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Abstract. Genetic information of polymerase chain reaction (PCR)-based markers, one of the main tools of genetics and genomics
research in wheat, have been well documented in wheat. However, the physical position in relation to these markers has not yet
been systematically characterized. Aim of this study was to characterize the physical information of thousands of widely used
molecular markers. We first assigned 2705 molecular markers to wheat physical map, of which 86.1% and 84.7% were the best hits to
chromosome survey sequencing (CSS) project (CSS-contigs) and International Wheat Genome Sequencing Consortium Reference
Sequence v1.0 (IWGSC RefSeq v1.0), respectively. Physical position of 96.2% markers were predicated based on BLAST analysis,
were in accordance with that of the previous nullisomic/aneuploidy/linkage analysis. A suggestive high-density physical map with
4643 loci was constructed, spanning 14.01 Gb (82.4%) of the wheat genome, with 3.02 Mb between adjacent markers. Both forward
and reverse primer sequences of 1166 markers had consistent best hits to IWGSC RefSeq v1.0 based on BLAST analysis, and the
corresponding allele sizes were characterized. A detailed physical map with 1532 loci was released, spanning 13.93 Gb (81.9%) of
the wheat genome, with 9.09 Mb between adjacent markers. Characteristic of recombination rates in different chromosomal regions
was discussed. In addition, markers with multiple sites were aligned to homoeologous sites with a consistent order, confirming that
a collinearity existed among A, B and D subgenomes. This study facilitates the integration of physical and genetical information
of molecular markers, which could be of value for use in genetics and genomics research such as gene/QTL map-based cloning and
marker-assisted selection.

Keywords. wheat; molecular markers; polymerase chain reaction; physical map; genetical map.

Introduction

Molecular markers play important roles in wheat genetic
and genomic study, such as gene tagging/cloning (Gupta
et al. 2008; Zhang et al. 2017), marker-assisted selec-
tion (MAS) (Varshney et al. 2007; Gupta et al. 2010),
genome structure and evolution study (Gupta et al.
2008; Feldman and Levy 2012). PCR-based markers are
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timesaving, cost-effective and easy to use, to achieve much
higher throughput analysis in the selection of DNA mark-
ers. Consequently, PCR-based markers have become one
of the main tools for wheat genetic and genomic analyses
(Harushima et al. 1998; Ishikawa et al. 2007; Cui et al.
2014, 2017). Various PCR-based markers, such as ampli-
fied fragment length polymorphism (AFLP), randam
amplified polymorphism DNA (RAPD), genomic-simple
sequence repeat (g-SSR), expressed sequence tag (EST)-
SSR and sequence-tagged site (STS)-PCR have been used
to construct genetic and cytological chromosome maps
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of wheat (Röder et al. 1995, 1998; Messmer et al. 1999;
Paillard et al. 2003; Sourdille et al. 2003, 2004; Xue et al.
2008). Of these, g-SSR and EST-SSR are the most stable
and usually inherited in a codominant Mendelian manner.
As compared to any other molecular markers, SSR mark-
ers are most useful for marker-assisted selection (MAS)
in breeding programmes due to their hypervariability and
ease of handling (Röder et al. 1995). ESTs represent partial
complementary DNA (cDNA) sequences from expressed
genes. In addition to EST-SSR markers, EST-derived STS
(STS-PCR) have also been extensively explored in cereal
crops including wheat (Qi et al. 2004; Xue et al. 2008).

