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Gene co-expression network analysis provides a novel insight
into the dynamic response of wheat to powdery mildew stress
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Abstract. Powdery mildew (Blumeria graminis f. sp. Tritici, (Bgt)) is an important worldwide fungal foliar disease of wheat (Triticum
aestivum) responsible for severe yield losses. The development of resistance genes and dissection of the resistance mechanism will
therefore be beneficial in wheat breeding. The Bgt resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 from
Triticum dicoccoides, and it is still one of the most effective resistance genes. Here, by RNA sequencing, we identified three co-expressed
gene modules using pairwise comparisons and weighted gene co-expression network analysis during wheat–Bgt interactions compared with
mock-infected plants. Hub genes of stress-specific modules were significantly enriched in spliceosomes, phagosomes, the mRNA
surveillance pathway, protein processing in the endoplasmic reticulum, and endocytosis. Induced module genes located on chromosome
5BL were selected to construct a protein–protein interaction network. Several proteins were predicted as the key hub node, including
Hsp70, DEAD/DEAH box RNA helicase PRH75, elongation factor EF-2, cell division cycle 5, ARF guanine-nucleotide exchange factor
GNOM-like, and protein phosphatase 2C 70 protein, which interacted with several disease resistance proteins such as RLP37, RPP13 and
RPS2 analogues. Gene ontology enrichment results showed that wheat could activate binding functional genes via an mRNA transcription
mechanism in response to Bgt stress. Of these node genes, GNOM-like, PP2C isoform X1 and transmembrane 9 superfamily member 9
were mapped onto the genetic fragment of PmAS846 with a distance of 4.8 Mb. This work provides the foundations for understanding the
resistance mechanism and cloning the resistance gene PmAS846.

Keywords. wheat; powdery mildew; weighted gene correlation network analysis; protein–protein interaction network; candidate genes;
Blumeria graminis.

Introduction

Powdery mildew, caused by Blumeria graminis f. sp. tritici
(Bgt), is an important fungal foliar disease of wheat (Triti-
cum aestivum) that is prevalent in many wheat-growing
regions of the world (Dean et al. 2012). Rising trends in
yield losses caused by the Bgt virulent races are becoming
increasingly serious because of the climate change and crop
planting structure adjustments. Breeding for resistance is the
most profitable and environmentally acceptable strategy to
control damage caused by powdery mildew disease.

However, the development of specific resistant varieties lags
far behind the frequency of genetic resistance loss. There-
fore, there is an urgent need to identify novel powdery
mildew resistance genes and to develop durable resistant
varieties though converging multispecific resistance genes.

The development of effective genetic resistance for
breeding commercial varieties is an increasingly time-con-
suming practice due to the declining genetic diversity of
germplasms in the current agricultural systems. Thus, dis-
secting disease resistance mechanisms has become a hotspot
for research in determining R genes in wheat pathogen
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defense, although many breeding efforts are still based on
nucleotide-binding leucine-rich repeat (NLR)-based disease
resistance. During plant–pathogen interactions, plants wield
resistance (R) gene-mediated defense mechanisms and
mount a mass defensive response to pathogen attack to delay
or arrest potential pathogenic microorganism growth (Sch-
wessinger and Ronald 2012; Bouktila et al. 2015). Com-
pared with model plants, the use of classical genetics to
isolate R genes has been limited because the hexaploid
wheat has a large and complex genome, although the pow-
dery mildew resistance gene (Pm3) has been identified
(Hurni et al. 2013). In wheat–Bgt interactions, a number of
studies using RNA sequencing (RNA-seq) (Zhang et al.
2014), GeneChip, microRNA analysis (Xin et al. 2010) and
proteomics have identified thousands of functional genes
and noncoding genes (Xin et al. 2011; Zhang et al. 2016).
However, the resistant trait is well known as a monogenic
control phenotype in classical genetics, raising the trouble-
some question of how to select a key R gene from the big
data of gene transcription expression profiles. Additionally,
the expression of determinative proteins is highly complex
because of posttranscriptional, translational, and/or post-
translational regulatory mechanisms (Janke and Bulinski
2011), alternative splicing (Reddy et al. 2013) and protein
degradation; as a result, the model of wheat resistance
activation in responding to powdery mildew is still unclear.
Moreover, in contrast to its importance in breeding, research
into the genetic and molecular basis of R is still in its
infancy.

