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Abstract
Single-nucleotide polymorphism (SNP) association studies have become crucial in uncovering the genetic correlations of
genomic variants with complex diseases, quantitative traits and physiological responses to drugs. However, the identification
of SNPs responsible for specific phenotypes is a difficult problem to solve, requiring multiple testing of hundreds or thousands
of SNPs in candidate genes. In this study, we performed an analysis of the genetic variations that can alter the structure
and function of oestrogen receptor α using different computational tools. Among the nonsynonymous SNPs, a total of four
SNPs were found to be damaging by both a sequence homology-based tool (SIFT) and a structural homology-based method
(polyphen-2, SNAP), as well as by the ESEfinder program, and one nonsense nsSNP was found. For noncoding SNPs, we
found that one SNP in 5′UTR may potentially change protein expression level, nine SNPs were found to affect miRNA binding
site and 28 SNPs might affect transcriptional regulation of the ESR1 gene. Reviewing the literature, 89 SNPs were found to
be functional among which only four were located in exons.

[Rebaï M. and Rebaï A. 2016 In silico characterization of functional SNP within the oestrogen receptor gene. J. Genet. 95, 865–874]

Introduction

Single-nucleotide polymorphisms (SNPs) are the most com-
mon type of genetic variation in the human genome that are
widely used in associations studies with complex diseases
and quantitative traits. In fact, SNPs occur in every 100–
300 bases along the human genome and represent 90% of
all genetic variations. They are found in both coding (gene)
and noncoding regions of the genome with different densities
(Lee et al. 2005).

In the human genome, SNPs are abundant in noncod-
ing regions, including regulatory and untranslated (UTR)
regions as well as introns. Single-nucleotide variations may
affect phenotypic functions and eventually contribute to
disease development. SNPs in the regulatory regions may
influence gene expression or transcription factor binding
(Stenson et al. 2009; Kimura-Kataoka et al. 2012), while
SNPs of the UTR regions may modify the transcriptional
activity (Milanese et al. 2007), RNA stability and riboso-
mal translation of mRNA (Boffa et al. 2008). Polymor-
phisms in coding DNA, especially those that lead to an amino
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acid residue change in the protein product (nonsynonumous,
nsSNP) are of particular importance as they are responsi-
ble for nearly half of the known genetic variations related to
human inherited disease (Hampe et al. 2007).

SNP association studies are useful in the recognition of
genomic variants that are responsible for specific pheno-
types, such as complex diseases, quantitative traits and phys-
iological responses to drugs (Andrawiss 2005; Takahashi
et al. 2012). However, identifying these SNPs among the
thousands of SNPs in candidate genes is a difficult problem
to solve (Zhernakova et al. 2009). Thus, it is essential to
make a preselection of the SNPs to be analysed according to
their functional significance (Ilhan and Tezel 2013; Patnala
et al. 2013) by using bioinformatics prediction tools, which
allows to differentiate between neutral SNPs and those of
likely functional importance.

Oestrogen receptor α (ERα) is a prototype of nuclear
transcription factors that regulate the expression of target
genes. This protein controls a diverse set of essential func-
tions such as reproduction, development and proliferation
(Knobil and Neill 1994). ERα is encoded by the ESR1
gene and different promoters have been identified in this
gene (Kos et al. 2001). Their resulting transcripts differ in
their 5′UTR but not in their coding regions. Among the
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described variants, four lead to a functional protein ERα1
(NM_000125.3, NM_001122740.1, NM_001122741.1 and
NM_001122742.1).

In the recent years, a multitude of SNPs in ESR1 gene have
been identified, and many associations studies have deter-
mined the importance of some SNPs in different hormone-
dependent diseases (Ding et al. 2010; Kim et al. 2011;
Paskulin et al. 2013). Yet, it has been reported that some
polymorphisms of the ESR1 gene may affect the enhancer
activity of gene (Maruyama et al. 2000) or gene regulation
(Albagha et al. 2001). However, few studies have been able
to determine the mechanism by which these polymorphisms
may act in disease development. Also, there are a large num-
ber of SNPs in ESR1 gene which have not been studied and
which may be implicated in the aetiology of several diseases.
Therefore, there is a need to achieve SNPs prioritization of
the ESR1 gene and to determine the functional significance
of these polymorphisms.