To date, numerous studies regarding quantitative trait
locus (QTL) mapping of biologically or agronomically
important traits based on g-SSR, EST-SSR and STS-PCR
markers have been documented in wheat (Anderson et al.
2001; Cui et al. 2014, 2017). Most of these studies were
conducted based on different mapping population with
distinct population sizes. In addition, common molecu-
lar markers among different studies are limited, which
makes it difficult to integrate different maps into a con-
sensus integrative map (Somers et al. 2004; Francki et al.
2009). All these limitations hampered the comparison
of common QTL across different mapping populations.
Moreover, density, coverage and resolution of current
genetic maps are less than satisfactory, especially around
the centromeric regions where the recombination events
tend to be suppressed (Sourdille et al. 2004; Cui et al.
2017). Compared with genetic mapping information, phys-
ical mapping information of molecular markers is the
authentic rather than the relative position, which is of
great value in genetic and genomic study especially in gene
tagging. Previously, most of the wheat molecular mark-
ers were assigned to a physical position by nullisomic–
tetrasomic (NT) or deletion lines due to the lack of
reference genome sequence (Kota et al. 1993; Mickelson-
Young et al. 1995; Sorrells et al. 2003; Sourdille et al.
2004). Such physical maps cannot meet the requirements
of some further genetic and genomic research such as
gene map-based cloning. Wheat genomics research is lag-
ging behind with most of the other important crops such
as rice and maize etc. due to the large genome size (17
Gb), hexaploid nature (AABBDD) and high percentage
of repetitive regions. However, a rapid progress has been
made in the recent five years in wheat genomic research
(Jia et al. 2013; Ling et al. 2013, 2018; Mayer et al.
2014; Choulet et al. 2014; Luo et al. 2017; Zhao et al.
2017). The genome assembly of Triticum aestivum cv. Chi-
nese Spring (CS) (https://urgi.versailles.inra.fr/download/
iwgsc/IWGSC_RefSeq_Assemblies/v1.0/) and the IWGSC
RefSeq v1.0 (the first version of the reference sequence of
the bread wheat variety CS) (https://urgi.versailles.inra.fr/
download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/) ass-
embly have been released. These genomic sequence
resources facilitate the mapping of molecular markers
to physical map in detail. The aim of this study was to

characterize the information on physical position of 2705
widely used PCR-based markers and evaluate their poten-
tial use in genetic and genomic research. This study is
expected to facilitate the integration of physical and genet-
ical information of molecular markers, which is of great
value in further genetics and genomics research.

Materials and methods

Primer sequence information for 2705 PCR-based molecular
markers

A total of 2705 PCR-based molecular markers were used
in this study. These molecular markers included g-SSR,
EST-SSR and STS-PCR markers. Of these, the rele-
vant primer sequence information for g-SSR markers,
including USDA-ARS Beltsville Agricultural Research
Center (BARC), Clermont Ferrand A-genome (CFA),
Clermont Ferrand D-genome (CFD), Clermont Ferrand
3B-chromosome (CFT), Gatersleben Wheat Microsatellite
(GWM), Gatersleben D-genome Microsatellite (GDM),
SSR markers developed and mapped by Génoplante
(GPW), Wheat Microsatellite Consortium (WMC) and
Markers from P. Stephenson (PSP) codes, as well as PCR-
based STS markers of the markers of applied genomics
(MAG) code were taken from the Grain Genes web-
site (http://wheat.pw.usda.gov). Relevant primer sequence
information about EST-SSR markers prefixed Clermont-
Ferrand EST-SSR (CFE), Kansas State University
Microsatellite (KSUM) and Microsatellite developed in
Conell University Laboratory (CNL) are publicly avail-
able (http://wheat.pw.usda.gov/ITMI/EST-SSR/). Primer
sequence information for EST-SSR markers of SDAU
Wheat EST-SSR (SWES) and randomly named (ww)
codes were kindly provided by Prof. Sishen Li, College
of Agronomy, Shandong Agricultural University, China.
Primer sequences of EST-SSR markers with the prefixes
Colorado wheat EST-derived microsatellite (CWEM),
EST-derived microsatellite (EDM) and wheat microsatel-
lites derived from cDNAs (CWM) were published in
reference articles by Peng and Lapitan (2005), Mullan et al.
(2005) and Gao et al. (2004), respectively. Genetic position
information for these markers was taken from the corre-
sponding web sites and/or references.

Basic local alignment search tool (BLAST) analysis against
wheat genome

We used the BLAST (ftp://ftp.ncbi.nlm.nih.gov/) to align
the PCR-based marker probes to the contigs assem-
bled in the chromosome survey sequencing (CSS) project
(CSS-contigs), with an aim to determine the chromoso-
mal arms of the markers. All CSS-contigs were down-
loaded from http://www.wheatgenome.org/. The databases
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of CSS-contigs of the 21 wheat chromosomes were divided
into three groups which describe A, B and D genomes,
respectively. Both forward and reverse primer sequences
of each PCR-based marker were used for BLAST analysis
against these three databases, respectively. Further BLAST
analysis against the genome assembly of T . aestivum
cv. CS (IWGSC RefSeq v1.0; https://urgi.versailles.inra.fr/
download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/) was
performed to obtain their physical locations. As mentioned
above, databases of the IWGSC RefSeq v1.0 were divided
into three groups which describe A, B and D genomes,
respectively. Both forward and reverse primer sequences
of each PCR-based marker were used for BLAST analysis
against these three databases, respectively. An expectation
value (E) of 1E-3 was used as the significance thresh-
old. A suggestive high-density physical map was released
based on BLAST analysis against IWGSC RefSeq v1.0
using the forward and/or reverse primer sequences as
queries. A detailed physical map was released using mark-
ers with consistency physical position in BLAST analysis
based on both forward and reverse primer sequences
as queries. MapChart 2.2 (http://www.biometris.nl/uk/
Software/MapChart/) was used to draw the physical and
genetic maps.