Isobaric tags for relative and absolute quantification
proteomics technology is a key tool that contributes to the
explanation of complex biological processes at the protein
level. Recently, we analysed changes in the protein profiles
of resistant wheat in response to powdery mildew (Bgt)
infection, and identified some stress-related and defense-
related protein species (Fu et al. 2016). However, this was
achieved by covering a wide range of potential defense-
related proteins which was not sufficiently narrow to rec-
ognize critical genes involved in defense mechanism of
wheat undergoing Bgt infection. Weighted gene correlation
network analysis (WGCNA) implements methods that are
conducive in generating testable hypotheses for validation
in independent datasets, such as putative pathways asso-
ciated with developing receptacles (Hollender et al. 2014)
and disease or defense outcomes (Rasmussen et al. 2013).
Previously, we used WGCNA and transcriptome–pro-
teome-associated analysis to construct a model of gene
activation in the wheat defense response to stripe rust
(Zhang et al. 2019a), and narrowed the number of key
resistance genes to three dozen. Unfortunately, large-scale
transcriptome comparison results revealed the wheat
response to stripe rust and powdery mildew stress through
distinct gene activations (Zhang et al. 2014). The wheat
line N9134 had maintained a high level of resistance to
powdery mildew because of the resistance genes in the
long arm of chromosome 5B (Xue et al. 2012), with the

exception of the stripe rust resistance gene in chromosome
1BS.

In the present study, we focussed on the networks
involved in the wheat–Bgt interaction by merging data from
RNA-seq and WGCNA, and then used the genetic fragment
analysis to further narrow the key resistance genes. The main
objective of this study was to identify a spectrum model of
wheat resistance activation in response to powdery mildew
by identifying changes in expression patterns after inocula-
tion with Bgt. WGCNA elucidated the higher-order rela-
tionships between genes based on their co-expression
relationships, delineated modules of biologically related
genes, and permitted a robust view of transcriptome orga-
nization in the response of the resistant wheat line N9134 to
Bgt E09. The most highly connected or central genes,
referred to as ‘hubs’ were further employed to construct
protein–protein interaction (PPI) networks. Finally, taking
the classical genetics resistance gene locus into considera-
tion, we predicted the possible involvement of the candidate
gene PmAS846.

Materials and methods

Plant materials and pathogen stress treatment

The winter wheat line N9134, developed by Northwest A&F
University (Yangling, China) shows high immune resistance
to all Bgt races in China. This resistance was conferred by
one all-stage resistance gene located on chromosome 5BL
bin 0.75–0.76, named PmAs846 (Xue et al. 2012). A pair of
contrasting BC7F2 homozygous lines were developed form
backcross SY225/7 9 PmAS846, which differ only regard-
ing PmAS846 on 5BL. The Bgt isolate E09 was maintained
by the College of Agronomy.

Weighted gene correlation network analysis

To carry out the co-expression network analysis on the
response of resistant wheat line N9134 to powdery mildew,
we separated RNA-seq data of nine Bgt-infected samples
from PRJNA243835 (Zhang et al. 2014), which included 21
different leaf samples at 0, 24, 48 and 72 h postinfection
(hpi) after fungal infection. Briefly, after the total RNA was
extracted and modified with DNase digestion, Oligo(dT)-
magnetic beads were used to enrich the mRNA, which was
then broken into fragments. Following cDNA preparation
with random hexamers, adaptor sequences were ligated to
the ends of the repaired double-stranded cDNA after
purification. Finally, EST libraries were constructed by PCR
amplification and sequenced with an Illumina HiSeq 2000
platform. Here, all reliable readings were assembled using
TopHat2 and Cufflinks software (Trapnell et al. 2012; Kim
et al. 2013) to reconstruct the gene libraries from reference
wheat (Chinese spring) genome sequences from Unité de
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Recherche Génomique Info (v. v2.2) (Brenchley et al. 2012)
after cleaning low-quality reads and screening ribosomal
RNAwith bowtie. Fragments per kilobase of exon model per
million mapped reads (FPKM) values were used to examine
the gene expression levels in each sample. With a fold
change of C2 and a false discovery rate (FDR) B0.05, dif-
ferentially expressed genes (DEGs) were selected with
DESeq software among the three treatment groups compared
with mock-inoculated leaves. Principal component analysis
and Pearson’s correlation of FPKM were used to test the
repeatability of samples. Co-expression networks were
constructed using the WGCNA package (v1.47) in R
(Langfelder and Horvath 2008). Among all 75,906 assem-
bled unigenes, 30,828 genes with FPKM[5 were used for
the WGCNA unsigned co-expression network analysis. The
modules were obtained using the automatic network con-
struction function on large expression datasets, block-
wiseModules with default settings, except that power was
10, the similarity degree was 0.75, minModuleSize was 30,
and mergeCutHeight was 0.3. The eigengene value was
calculated for each module and used to test the association
with each time point sample. The total connectivity and
intramodular connectivity, kME (for modular membership,
i.e. eigengene-based connectivity), and kME-P value were
calculated as previously described (Zhang et al. 2019a). The
expression trends of DEGs were classified using short time-
series expression miner (STEM; http://www.cs.cmu.edu/
*jernst/stem) with log-transformed normalized data (Ernst
and Bar-Joseph 2006).