In this study, we present an in silico characteriza-
tion of SNPs that can affect the function of ESR1 gene.
Nine different computational tools (Polyphen-2, SIFT,
PROVEAN, SNAP, INPS, Net-O-Glyc, ESEfinder, UTRscan
and TFsearch) with good prediction performance (sensitiv-
ity and specificity) are applied to identify candidate SNPs
that are likely to affect the protein function and that can be
selected in priority for future association studies. These pro-
grams are based on different methods and use different data
and information including protein sequence, protein structure
and protein stability. The use of multiple bioinformatics tools
allow a more reliable annotation and classification of vari-
ants since those that are similarly predicted by many tools
will have stronger evidence about their function.

Materials and methods

Datasets

The NCBI database SNP, dbSNP available at www.ncbi.nim.
nih.gov (bluid 141, May 2014) was used to recover the list of
candidate SNPs analysed in this study. The Medline database
was used to review literature until May 2014 and to extract
the SNP association studies regarding the ESR1 gene.

Prediction of phenotypic effects of nsSNP

The effect of the amino acid substitution on protein
function was predicted using Polyphen-2 (http://www.
bork.embl-heidelberg.de/PolyPhen/), SIFT (http://blocks.
fhcrc.org/sift/SIFT.html), PROVEAN (http://provean.jcvi.
org), SNAP (https://www.rostlab.org/services/snap/) and
INPS (http://inps.biocomp.unibo.it/inps).

Also, the Net-O-Glyc server (http://www.cbs.dtu.dk/
services/NetOGlyc) was used to determine the effect of
nsSNPs on glycosylation sites of the ERα protein.

Polyphen-2 tool: Polyphen-2 (polymorphism phenotyping v2)
uses a combination of structural and sequence homology

analyses to predict whether an amino acid change is likely
to be deleterious for the structure and function of the pro-
tein (Adzhubei et al. 2010). The program searches for 3D
protein structures, performs multiple alignments of homol-
ogous sequences and analyses in several protein structure
databases, the information of amino acid contact. Thus,
position-specific independent count (PSIC) scores will be
calculated for each of the two amino acid residues and then
the PSIC score difference will be computed between them.
The higher a PSIC score difference is, the higher is the func-
tional impact of a particular amino acid substitution is likely
to have.

SIFT tool: SIFT program is a sequence homology-based tools
that predicts the possible impact of an amino acid substitution
on protein function. This program uses multiple sequence
alignment conservation approach to determine if the substi-
tution is either tolerated by the protein or damaging to the
protein. Thus, a normalized tolerance score is calculated. The
higher the score, the less functional impact a particular amino
acid substitution is likely to occur (Sim et al. 2012).

Protein variation effect analyser (PROVEAN) tool: PROVEAN
measures the damaging effect of an amino acid change in
protein sequences (Choi et al. 2012). The software uses a
delta alignment score of the protein sequence without and
with variation with respect to the alignment of homologous
sequences. A score ≤ −2.5, indicates that the change is
deleterious.

Screening for nonacceptable polymorphisms (SNAP) tool:
SNAP tool evaluates the effects of nonsynonymous substitu-
tions on protein function based on a neural-network method
that uses in silico derived protein information (e.g. secondary
structure, evolutionary information for residue conservation,
annotation, solvent accessibility, etc.). The network calcu-
lates a score for each substitution and then the scores will
be translated into binary predictions of neutral or nonneutral
effect (Bromberg and Rost 2007).

Impact of nonsynonymous mutations on protein stability (INPS):
INPS allows to determine the possible impact of nonsyn-
onymous polymorphisms on the protein stability from its
sequence. INPS predicts the thermodynamic free energy
change induced by the amino acid residue change in protein
sequences by using two types of characteristics concerning
the mutation type (mutability, molecular weight, hydropho-
bicity, etc.) and the evolutionary information (Fariselli et al.
2015).