Results

General genetic information of the 2705 PCR-based markers

The 2705 PCR-based markers fall into three categories,
1140 were g-SSR markers, 1220 were EST-SSR mark-
ers, and 345 were STS-PCR-based markers. All primer
sequence information has been listed in table 1 in elec-
tronic supplementary material at http://www.ias.ac.in/
jgenet. Genetic information of all the 1140 g-SSR mark-
ers has been previously reported (http://wheat.pw.usda.
gov; Somers et al. 2004) of these, 1039 were reported to
be locus-specific that were mapped to a certain unique
chromosome; 101 were reported to be assigned on more
than one chromosomes, 72.3% of which were assigned to
homoeologous sites. To our knowledge, the genetic infor-
mation for 455 EST-SSR of the 1220 markers are avail-
able (http://wheat.pw.usda.gov; http://wheat.pw.usda.gov/
ITMI/EST-SSR/; Gao et al. 2004; Mullan et al. 2005; Peng
and Lapitan 2005) of which, 281 were locus-specific that
were mapped to a unique chromosome; 174 were reported
to be assigned on more than one chromosomes, and of
which 66.7% were assigned to homoeologous chromo-
somes. All the 345 STS-PCR markers have been mapped
to wheat chromosomes based on linkage/nullisomic analy-
sis (http://wheat.pw.usda.gov) of which, 308 were assigned
to a unique wheat chromosome as locus-specific markers;
37 were reported to be assigned on more than one chro-
mosomes, of which 45.9% were assigned to homoeologous
sites.

Figure 1. Number of markers assigned to CSS-contigs based on
forward and reverse primer sequences, respectively. The abscissa
represents the wheat subgenome in which the corresponding
markers were located, and the ordinate represents the number
of markers.

Assignment of 2705 PCR-based marker probes to the
CSS-contigs

Using 2705 forward primer sequences as queries, BLAST
analysis against the three databases of CSS-contigs was
performed (table 1 in electronic supplementary material).
The results showed that 1316, 1371 and 1386 markers
were assigned to chromosomes of wheat A, B and D
genomes, respectively (figure 1). A total of 683 markers
were assigned to A, B and D genomes simultaneously,
310, 61, 95 and 87 of which were assigned to homoe-
ologous chromosomes of A–B–D (e.g., 2AL_6366997,
2BL_7950323 and 2DL_9909165 for BE404098-2A), A–B
(e.g., 3AS_3440701, 3B_10730855 and 4DL_14163974 for
Xbarc147-3BS), B–D (e.g., 5AL_2792085, 4BL_6881842
and 4DL_14470349 for Xksum245) and A–D (e.g.,
3AL_4291626, 5BL_10845438 and 3DL_6926940 for
Xbarc1060-3A) genomes, respectively (figure 2). In addi-
tion, 130 markers were assigned to chromosomes of
A, B and D genomes in disorder (e.g., 4AL_7061052,
5BS_2278815 and 6DL_1043317 for BE517017-4A). A
total of 171, 231 and 200 markers, respectively, were
assigned to pairwise chromosomes of A–B, A–D and B–D
genomes simultaneously; 53.2%, 68.4% and 61.0% of these
markers were assigned to homoeologous chromosomes of
A–B (e.g., 3AL_4338880 and 3B_10424015 forXbarc1044-
3A/3B), A–D (e.g., 5AL_1602962 and 5DL_4307567 for
Xcfe16-5D) and B–D (e.g., 2BL_8039964 and 2DL_
9794606 for Xcinau180-2B/2D) genomes; the remaining
markers were assigned to pairwise chromosomes of A–
B (e.g., 7AL_4557926 and 6BS_779935 for Xcwm42),
A–D (e.g., 7AL_4557920 and 2DS_5318891 forXgwm261-
2D) and B–D (e.g., 2BL_5745690 and 7DL_3387755
for Xmag892-7D) genomes, randomly. Moreover, 231,
317 and 272 markers were assigned to unique chro-
mosome of A (e.g., 7AL_2454499 for Xbarc029-7AL),
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Figure 2. Genome distribution of markers that have been
assigned to CSS-contigs based on forward and reverse primer
sequences, respectively. The abscissa represents the wheat
subgenome in which the corresponding markers were located,
and the ordinate represents the number of markers.