PPI network construction

PPI networks were constructed and visualized using
STRING v10.5 to analyse DEG-encoding proteins identified
in the main modules (Szklarczyk et al. 2015).

Informatics enrichment and k-means clustering analysis

To organize the genes into hierarchical categories, the DEGs
were mapped to gene ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
using the MAS molecular function annotation system (http://
mas.capitalbiotech.com/mas3/). GO terms and KEGG path-
ways with FDR-corrected P values \0.05 and Q-values
B0.05 were considered statistically significant. Gene
expression pattern analysis was used to cluster genes
showing similar expression trends at 0, 24, 48 and 72 hpi. To
examine the DEG expression patterns in each sample, the
expression data were normalized to 0, log2 (v1/v0), log2
(v2/v0), and log2 (v3/v0), respectively. Clusters were gen-
erated using STEM with previously described standard
parameters (Zhang et al. 2019a). P B0.05 was also set as the
threshold for statistical significance for the profiles
generated.

Quantitative real-time PCR analysis

SYBR Green-based quantitative PCR system was used for
qRT-PCR analysis. The template cDNAs were prepared from
the infected contrasting wheat NILs samples, which were
collected at 6, 12, 24, 36, 48, 72 and 96 hpi with Bgt E09.
The uninoculated plant samples at the same time points were
set as the controls. Three independent biological replicates
were carried out for each time point. Standard protocol was
used to quantify relative gene expression levels with specific
primers (table 1 in electronic supplementary material at
http://www.ias.ac.in/jgenet) and TaActin (endogenous refer-
ence). The qRT-PCR was completed with the QuantStudio 7
Flex real-time PCR system.

Results

Co-expression network analysis of wheat responding
to powdery mildew

For Bgt-infected samples, the average number of high
quality clean reads per library was around 37.42 million
101 bp paired-end reads, compared to 35.99 million clean
reads per library constructed from Pst-infected samples.
Based on the bread wheat reference transcripts, 66727,
67280, 67764 and 67799 genes were assembled at 0, 24, 48
and 72 hpi, respectively. After the co-expression networks
were constructed on the basis of pairwise correlations
between genes in their common expression trends across all
sampled leaves, 18 main modules with mergeCutHeight 0.3
were further classified from 79 distinct modules, as shown
previously (Zhang et al. 2019a). Taking replication into
consideration, three of the 18 co-expression modules,
including black, darkolivegreen4, and plum1 were shown to
be comprised of genes that are highly specifically expressed
in Bgt test at different time points (r[ 0.8, P\ 10-3)
(figure 1, a–d). Here, we identified 2684 Bgt-induced
specific genes at 24 hpi classifying into the black module,
4285 specific genes in the darkolivegreen4 module at 24,
48 and 72 hpi, and 11601 genes in the plum1 module at 48
and 72 hpi. Among the three modules, plum1 comprised
the most sample-specific expressed genes, which were
mainly enriched in spliceosomes, peroxisomes, the mRNA
surveillance pathway, RNA transport and degradation, and
valine, leucine, and isoleucine degradation (table 1; figure 1
in electronic supplementary material). Genes in the black
module were enriched in phagosomes, biosynthesis/meta-
bolism of amino acids, protein processing in the endo-
plasmic reticulum, and protein export, while the
darkolivegreen4 module consisted of genes enriched in
proteasomes, ribosomes, phagosomes, endocytosis, N-gly-
can biosynthesis, valine, leucine, and isoleucine degrada-
tion, sphingolipid metabolism, SNARE interactions in
vesicular transport, arginine biosynthesis, ascorbate and
aldarate metabolism, and the citrate cycle.
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Trends analysis was carried out using the earlier K-means
clustering method (figure 2 in electronic supplementary
material). In the significant profile 16, the gene expression
pattern was upregulated at 48 and 72 hpi but not at 24 hpi,
and was enriched in spliceosomes, RNA transport, and the
mRNA surveillance pathway (table 2). Figure 2 in electronic
supplementary material shows that the gene expression
pattern was steeply upregulated at 24 hpi, then returned to
normal levels as a control in the significant profile 18. These
genes were enriched in the biosynthesis of amino acids,
protein processing in the endoplasmic reticulum, carbon
metabolism, and the cysteine and methionine metabolism

