.
2006). Since the results revealed that the TM8-like genes are
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widely expressed in various tissues of G. luofuense, further
studies are required to investigate their roles in regulating the
development of vegetative and reproductive organs.

Besides regulating the development of reproductive or-
gans, the MIKCc genes might also participate in the develop-
ment of vegetative organs in G. luofuense, but this, so far, has
not been well-illustrated in previous studies. For example, we
found that the G. luofuense AGL12-like gene (an ortholog of
G. gnemon GGM10, TnS000393325t08) was weakly
expressed in male strobili but strongly expressed in roots,
consistent with previous studies showing that MIKCc genes
regulate the development of primary root meristems in
A. thaliana (Burgeff et al. 2002; Tapia-López et al. 2008).
Another study reported that the AGL12-like gene
OsMADS26 was strongly expressed in the shoots and roots
of O. sativa in response to stresses (Lee et al. 2008). In addi-
tion, we identified a TM3-like gene TnS000222675t05 (an
ortholog of G. gnemon GGM1) that was widely and strongly
expressed in the stems and leaves of G. luofuense. Our results
are in line with previous studies showing that G. gnemon
GGM1was expressed in leaves, male strobili and female stro-
bili (Becker et al. 2000; Winter et al. 1999). Previous studies
have reported strong TM3-like gene expressions in root mer-
istems, shoot meristems and organ primordia in Eucalyptus
globules (Decroocq et al. 1999) and Ipomoea batatas (Kim
et al. 2005). Moreover, we found StMADS11-like gene
TnS000069483t10 was strongly expressed in both vegetative
and reproductive organs of G. luofuense, which is different
from the results of previous studies where GGM12 (an
ortholog of G. gnemon TnS000069483t10) was found to ex-
press exclusively in leaves and male strobili (Becker et al.
2000) of G. gnemon. The StMADS11-like genes were found
to be responsible for regulating the development of vascular
bundles in the leaf and stem of Solanum tuberosum (Carmona
et al. 1998). More studies are required to resolve the complex
regulatory mechanism of MIKCc genes in the development of
vegetative organs in Gnetum.

Methods

Plant Materials

Plant materials used for RNA sequencing (RNA-seq) were
collected from two mature plants and a young seedling (2–
3 years old) ofG. luofuense grown in the Fairy Lake Botanical
Garden (SZBG), Shenzhen, Guangdong, China (N22°34′49″,
E114°10′26″). Before tissue collection, unfertilized female
strobili were bagged to avoid contamination from pollen
grains. The stems, leaves, and female cones at anthesis were
collected from a young femaleG. luofuense plant, and the root
tissues were harvested from a 2–3 years old offspring of this
plant (voucher: XHMMT01). The male strobili were collected

from a male individual growing next to the female individual
(voucher: XHMMT10). The female individual, whose nuclear
genome was sequenced, was initially identified as
“G. montanum” (Wan et al. 2018). This identification was,
however, controversial given the taxonomic treatment (Hou
et al. 2016)—G. luofuense are characterized by broad, oval
seeds that are 20–25mm in length and 13–17mm in diameter,
with fleshy seed coats covered by silver scales and seed bases
that are contracted into a 2–5 mm seed stipe. By contrast,
G. montanum usually have smaller cylindric ovoid and/
orcylindric seeds that are 16–20 mm in length and 7–11 mm
in diameter and features a pronounced seed stipe of 3–5 mm.
Gnetum luofuense is endemic to China in Guangdong,
Hainan, Jiangxi and Hong Kong, whereas G. montanum is
widely distributed throughout China (in Guangxi,
Guizhouand Yunnan), India (in Assam and Sikkim), Burma,
Thailand and Vietnam. Thereafter, we named all harvested
plant materials G. luofuense. In addition, we collected the
stem tissues from a wild Ephedra equisetina plant growing
in Qinghai, China (N38°35′24″, E105°32′24″). RNA se-
quencing was carried out by SZBG, Shenzhen, Guangdong,
China.

RNA Sequencing

The roots, stems, leaves, male strobili, female strobili, and
seeds of G. luofuense as well as the stem tissues of
E. equisetina were harvested and used for RNA-seq. Five
biological replicates were harvested for each tissue and pooled
before RNA-seq. Total RNAwas extracted using the TRIzolre
agent (Invitrogen, USA) and DNase I (Promega, USA) was
used to remove DNA contamination. Seven libraries for
RNA-seq were constructed using the NEB Next Ultra™
RNA Library Prep Kit (NEB, USA) and were sequenced on
an Illumina Hiseq™ 2000 platform (with a 100-bp read
length) by Novogene Co., Ltd. (Beijing, China).