B (e.g., 7BS_3068985 for Xbarc072-7BS), or D (e.g.,
5DL_4529348 for Xcfe27-5A/5B/5D) genomes.

Using 2705 reverse primer sequences as queries, BLAST
analysis against the three databases of CSS-contigs was
performed again (table 1 in electronic supplementary mate-
rial). A total of 1328, 1368 and 966 markers were assigned
to chromosomes of wheat A, B and D genomes, respec-
tively (figure 1). Of these, 500 were assigned to A, B and D
genomes simultaneously, 277, 30, 56 and 45 were assigned
to homoeologous sites of A–B–D (e.g., 5AL_2795946,
5BL_10823191 and 5DL_4499420 for BE794904-5A/5B),
A–B (e.g., 3AS_3435153, 3B_10656454 and 4DL_
14330503 for Xcnl125), B–D (e.g., 4AL_7162314,
1BS_3483987 and 1DS_1913693 for Xcwm70) and A–D
(e.g., 7AL_4553763, 2BL_8041131 and 7DL_3313587 for
Xedm142-2AS/2DS/4AL/4BS/4DS/7BL/7DS) genomes,
respectively (figure 2). In addition, 92 markers were
assigned to chromosomes of A, B and D genomes in disor-
der (e.g., 3AL_4286564, 1BS_3450042 and 2DL_9848697
for Xgdm87-2D). A total of 351, 143 and 141 markers,
respectively, were assigned to pairwise chromosomes of A–
B, A–D and B–D genomes simultaneously; 55.0%, 67.8%
and 67.4% of these markers were assigned to homoe-
ologous chromosomes of A–B (e.g., 3AL_4341827 and
3B_10763162 for Xgwm340-3B), A–D (e.g., 5AL_1164146
and 5DS_2722709 for Xgwm358-5D) and B–D (e.g.,
7BL_6697023 and 7DL_3370690 forXksum198) genomes;
the remaining markers were assigned to pairwise chromo-
somes of A–B (e.g., 4AS_5945307 and 3B_10756713 for
Xcau9-1-4B), A–D (e.g., 5AS_854549 and 6DL_2258032
for Xcfd189-5D) and B–D (e.g., 5BL_10793809 and
6DL_3230782 forXcfd287-6D) genomes randomly. More-
over, 334, 376 and 182 markers were assigned to unique
chromosome of A (e.g., 5AL_1954377 forXcfe069), B (e.g.,
4BL_7041683 for Xcfe046), or D (e.g., 6DS_1580594 for
Xcfd13-6B/6D) genomes.

In total, 2330 (86.1%) of the 2705 markers have been
assigned to CSS-contigs, 1002 of which were verified by
blast analysis based on both forward and reverse primer
sequences as queries (table 2 in electronic supplemen-
tary material). Of these, 39 were assigned to ternate
homoeologous chromosomes of A–B–D, simultaneously
(e. g., 7AS_4244756, 7BS_3162040 and 7DS_3956966 for
Xedm34-7BS); 154 were assigned to diploid homoeologous
chromosomes of A–B/A–D/B–D genomes, simultaneously
(e.g., 2AS_5307484 and 2BS_5246378 for Xmag4094-
2B); 809 were assigned to an unique chromosome of
A/B/D genomes (e.g., 7AL_4552970 for Xmag4134-7A;
6BL_4335220 for Xswes1-6B; 1DS_1519366 for Xcfd61-
1D).