pathway as shown in table 2. This indicates that the wheat
expresses genes to modulate transcripts underlying the stress
signal and dysregulation of amino acid metabolism.

PPI network construction for DEGs induced by Bgt stress

Although WGCNA analysis narrowed the range of genes
responding to Bgt infection, the priming or core control
genes/locus that trigger other defense-related and down-
stream genes was still difficult to determine. The main rea-
son is that a typical plant genome contains hundreds of

Figure 1. Developing the Bgt-induced specific gene module. (a) Correlation heat map between modules. Heat maps and eigengene
expression profiles for specific modules: (b) black, (c) darkolivegreen4, and (d) plum1 in inoculated leaves of N9134. Sample names are
given at the top of each panel. Heat maps show the relative normalized RPKM of each gene. The y-axis indicates the value of the module
eigengene; the x-axis indicates the sample type.
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Table 1. Significant KEGG enrichment pathway of genes involved in responses to Bgt using specific modules.

Pathway ID Pathway

Correction P value

Black Darkolivegreen4 Plum1

ko04931 Insulin resistance 0.00005*
ko04146 Peroxisome 0*
ko04145 Phagosome 0* 0.00887* 0.00350*
ko04144 Endocytosis 0*
ko04141 Protein processing in endoplasmic reticulum 0* 0*
ko04140 Regulation of autophagy 0.00019*
ko04130 SNARE interactions in vesicular transport 0*
ko03060 Protein export 0* 0.00017*
ko03050 Proteasome 0.01298* 0*
ko03040 Spliceosome 0*
ko03022 Basal transcription factors 0*
ko03018 RNA degradation 0*
ko03015 mRNA surveillance pathway 0*
ko03013 RNA transport 0*
ko03008 Ribosome biogenesis in eukaryotes 0*
ko01230 Biosynthesis of amino acids 0*
ko01220 Degradation of aromatic compounds 0.00582*
ko01212 Fatty acid metabolism 0*
ko01210 2-Oxocarboxylic acid metabolism 0*
ko01200 Carbon metabolism 0*
ko00970 Aminoacyl-tRNA biosynthesis 0*
ko00960 Tropane, piperidine and pyridine alkaloid biosynthesis 0.01484
ko00950 Isoquinoline alkaloid biosynthesis 0.00153*
ko00945 Stilbenoid, diarylheptanoid and gingerol biosynthesis 0.00002*
ko00941 Flavonoid biosynthesis 0.00842*
ko00940 Phenylpropanoid biosynthesis 0*
ko00920 Sulfur metabolism 0.03186
ko00904 Diterpenoid biosynthesis 0.00517*
ko00900 Terpenoid backbone biosynthesis 0.00121* 0.01946
ko00790 Folate biosynthesis 0.00117*
ko00770 Pantothenate and CoA biosynthesis 0.00999* 0.00698*
ko00760 Nicotinate and nicotinamide metabolism 0.00014* 0.00074*
ko00750 Vitamin B6 metabolism 0.03270
ko00740 Riboflavin metabolism 0.01592 0.03005
ko00670 One carbon pool by folate 0.04280
ko00650 Butanoate metabolism 0.00061*
ko00640 Propanoate metabolism 0.00004* 0.00116
ko00620 Pyruvate metabolism 0.00056* 0.00454*
ko00604 Glycosphingolipid biosynthesis - ganglio series 0.00067*
ko00603 Glycosphingolipid biosynthesis - globo series 0.01809
ko00600 Sphingolipid metabolism 0.00011* 0.00367*
ko00592 alpha-Linolenic acid metabolism 0.00644*
ko00531 Glycosaminoglycan degradation 0.00002*
ko00520 Amino sugar and nucleotide sugar metabolism 0*
ko00511 Other glycan degradation 0.00351*
ko00510 N-Glycan biosynthesis 0*
ko00480 Glutathione metabolism 0*
ko00450 Selenocompound metabolism 0.00008*
ko00410 b-Alanine metabolism 0.00031*
ko00400 Phenylalanine, tyrosine and tryptophan biosynthesis 0*
ko00360 Phenylalanine metabolism 0*
ko00350 Tyrosine metabolism 0.00021*
ko00340 Histidine metabolism 0.00013*
ko00310 Lysine degradation 0.03248
ko00300 Lysine biosynthesis 0.00016*
ko00280 Valine, leucine and isoleucine degradation 0.00394* 0*
ko00270 Cysteine and methionine metabolism 0*
ko00260 Glycine, serine and threonine metabolism 0.00001*
ko00250 Alanine, aspartate and glutamate metabolism 0.00629*
ko00232 Caffeine metabolism 0.04310