Sequence Retrieval

Transcripts from different G. luofuense tissues and
E. equisetina stems were mapped to the nuclear genome of
G. luofuense (Wan et al. 2018) using TopHat v2.0.13 and
Cufflinks version 2.1.1 with split reading permitted (Trapnell
et al. 2009, 2010). The genome data of A. trichopoda were
downloaded from the following website Ensembl_ftp://ftp.
ensemblgenomes.org/pub/plants/release-25/plants/ to obtain
sequences of MIKCc genes. To identify the conserved
domains in MADS-box genes, we searched the transcripts
from G. luofuense and E. equisetina using two Pfam
models—SRF (PF00319) and K-box (PF01486)—using the
hidden Markov model (HMM) software package HMMER
(v3.1b2, http://hmmer.org)(E-value<1e−5)(Albert et al. 2013;
Finn et al. 2011). To ensure the accuracy of search results, we
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manually checked all candidate MADS-box genes that con-
tain the MADS (M) and/or Keratin-like (K) domains using the
NCBI conserved domain database (http://www.ncbi.nlm.nih.
gov/Structure/cdd/wrpsb.cgi?). Sequences of Type I and Type
II MADS-box genes in G. luofuense and E. equisetina were
deposited in the supplementary dataset. Moreover, the se-
quences of MADS-box genes (i.e. the MIKCc genes) from
G. gnemon and G. parvifolium were obtained from Shindo
et al. 1999 andWinter et al. 1999, respectively. The sequences
of MADS-box genes from Picea abies and W. mirabilis were
downloaded from Carlsbecker et al. 2013 and Moyroud et al.
2017, respectively. The sequences of MADS-box genes from
A. thaliana andO. sativawere retrieved fromThe Arabidopsis
Information Resource (TAIR, https://www.arabidopsis.org/
browse/genefamily/MADSlike.jsp) and a previous study
(Arora et al. 2007), respectively. In addition, the sequences
of TM8-like genes in Cephalotaxus harringtonia, Cycas
elongate, Ginkgo biloba, G. gnemon, Picea abies, Picea
sitchensis, Pinus banksiana, Pinus contorta, Pinus pinaster,
Pinus taeda, Sciadopitys verticillata, Solanum lycopersicum
and Wollemia nobilis were obtained from Gramzow et al.
2014.

Expression Profiling and Detection of Tandem
Duplication Events

The numbers of aligned reads were counted for each gene and
were normalized to RPKM. The hierarchical clustering of ex-
pression patterns among the tested genes was performed using
untransformed RPKM values using Cluster v3.0 (De Hoon
et al. 2002). The hierarchical parameter was set to ‘correlation
with spearman rank’ to compute similarity. Results of the
cluster analysis were displayed as a heat map using Java
TreeView v1.0.4 (Saldanha 2004). To identify tandem dupli-
cations among the MADS-box genes from G. luofuense, we
searched all MADS-box genes against the nuclear genome of
G. luofuense (=G. montanumWan et al. 2018) using BLASTp
under the following thresholds: identity>60, e-value<3e-25,
the length of searched protein>50 amino acids, and distance
between two adjacent genes<500 kb (Hanada et al. 2008).

Phylogenetic Analyses of MADS-Box Genes

All candidate MADS-box genes were searched against the
Pfam database and highly conserved amino acid sequences
were retained for phylogenetic analyses. We produced multi-
ple alignments for the conserved sequences of MADS-box
genes using MUSCLE v3.8.31 (Edgar 2004) and obtained
an alignment matrix for Type I and a super matrix for Type
II MADS-box genes. Moreover, a specific alignment of the
TM8-like genes was also generated based on extensive sam-
pling of G. gnemon, E. equisetina and other gymnosperms.
RAxML-HPC2 v8.2.12 (Stamatakis 2014) implemented in

web service CIPRES Gateway v.3.3 (www.phylo.org) was
used to construct three maximum likelihood (ML) trees for
Type I, Type II and TM8-like genes. Prior to the phylogenetic
analyses, the best fit model for amino acid replacement was
determined using ProtTest v3.2 (Abascal et al. 2005) and the
LG + Γ model was used for all alignments according to the
values of AICc (corrected Akaike Information Criterion). We
performed rapid bootstrapping to search for trees with the
highest score; statistical support for the three ML trees was
derived from 1000 pseudo-replicates of simulated bootstraps.
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