Alignment of the PCR-based marker probes to IWGSC RefSeq
v1.0

Using 2705 forward primer sequences as queries, we con-
ducted BLAST analysis against the three databases of
IWGSC RefSeq v1.0 (table 1 in electronic supplementary
material). The results showed that 1161, 1251 and 1177
markers were aligned to the wheat chromosomes of A,
B and D genomes, respectively (figure 3). A total of 552
markers were assigned to A, B and D genomes simultane-
ously, 390, 86, 41 and 29 of which were assigned to homoe-
ologous chromosomes of A–B–D (e.g., chr2A656241766,
chr2B602764294 and chr2D512687689 for BE404098-
2A), A–B (e.g., chr1A115006037, chr1B199487268 and
chr2D129818690 for Xcfd17-2D), B–D (e.g.,
chr5A661148272, chr4B610563857 and chr4D481548817
for Xcfd39-5A) and A–D (e.g., chr2A656241939,
chr1B332585855 and chr2D512687872 for Xksum146)
genomes, respectively (figure 4). In addition, 92 markers
were aligned to chromosomes of A, B and D genomes
in disorder (e.g., chr4A313375423, chr2B373755829 and
chr5D5597846 for Xcfd183-5D). A total of 186, 150 and
154 markers, respectively, were assigned to pairwised
chromosomes of A–B, A–D and B–D genomes simul-
taneously; 67.2%, 75.3% and 73.4% of these markers
were assigned to homoeologous chromosomes of A-B
(e.g., chr6A20248916 and chr6B34217980 for Xcfd13-
6B/6D), A-D (e.g., chr5A562895693 and chr5D445321992
for Xcfd12-5D) and B–D (e.g., chr6B646268602 and
chr6D429073436 for Xbarc204-6DL/6AL) genomes; the
remaining markers were assigned to pairwise chromo-
somes of A–B (e.g., chr7A438170786 and chr6B17721589
for Xcwm42), A–D (e.g., chr7A714684018 and
chr2D19623173 for Xgwm261-2D) and B–D (e.g.,
chr2B798058352 and chr4D499405457 for Xgwm265-2A)
genomes randomly. Additionally, 258, 315 and 362 mark-
ers were assigned to an unique chromosome of
A (e.g., chr5A205213643 for Xgwm129-2B/5A), B (e.g.,
chr1B684861788 for Xgwm140-1B), or D (e.g.,
chr3D7094923 for Xgwm161-3D) genome.
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Figure 3. Number of markers assigned to IWGSC RefSeq v1.0
based on forward and reverse primer sequences, respectively. The
abscissa represents the wheat subgenome in which the corre-
sponding markers were located, and the ordinate represents the
number of markers.

Figure 4. Genomic distribution of markers that have been
assigned to IWGSC RefSeq v1.0 based on forward and reverse
primer sequences, respectively. The abscissa represents the wheat
subgenome in which the corresponding markers were located,
and the ordinate represents the number of markers.

The 2705 reverse primer sequences were used as queries
to perform BLAST analysis against the three databases of
IWGSC RefSeq v1.0 (table 1 in electronic supplementary
material). A total of 1209, 1247 and 1341 markers were
aligned to the wheat chromosomes of A, B and D genomes,
respectively (figure 3). Of these, 652 were assigned to A,
B and D genomes simultaneously; 450, 43, 54 and 35 of
which were assigned to ternate homoeologous chromo-
somes of A–B–D (e.g., chr4A51139015, chr4B509036280
and chr4D412716679 for Xgwm165-4D), diploid homoe-
ologous chromosomes of A–B (e.g., chr5A637056686,
chr5B640401877 and chr2D155414883 forXksum242), B–
D (e.g., chr4A605665638, chr5B709423235 and
chr5D557181863 for Xksum177) and A–D (e.g.,
chr1A229288898, chr5B191820848 and chr1D310466472
for Xwmc278-1A), respectively (figure 4). Concerning
markers aligned to pairwise chromosomes, 75 of the
126, 116 of the 173 and 116 of the 173, respectively,
were assigned to homoeologous chromosomes of A–B
(e.g., chr2A197790820 and chr2B239195435 for Xww104),

A–D (e.g., chr3A739613471 and chr3D607167914 for
Xmag896-3A) and B–D (e.g., chr5B6654357 and
chr5D5170389 forXmag705-5B) genomes simultaneously.
Moreover, 258, 315 and 362 markers were assigned to
unique chromosome of A (e.g., chr5A417896057 for
Xmag3794-5A), B (e.g., chr1B660879874 for Xmag322-
1B), or D (e.g., chr5D528215209 for Xksum153) genomes.