Gene co-expression network in wheat–Bgt interaction Page 5 of 12 44



NLR-encoding genes distributed in each chromosome, of
which many reside in complex clusters. Adversely, in clas-
sical genetics, most resistance genes are well known as a
monogenic control phenotype. Considering that the powdery
mildew resistance gene, a dominant genetic gene locus in
N9134, is located on the short arm of chromosome 5BL
(Xue et al. 2012), we further focussed on candidate genes on
5BL. A total of 780 hub genes located on chromosome 5BL
were upregulated at the transcript and/or protein level during
Bgt stress. Table 2 in electronic supplementary material
shows that the first quarter of these genes function in path-
ways involved in genetic information processing and regu-
lation, plant–pathogen interaction, and oxidative
phosphorylation. They include heat stress transcription fac-
tors, ribosomal protein S2, probable ubiquitin receptor
RAD23, and disease resistance proteins RPS2, RPM1 and
RPP13. Some genes involved in the peroxisome pathway
were also predicted as candidate genes, such as peroxisomal-
2-hydroxy-acid oxidase GLO1, pathogenesis-related protein
and subtilisin-like protease. Disease resistance protein RPS2
and DnaJ protein-like protein gene were detected with higher
connectivity than other hub genes, reaching 2881.7 and
2676.0, respectively.

To further investigate interactions among Bgt stress-in-
duced DEGs, the top 50% of high connectivity DEGs
predicatively clustered into plum1, darkolivegreen4 and
black modules were integrated with information from the
STRING database to construct a PPI network. Five inter-
action networks were predicted from 114 nodes proteins
with enrichment P values\ 1.03E-16 (figure 2; table 3 in
electronic supplementary material provided the supporting
information). Hsp70 was accompanied by DEAD/DEAH
box RNA helicase PRH75, elongation factor EF-2 (LOS),
cell division cycle 5, ARF guanine-nucleotide exchange
factor GNOM-like, cleavage/polyadenylation specificity
factor CPCF, AT4G25550-like protein, PCF11P-similar
protein, and protein phosphatase 2C 70 protein (KAPP) in
the powerful PPI network, which contained and interacted
with several receptor kinases such as cell wall-associated

kinase (WAK), disease resistance protein RPM1, RLP37,
RPP13, RPS2 (At4g26090), and AT5G46520 homologue.
Figure 3 shows the interaction between zinc-finger CCCH
domain-containing protein 16 with calmodulin-binding
transcription activator (CAMTA)2 (AT5G64220), CAMTA3
and cyclic nucleotide-gated ion channel 2 (DND1). More-
over, WPP domain protein 2 interacted with Hsp70, the
cysteine-rich receptor-like protein kinases (CRKs) interacted
with each other, and we predicted an interaction between
both of two CRKs with PP2C.

GO enrichment results showed that the PPI network was
significantly enriched in binding and catalytic activity for the
molecular function domain as shown in figure 3; table 4 in
electronic supplementary material, including ion binding, pro-
tein binding, ATP and ADP binding, and nucleotide binding.
For the cellular component domain, pathways involving the
intracellular membrane, plasma membrane and organelle
membrane were remarkably enriched in GO analysis, while the
organic substancemetabolic process, biological regulation, and
response to stimulus were significantly enriched in the biolog-
ical process domain. KEGGpathwayswere enriched inmRNA
surveillance andRNAtransport, suggesting thatwheat activates
the binding of functional genes via mRNA transcription
mechanisms to respond to Bgt pathogen stress.