Net-O-glyc: Net-O-glyc 4.0 server produces neural network
predictions of mucin type GalNAc O-glycosylation sites in
mammalian proteins. The program analyses the reference
sequence as well as those carry the amino acid change.
The substitution is predicted to have functional significance,
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if different functional patterns are found for each of the
sequences analysed. The sites are predicted as glycosylated
if they have scores higher than 0.5 (Steentoft et al. 2013).

Prediction of SNP effect on splicing events

ESEfinder (http://exon.cshl.edu/ESE/) analyse exonic
sequences to predict putative exonic splicing enhancer (ESE)
reactive with the four human SR proteins (SF2/ASF, SC35,
SRp40 and SRp55) (Cartegni et al. 2003). ESEfinder uses
weight matrices corresponding to the different human SR
protein motifs to identify putative ESE in query sequences.
The matrices are based on frequency values obtained by
functional systematic evolution of ligands by exponential
enrichment (SELEX) experiments and the initial SELEX
library, which was made by chemical synthesis.

Prediction of SNP effect in regulatory region

The impact of SNPs in regulatory region was assessed using
UTRscan (http://itbtools.ba.itb.cnr.it/utrscan), TFsearch
(http://diyhpl.us/~bryan/irc/protocol-online/protocol-cache/
TFSEARCH.html) and MicroSNiPER (http://epicenter.
ie-freiburg.mpg.de/services/microsniper/).

UTRscan tool: UTRscan was used to predict the functional
significance of noncoding SNPs in the UTR regions (Pesole
and Liuni 1999). The program compares the query sequences
(without and with nucleotide change) with the functional
sequence patterns collection (located in 5′UTR and 3′UTR
sequences) of the UTR site (Grillo et al. 2010). If the UTR
SNP has different functional patterns, this polymorphism is
predicted to have functional significance.

TFsearch tool: TFsearch was used to predict the effect of
SNPs on a putative DNA transcription factor-binding site of
the ‘TRANSFAC’ databases (Heinemeyer et al. 1998).

MicroSNiPER tools: MicroSNiPER is a web-based tool that
predicts the possible impact of SNPs on putative microRNA
(miRNA) binding site (Barenboim et al. 2010). This appli-
cation uses a straightforward method to identify if a 3′UTR
SNP will disrupt or create a microRNA binding site. Micro
SNiPer offers a high flexibility and simple graphical repre-
sentation of the results.

Results

The list of candidate SNPs of the ESR1 gene that was inves-
tigated in this work was retrieved from dbSNP database. A
total of 362 SNPs were surveyed and prioritized. Among
these SNPs, 87 were located in exons (45 were found to be
nonsynonymous and 42 to be synonymous) and 275 were
located in UTR and regulatory regions.

SNPs of the coding region of the ESR1 gene were
analysed by different programs to select SNPs that have

functional significance on the protein structure or func-
tion. First, we used the SIFT program to prioritize the 43
nsSNPs of the ESR1 gene. The protein sequence with muta-
tional position and amino acid residue variants associated
to these missense nsSNPs were submitted to the SIFT pro-
gram. Among the SNPs analysed, 18 variations (41.9%)
were found to be deleterious with a tolerance index of
0.05. The highly deleterious indexes were observed for the
following SNPs: rs369520220, rs200924028, rs104893956,
rs148034868, rs188957694, rs121913044, rs374786087,
rs121913043, rs138891155 and rs397509428. It is inter-
esting to note that the SNP rs104893956 is a non-
sense nsSNP which leads to a premature stop codon
(table 1).

Subsequently, we used the Polyphen-2 program and after
computing the PISC score for each nsSNP, 18 nsSNPs
(41.9%) were evaluated to significantly affect protein struc-
ture and exhibited a range PSIC score difference between 1.5
and 2.6 (table 1). When comparing the results obtained from
the evolutionary-based approach realized by the SIFT pro-
gram and the structural approach effectuated by the Polyphen
program, we observed a significant correlation between the
two programs for 14 SNPs (32.5%).