In total, 2290 (84.7%) of the 2705 markers have been
assigned to the IWGSC RefSeq v1.0, 1166 of which
were verified by BLAST analysis based on both for-
ward and reverse primer sequences (table 3 in electronic
supplementary material). Of these, 83 were assigned to
ternate homoeologous chromosomes of A–B–D, simul-
taneously (e.g., chr4A453604987, chr4B184233671 and
chr4D121432813 for Xcwem35-4BS/4AL/4DS); 209 were
assigned to diploid homoeologous chromosomes of A–
B/A–D/B–D, simultaneously (e.g., chr2B659532169 and
chr2D553728845 for Xcfd73-2B/2D); 874 were assigned
to an unique chromosome of A/B/D genomes (e.g.,
chr7A434548295 for Xpsp3050-7A; chr3B818390587 for
Xpsp3001-3B; chr2D130832852 for Xwmc18-2D).

The 1166 PCR-based markers that were verified by
BLAST analysis based on both forward and reverse primer
sequences were aligned to the wheat physical map (figure 5;
tables 1 & 4, and figure 1 in electronic supplementary mate-
rial). Of these, 534 were g-SSR markers, 450 were EST-SSR
markers and 182 were STS-PCR-based markers. A total of
292 markers were aligned to multiple chromosomes, 95.2%
of which were aligned to homoeologous sites (figure 6;
figure 2 in electronic supplementary material). The inte-
grative physical map covered 13927.4 Mb with 4893.7 Mb
(35.1%) for the A genome, 5106.9 Mb (36.7%) for the B
genome, and 3926.8 Mb (28.2%) for the D genome. Most
markers were mapped to the D (37.1%) and B genomes
(32.6%), with an average of 81.1 and 71.4 markers per
chromosome, respectively. The remaining markers (30.3%)
were mapped to the A genome, with an average of 66.3
markers per chromosome. Chromosome 6D had the high-
est level of marker average density with one marker per
6.21 Mb, whereas chromosome 6B had the lowest with
an average of 17.1 Mb between adjacent loci. Moreover,
orders of common markers in the physical map were gen-
erally in accordance with that of the genetic map reported
by Somers et al. (2004) (figure 5; figure 1 in electronic sup-
plementary material). In addition, markers with multiple
sites were aligned to homoeologous sites with a consistent
order, indicating that collinearity existed among A, B and
D subgenomes of wheat (figure 6; figure 2 in electronic
supplementary material).

Discussion

Genetic and physical location of PCR-based marker

To date, many PCR-based molecular markers have been
physically and genetically mapped based on nullisomic/
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Figure 5 continued.
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Figure 5 continued.
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Figure 5. Detailed physical map of the markers that were verified by blast analysis based on both forward and reverse primer
sequences and the syntenic relationship between physical and genetic (Somers et al. 2004) positions (group 1 of chromosomes 1A, 1B
and 1D). The left map numbered ‘-1’ is the physical map, and the right map numbered ‘-2’ is the high-density consensus integrative
genetic map reported by Somers et al. (2004). Green dashed lines connect common loci mapped in both physical and genetic map.

aneuploidy/linkage analysis (Röder et al. 1998; Sourdille
et al. 2003, 2004; Somers et al. 2004; Song et al. 2005;
Torada et al. 2006; Li et al. 2007; Francki et al. 2009;
Gadaleta et al. 2009; Cui et al. 2014, 2017). In total,
71.7% of the 2705 PCR-based markers reported here have
previously been genetically mapped to their correspond-
ing chromosomes, which facilitate their use in genetic

analysis and molecular breeding programmes. However,
comparison of genetic positions between studies have iden-
tified ambiguities because of the use of distinct mapping
population sizes, various molecular marker types, differ-
ent mapping functions, etc. Combining single population
genetic maps into a consensus map can resolve disagree-
ments in marker order and distances to some extent. This
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Figure 6. Synteny relationship among homoeologous chromosomes based on multiple site markers (group 2 of chromosomes 2A,
2B and 2D). Green dashed lines connect orthologous loci mapped in homoeologous chromosomes.
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approach was taken by Somers et al. (2004) who joined
four genetic maps into a single consensus map, which
resulted in a comprehensive analysis of marker order and
distance of DNA markers. As we all known that genetic
map construction is conducted based on linkage analysis.
Recombination rates between loci varied greatly in dif-
ferent chromosomal regions, which complicate the unit
conversions between genetic and physical distance (Sour-
dille et al. 2003, 2004; Torada et al. 2006; Cui et al. 2014).