Prediction of the powdery mildew resistance gene PmAS846
as a candidate gene

Previous work showed that PmAs846 was cosegregated with
AL819406, CJ694617 and CJ540214, which were flanked
by expressed sequence tag (EST) markers BJ261635 and
XFCP620 with a genetic distance of 2.3 cM (Xue et al.
2012). However, after we mapped all predicted gene and
EST marker sequences onto the reference genome of Chi-
nese Spring, the candidate gene PmAs846 was predicted to
be located in the physical region from 541,341,767 to
546,569,512 bp in chromosome 5B of Chinese Spring. We
further mapped all node genes onto the Chinese Spring

Table 1 (contd)

Pathway ID Pathway

Correction P value

Black Darkolivegreen4 Plum1

ko00220 Arginine biosynthesis 0.00840* 0.00043* 0.00290*
ko00130 Ubiquinone and other terpenoid-quinone biosynthesis 0.00066*
ko00100 Steroid biosynthesis 0.00042*
ko00072 Synthesis and degradation of ketone bodies 0.02357 0.02227 0.00019*
ko00071 Fatty acid degradation 0.00192* 0*
ko00053 Ascorbate and aldarate metabolism 0.00013* 0.00494*
ko00052 Galactose metabolism 0.00439*
ko00051 Fructose and mannose metabolism 0.00004*
ko00030 Pentose phosphate pathway 0*
ko00020 Citrate cycle (TCA cycle) 0.00084* 0*
ko00010 Glycolysis/gluconeogenesis 0*

Corrected-P values are given; those less than 0.01 are marked with asterisks.
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reference genome. Most of the aforementioned hub genes
are annotated outside the region, although many similar
proteins can be found here, such as cyclic nucleotide-gated
ion channel (CNGC)17, STRUBBELIG-receptor SRF8, and
wall-associated receptor kinase. However, ARF guanine-
nucleotide exchange factor GNOM-like gene, protein
phosphatase 2C 70 isoform X1 (PP2C), and transmembrane

9 superfamily member 9 gene (TM9SF9) were located in this
region, which were named GN, KAPP and At5G25100 in
the network, respectively. Considering that the limitation of
the protein in PPI database, we mapped the hub genes with
higher connectivity of WGCNA module as well. Several hub
genes of WGCNA were similarly mapped into this region,
such as mediator of RNA polymerase II transcription subunit

Figure 2. Interaction networks of related DEGs in plum1, darkolivegreen4, and black modules identified by WGCNA analysis. Protein–
protein interaction networks were constituted by String software in the Arabidopsis experiment or text mining databases. Purple lines
represent experimental evidence, green lines represent the gene neighbourhood, blue lines represent gene co-occurrence database evidence,
yellow lines represent text mining evidence, black lines represent co-expression evidence. Hsp70, heat shock protein 70; PRH75, DEAD/
DEAH box RNA helicase, LOS1; elongation factor EF-2; CDC5, cell division cycle 5; GN, ARF guanine-nucleotide exchange factor
GNOM-like; KAPP, protein phosphatase 2C 70 protein; RABA2c, RAB GTPase homolog A2C; CPSF100, cleavage and polyadenylation
specificity factor 100; At4g25550, cleavage/polyadenylation specificity factor CPSF6; PCFS, PCF11P-similar protein 4; GR-RBP2,
glycine-rich RNA-binding protein 2; At1g75340, zinc finger CCCH domain-containing protein 16; RLP37, receptor like protein 37;
RPL3B, R-protein L3 B; Y14, RNA-binding protein 8A. A description of the other nodes is given in table 1 in electronic supplementary
material.
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8 (MED8) isoform X2, NADPH-cytochrome P450 reductase
(CPR)-like and synaptic vesicle 2 related. Thus, these genes
are possible candidate genes of PmAS846.

To further evaluate the possibility of candidate genes, we
analysed three gene expression pattern comparing BC7F2
resistance with susceptible line, which differ only regarding
PmAS846 on chromosome 5BL. The expression profiles of
GNEF-5B, MED8X2-5B and CPRL-5B in the inoculated
resistant and susceptible plants are presented in figure 4.
Following the inoculation with Bgt, the accumulation of
three tested transcripts were 3.2, 5.1 and 2.6 times upregu-
lated in resistant plants at 36 hpi, respectively. The expres-
sion levels of GNEF-5B was 2.4 times upregulated in
susceptible plants at 24 dpi, while MED8X2 was 2.6 times
dysregulated at 36 and 72 hpi. Generally, the transcription
levels of GNEF, MED8X2 and CPRL were distinctly lower
in susceptible line than that in resistant line. This demon-
strated that the expression of GNEF-5B, MED8X2-5B, and
CPRL-5B homolog were induced and implicated in resis-
tance to powdery mildew.