SNAP program was also used to assess the effect on pro-
tein sequence of the 43 nsSNPs. Among the SNPs analysed,
nine (20.9%) were found to be nonneutral (table 1). It is
interesting to note that when these three programs were used
together, we observed 53% agreement between them.

Nonsynonymous SNPs of the ESR1 gene were investi-
gated by the PROVEAN program and eight nsSNPs (18.6%)
were found to be deleterious. Seven of the eight nsSNPs were
predicted to be functional SNPs by both SIFT and Polyphen
approaches. An agreement between the four programs used
was observed in three nsSNPs (rs121913044, rs121913043
and rs182943916) (table 1).

Then, the stability change of the ERα protein caused
by nsSNPs was determined by the IPNS server. Twenty-
two nsSNPs (51.16%) showed an increase in energy
(DDG < 0 kcal/mol, less favourable change) in compari-
son with the native structure. The most destabilizing nsSNPs
were rs121913044 (V364E, DDG = −2.398 kcal/mol) and
rs121913043 (C447A, DDG = −2.343 kcal/mol). This result
correlates with the program results of PolyPhen-2, SIFT,
SNAP and PROVEAN, which have predicted that these two
polymorphic sites to be damaging.

The exonic SNPs of the ESR1 gene (87 SNPs) were anal-
ysed by the ESEfinder program to predict the effect of these
variations on the splicing phenomenon. After comparing
the functional element of each SNP, 17 SNPs (19.5%) were
found to change the functional pattern of putative splic-
ing site (table 2). Among these polymorphisms, eight SNPs
(9.2%) induce a splicing site abolition, while the other nine
SNPs (10.3%) yield to the creation of an exonic splicing site.

By combining the results of the SIFT, Polyphen-2, SNAP
and ESEfinder programs, the following SNPs (4.6%) were
found to have a functional significance by all programs at
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Table 1. nsSNPs of the ESR1 gene predicted to have functional significance by Polyphen-2/SIFT/PROVEAN/SNAP.

SNP ID Genomic position Nucleotide change Variation Polyphen-21 SIFT2 PROVEAN3 SNAP

rs139960913 152129063 C/T H6Y Prob. damaging Intolerant Neutral Nonneutral
rs369520220 152129088 C/T L14P Prob. damaging Intolerant Neutral Neutral
rs200924028 152129143 G/T K32N Prob. damaging Intolerant Neutral Nonneutral
rs200075329 152129399 C/T S118P Benign Tolerant Deleterious Neutral
rs185717042 152129456 A/C/G S137R Benign Intolerant Neutral Neutral
rs17847065 152129484 A/C P146Q Poss. damaging Tolerant Neutral Neutral
rs139548761 152163733 C/G P152A Poss. damaging Intolerant Neutral Neutral
rs104893956 152163748 C/T R157Ter – Intolerant – –
rs148034868 152163821 A/C E181A Poss. damaging Intolerant Deleterious Neutral
rs373558014 152163827 A/G R183H Prob. damaging Tolerant Neutral Neutral
rs142712646 152265352 C/T R269C Prob. damaging Intolerant Deleterious Neutral
rs188957694 152265353 A/G R269H Prob. damaging Intolerant Neutral Nonneutral
rs77797873 152265443 A/G K299R Poss. damaging Tolerant Neutral Neutral
rs149490424 152265445 C/T R300C Poss. damaging Tolerant Neutral Neutral
rs121913044∗ 152265638 A/T V364E Prob. damaging Intolerant Deleterious Nonneutral
rs397509428 152332819 G/T Q375H Prob. damaging Intolerant Neutral Nonneutral
rs374786087 152382206 A/G N439S Benign Intolerant Neutral Neutral
rs121913043∗ 152382229 GC/TG C447A Poss. damaging Intolerant Deleterious Nonneutral
rs79374934 152415590 A/C D480E Poss. damaging Intolerant Deleterious Neutral
rs201562714 152419948 C/G D545E Benign Intolerant Deleterious Neutral
rs182943916∗ 152419955 C/T R548C Prob. damaging Intolerant Deleterious Nonneutral
rs141662120 152420067 C/T T585M Prob. damaging Intolerant Neutral Nonneutral
rs138891155 152420094 C/T T594M Prob. damaging Intolerant Neutral Nonneutral