Physical mapping information of molecular markers is
of great value in genetic study especially in map-based
cloning study. Previously, most markers were assigned to
a physical position by NT and deletion lines (Kota et al.
1993; Mickelson-Young et al.1995; Qi et al.2004; Sourdille
et al. 2004; Gupta et al. 2008). Such physical maps remain
too rough to meet with the demand of some further genetic
analysis such as map-based cloning. Recently, the genome
assembly of CS and the IWGSC RefSeq v1.0 assem-
bly are now available. We first assigned 2330 PCR-based
molecular markers to CSS-contigs, 1002 of which were ver-
ified by blast analysis based on both forward and reverse
primer sequences (table 2 in electronic supplementary
material). Moreover, 2290 PCR-based molecular mark-
ers have been assigned to the IWGSC RefSeq v1.0, 1166
of which were verified by BLAST analysis based on both
forward and reverse primer sequences as queries (table 3
in electronic supplementary material). The corresponding
physical position information is of great value for their use
in targeting additional markers in specific chromosomal
regions for fine mapping and map-based clone of a certain
QTL. Moreover, physical position information facilitate
the integration of some QTL results from separate studies
via meta-analysis, thus to determine reliable markers that
can be implemented in the context of MAS programmes.

A total of 86.1% and 84.7% of the 2705 markers could
be best hits to CSS-contigs and IWGSC RefSeq v1.0
based on primer sequences, respectively, only 37.0% and
43.1 of which could be verified by BLAST analysis based
on both forward and reverse primer sequences. These
results might be attributed to a fact that many gaps exist
in the present reference sequence. In addition, the short
queried sequences, chromosomal rearrangement, and the
nonspecificity of primer design (e.g., the addition of an
untemplated G–C clamp to the 5′-end of primers forXbarc
series markers, Song et al. 2005) might also result in the
failure of aligning markers to CSS-contigs and IWGSC
RefSeq v1.0. It is worth mentioning that physical posi-
tion of the 96.2% markers predicated based on BLAST
analysis were in accordance with that of the previous
nullisomic/aneuploidy/linkage analysis, no matter if it was
based on one or two primer sequences as a query (figure 7;
figure 3 and table 1 in electronic supplementary mate-
rial). This finding indicated that most, if not all, of the
physical position information listed in table 5 in electronic
supplementary material are referable for further genetic
and genomic research. A suggestive high-density physical

map with 4643 loci was constructed, spanning 14.01 Gb
(82.4%) of the wheat genome with 3.02 Mb between adja-
cent markers (figure 3; table 2 in electronic supplementary
material).

Comparison of the present physical map with previous genetic
map

A high-density microsatellite consensus map with 1235
microsatellite loci was constructed by Somers et al. (2004).
Five hundred and nine (43.7%) of the 1166 physical-
mapped markers in the present study had previously been
documented by Somers et al. (2004). The marker order in
the present physical map was in good agreement with that
of the genetic map, with the exception of chromosome 4B,
in which an inversion relationship between physical and
genetical map was identified (figures 5&8; figure 1 in elec-
tronic supplementary material). This consistency not only
confirmed the authenticity and credibility of the physical
position released here but also facilitate the integration of
physical and genetic information.

The comparison of genetic distance with the corre-
sponding physical distances between adjacent markers
allowed estimation of information about variations in
recombination frequencies and cryptic structural changes
(if any) in different regions of individual chromosomes
(Gupta et al. 2008). In wheat, a majority of the recom-
bination events occurred on the most distal portions of
the chromosomal arms, whereas the recombination events
tend to be suppressed around the centromere (Sourdille
et al. 2003, 2004; Torada et al. 2006; Cui et al. 2014). These
characteristics result in a low resolution of the genetic
map in the centromeric region, which was evident in the
small genetic distance in the genetic map corresponding to
a large physical region around the centromere compared
with the most distal portions of the chromosomal arms
(figure 5; figure 1 in electronic supplementary material).
A comparison of the present physical map with previ-
ously published genetical map confirmed this conclusion
(Somers et al. 2004). For example, a 2-cM genetic distance
of Xcfd36-Xgwm512 on most distal portions of chromo-
some 2AS corresponds to 4.2 Mb in physical distance,
with 1 cM corresponding to 2.1 Mb; a 2-cM genetic dis-
tance of Xgwm372-Xwmc261 on chromosome 2A nearby
centromere corresponds to 45.3 Mb in physical distance,
with 1 cM corresponding to 22.7 Mb. The present study
indicates that the unit conversions between genetical and
physical distance varied greatly in different wheat chromo-
somal region. Moreover, much less available markers were
distributed in the centromeric region than that of the most
distal portions of the chromosomal arms (table 4 in elec-
tronic supplementary material). These findings indicate
the difficulty of high-resolution mapping and map-based
cloning of a QTL around the centromere.
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Figure 7 continued.
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Figure 7. The suggestive physical map of markers determined by
blast analysis based on forward and/or reverse primer sequences
and the synteny between genetic and physical positions based on
common markers reported by Somers et al. (2004) (group 3 of
chromosomes 3A, 3B and 3D). The left map numbered ‘-1’ is the
physical map, and the right map numbered ‘-2’ is the high-den-
sity consensus integrative genetic map reported by Somers et al.
(2004). Green dashed lines connect common loci mapped in both
physical and genetic map.