Discussion

Plants have the capacity to initiate innate immune systems
that recognize the presence of potential pathogens and trig-
ger effective defense responses in the PAMP-triggered
immunity (PTI) and effector-triggered immunity (ETI)
pathways (Dodds and Rathjen 2010; Miller et al. 2017). PTI

was thought to be the first line of activating plant defense
and to trigger immediate defense responses leading to basal
or nonhost resistance (Miller et al. 2017; Nejat and Mantri
2017). However, PTI does not always fully restrict pathogen
proliferation, and can lead to a weak defense response
(Schwessinger and Ronald 2012). ETI is activated upon
recognition of highly variable microbial molecules (effec-
tors) and is often associated with a hypersensitive response
(HR). R genes encode resistance proteins that directly or
indirectly detect isolate-specific pathogen effectors encoded
by avirulence genes in phytopathology. Unfortunately, there
is not always a conceptually clear distinction between
PAMPs and effectors, and receptors blur the borderline
between PTI and ETI. Thus, knowledge of the plant immune
system remains incomplete despite considerable ongoing
scientific progress into pathogen sensing and plant immune
response mechanisms. Here, we identified several dozens of
related resistance genes including RLP, RPM1, RPS2, and so
on, which were reported as R genes in the ETI pathway
(Bouktila et al. 2015). However, the pathogen could not
seem break through the immune protective screen of the
leaves of N9134 because there have not any hypersensitive
cell death symptom after inoculation with Bgt. Additionally,
many models are valid in Arabidopsis but signalling may
occur differently in other plant species (Staal and Dixelius
2009). This hinted that both PTI and ETI may also be
involved together in pathogen defense because of differences
in the diversity of microbial species and fungal race viru-
lence in plants grown in the field.
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Figure 3. GO (molecular function) classifications of DEGs in Bgt-infected wheat leaves. DEGs were classified into the main modules and
located on 5BL.
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Wheat (Triticum aestivum L.) is one of the four major
cereal grains, but its growth and production are severely
affected by pathogens in wheat growing areas worldwide. In
practice, the same wheat variety may preform differential
resistance levels to different races, including perfect
immune, robust HR, middle HR, and susceptible due to
gene-for-gene. This makes the ‘resistance’ question more
complex for important crop plants. In the present study, we
used the triplicate RNA-seq database in leaves of the wheat
immune resistance line N9134 inoculated with Bgt to
attempt to understand the resistance mechanism to Bgt using
WGCNA methods. We found that cochaperones, transcrip-
tion regulator genes and disease resistance genes were
together involved in the wheat defense network, although the
interaction net should be further tested in future studies.
These findings indicate that R genes were not functioning
alone in the resistance phenotype, but instead aided the
regulatory mechanism. In wheat, three chromosome sets
function together, but the most specific resistance pheno-
types are thought to involve a single gene loci controller in
classical genetics. Adversely, many genes, especially R gene
analogues, were shown to have undergone tandem duplica-
tion or multicopy characterization (Baggs et al. 2017;
IWGSC 2018). Additionally, around 12% of genes undergo
alternative splicing transcription (Zhang et al. 2019b). Taken
these results together, we can inferred that the resistance
phenotype is a systemic syndrome, which could balance the
confusion on the perception of R genes between genetics and
phytopathology.

Some key node genes identified in the present study are
very similar to those that function in the response of wheat to
stripe rust pathogen (Zhang et al. 2019a), although the
activated genes are different. For example, the serine/thre-
onine-protein phosphatase PP2A, CNGC2, and calmodulin-
binding transcription activator 2 (CAMTA) were implicated
in protecting wheat seedlings from infection by Bgt. Serine/
threonine protein phosphatases PP1 and PP2A were shown
to play key roles in apoptosis, which is a genetically pro-
grammed form of cell death (Garcia et al. 2003). The

‘defense, no death’ (dnd1) phenotype is caused by mutation
of the gene encoding AtCNGC2, which directly participates
in the calcium influx pathogen response signalling cascade
and mediates the initiation of cell death programmes during
plant defense responses to pathogens (Jurkowski et al.
2004). CAMTA is a small transcription factor family with a
broad range of functions in response to environmental stress
that regulates the expression of downstream genes in plants
(Liu et al. 2015; Rahman et al. 2016). In the present study,
the CAMTA2 homologue TraesCS5B02G521200 showed
high connectivity with a value of 2362.43 in the WGCNA
net and was partially similar to protein phosphatase 2C.

WAKs are receptor-like protein kinases in plant cell walls
which have the ability to transmit signals using their cyto-
plasmic serine/threonine kinase domains (Anderson et al.
2001). They are primarily involved in regulating cell
expansion and pathogen responses, and also protect plants
from detrimental effects depending upon the state of pectin
(Kohorn 2016). Recently, the disease resistance function of
ZmWAK that confers quantitative resistance to head smut
was reported (Zuo et al. 2015), while two WAK like genes,
XA4 and Stb6, conferred race-specific resistance to Xan-
thomonas oryzae pv. oryzae (Xoo) and Zymoseptoria tritici,
respectively (Ning et al. 2017; Saintenac et al. 2018). Here,
the WAK protein identified in the plum1 module with a high
connectivity value of 1583.83 was predicted to be a sub-
centre node protein interacting with RLP37, RPM1 and
RPS2. However, the aforementioned hub genes and
acknowledged R genes are annotated outside the genetic
region of PmAS846 flanked by BJ261635 and XFCP620
(Xue et al. 2012) with a distance of 4.8 Mb (IWGSC 2018).
Adversely, GNOM-like gene, PP2C isoform X1, and the
TM9SF9 gene were located in this region, so are more likely
candidate genes of PmAS846 than RPM1, RPP13 and RPS2.
These findings stress the fact that resistance genes should be
diversified beyond leucine-rich repeat-type genes (Maekawa
et al. 2011) such as NLR helper (including but not limited to
NLRs) ADR (Bonardi et al. 2011), caffeoyl-CoA
O-methyltransferase ZmCCoAOMT2 (Yang et al. 2017),

Figure 4. Gene expression patterns of GNEF, MED8X2 and CPRL in resistance and susceptible lines infected by Bgt pathogen. Gene
expression levels were assessed by qRT-PCR at 6, 12, 24, 36, 48, 72 and 96 hpi. Data were normalized to the Actin expression level. The
mean expression value was calculated from three independent replicates, and the standard deviation was given at each time points. The
dotted line indicated the uninfected controls at the same time points. The corresponding name of genes are listed on top of each panel. R and
S represent gene expression in resistance and susceptible line respectively.
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C2H2-type transcription factor bsr-d1 (Li et al. 2017), and
actin-depolymerizing factor TaADF7 (Fu et al. 2014). Taken
together, our findings suggest another possible function of R
genes in the specific activation or modulation of defense
pathways including quality and/or quantitative trait loci/ge-
nes; this may occur through several genes or gene clusters in
resistant plants.

In conclusion, in this study, we reveal the immense
complexity of the mechanisms underlying the responses of
wheat to powdery mildew. We performed a transcriptome
WGCNA analysis of RNA-seq data and identified three co-
expressed gene modules. The sample-specific expressed
genes in the biggest module were mainly enriched in
spliceosomes, peroxisomes, the mRNA surveillance path-
way, RNA transport and degradation. Genes in the black
module were enriched in phagosomes, biosynthesis/meta-
bolism of amino acids, protein processing in the endoplas-
mic reticulum, and protein export, while the darkolivegreen4
module consisted of genes enriched in proteasomes, ribo-
somes, phagosomes, endocytosis, N-glycan biosynthesis,
sphingolipid metabolism, and SNARE interactions in
vesicular transport. Further, predicted PPI networks from the
STRING database substantiated Hsp70, PRH75, LOS,
CDC5, GNOM-like, CPCF and KAPP as key hub nodes
involved in mRNA surveillance, RNA transport, genetic
information processing and regulation, plant–pathogen
interaction, and oxidative phosphorylation pathways. Three
protein-coding genes induced in chromosome 5BL were
identified as potential candidates for Bgt resistance. This
study provides important insights into the molecular net-
works underlying the mechanism of wheat defense against
Bgt, while the methodology here can also be used as a ref-
erence to narrow down the field of potential key resistance
genes using omics and multi-discipline-associated analyses.
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