Prediction of amplified products sizes of the 1166 PCR-based
markers

Both forward and reverse primer sequences of 1166 mark-
ers could be best hits for IWGSC RefSeq v1.0 based on

Figure 8. Schematic representation of the syntenic relationships
between any common marker in wheat physical and genetic maps.
Phy-1A to Phy-7D represent the 21 wheat chromosomal physical
maps released in this paper; Gen-1A to Gen-7D represent the
21 wheat chromosomal genetic maps reported by Somers et al.
(2004).

Figure 9. Difference value between predicted and previously
reported amplified fragment size of 347 g-SSR markers. The
abscissa represents the markers, and the ordinate represents
the difference value between predicted and previously reported
amplified fragment size of the corresponding markers.

BLAST analysis. The corresponding information enables
us to determine, or at least predict amplified product
sequence and size in CS, thus enabling users to predict
product sequence and allele sizes in newly breeding pop-
ulations and develop molecular breeding and genomics
strategies (table 3 in electronic supplementary material). In
total, 87.5% of the predicted amplified product sizes were
not more than 500 bp, 74.2% of which were within 100–
300 bp, consistent with the common PCR-based marker’s
amplification fragment size (Röder et al. 1998; Somers
et al. 2004; Xue et al. 2008).

Allele sizes of most g-SSR and STS-PCR based mark-
ers are available (Röder et al. 1998; Somers et al. 2004;
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http://wheat.pw.usda.gov; http://wheat.pw.usda.gov/ITMI
/EST-SSR/). We randomly selected 347 common g-SSR
markers reported by Somers et al. (2004) to evaluate the
reliability of the predicted allele size in the present study.
The results showed that 81.5% of predicted sizes were iden-
tical or at least similar (no more than 50 bp in amplified
fragment size differences) with those of previous report
(figure 9). For example, the predicted alleles of Xgwm95
on chromosome 2A was 122 bp in CS; the alleles reported
by Somers et al. (2004) in different varieties were 128 bp,
116 bp, 122 bp, 111 bp, 124 bp, and 126 bp, respectively.
The predicted allele of Xwmc216 on chromosome 1D was
126 bp in CS; the alleles reported by Somers et al. (2004) in
different varieties were 119 bp, 127 bp, 128 bp and 130 bp.
These coincidences further confirmed the authenticity and
credibility of the physical position information released
here. Sequence of the amplified fragment also could be
predicted, which is of great value to some genetic analysis
such as fine-mapping and map-based cloning of a target
QTL.

Conclusion

We first reported the physical position information of 2705
PCR-based molecular markers, 86.1% and 84.7% of which
could be best hits for CSS-contigs and IWGSC RefSeq
v1.0, respectively. Physical position of 96.2% markers pred-
icated based on BLAST analysis were in accordance with
that of the previous nullisomic/aneuploidy/linkage analy-
sis. A suggestive high-density physical map with 4643 loci
was constructed, spanning 14.01 Gb (82.4%) of the wheat
genome with 3.02 Mb between adjacent markers. Both for-
ward and reverse primer sequences of 1166 markers could
be best hits for a similar position in IWGSC RefSeq v1.0
based on BLAST analysis, and the corresponding allele
sizes were characterized. A detailed physical map with
1532 loci was released, spanning 13.93 Gb (81.9%) of the
wheat genome with 9.09 Mb between adjacent markers.
Characteristic of recombination rates in different chro-
mosomal regions were discussed. In addition, markers
with multiple sites were aligned to homoeologous sites
with a consistent order, confirming that collinearity existed
among A, B, and D subgenomes in wheat. This study facili-
tates the integration of physical and genetic information of
molecular markers, which is of great value for their use in
genetic and genomic study such as gene/QTL map-based
cloning, MAS, etc.
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