SNPs found to have functional significance at least by three programs are in bold.
∗More damaging SNPs (SNPs found to have functional significance by the four programs).
1Polyphen-2 impact; 0–0.5, benign; 1.00–1.24, borderline; 1.25–1.49, potentially damaging; 1.5–1.75, possibly damaging; ≥2, probably
damaging.
2SIFT impact: 0.05, intolerant; 0.051–0.1, potentially intolerant; 0.0101–0.2, borderline; 0.201–1, tolerant.
3PROVEAN impact: ≤ −2.5, deleterious; > −2.5, neutral.

Table 2. ESEfinder results.

SNP ID Nucleotide change Variation Genomic position Site change

rs2077647 A/G S10S 152129077 SC35 → no pattern
rs146774945 C/T N27N 152129128 No pattern → Srp40, SRp55
rs200924028 G/T K32N 152129143 SF2/ASF, SC35 → no pattern
rs199867565 A/G E56E 152129215 No pattern → SF2/ASF, SC35
rs146586199 C/T N69N 152129254 No pattern → SC35, Srp40, SRp55
rs104893956 C/T R157Ter 152163748 Srp40 → no pattern
rs4986934 C/T R243R 152201875 No pattern → SC35, SRp55
rs371170665 A/G D285N 152265400 No pattern → SF2/ASF
rs148773555 A/C D313E 152265486 No pattern → SF2/ASF, Srp40
rs367647625 A/G R363K 152265635 No pattern → SF2/ASF
rs121913044 A/T V364E 152265638 No pattern → Srp40
rs199620236 C/T L507L 152415671 No pattern → Srp40
rs376984075 C/T H516H 152415698 SF2/ASF, SC35 → no pattern
rs200128829 C/T A551V 152419965 SRp55 → no pattern
rs146924427 A/G T563A 152420000 SF2/ASF → no pattern
rs141662120 C/T T585M 152420067 SF2/ASF, Srp40 → no pattern
rs138891155 C/T T594M 152420094 SF2/ASF, Srp40 → no pattern

the same time: rs200924028, rs121913044, rs141662120 and
rs138891155 (table 3).

Finally, protein sequence and the substitutions of the 43
nsSNPs were loaded to the Net-O-Glyc server. After compar-
ing the functional element for each SNP, four SNPs (9.3%)
were found to change a putative site of O-glycosylation,

three of which created new glycosylation sites (table 4).
Three different programs were applied to survey and priori-
tize the SNP in the UTR and regulatory regions of the ESR1
gene. Polymorphisms in the UTR affect the gene expres-
sion by affecting the ribosomal translation of mRNA or
by influencing the RNA half-life. The UTRscan program
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was used to predict the effect of SNPs of UTR region
on the mRNA UTR of functional significance. Among the
110 SNPs in the mRNA UTR of the four variants encod-
ing the isoform ERα1 (NM_000125.3, NM_001122740.1
and NM_001122741.1, NM_001122742.1), one variation
(rs9340771) in the 5′UTR of NM_001122740.1 was related
to functional pattern change of GY-BOX (table 5).

Polymorphisms mapping to miRNA binding sites have
been shown to disrupt the ability of miRNA to target
genes resulting in differential mRNA and protein expression.
MicroSNiPER program was applied to predict the effect of
3′UTR SNP on miRNA binding site. Seventy nine SNPs
were analysed and the results showed that nine (11.4%) were
found to affect miRNA binding (table 5). Among these poly-
morphisms, there are four SNPs (5.1%) that potentially abol-
ished miRNA target sites, while the other (6.3%) created a
putative miRNA target sites.

Eventually, the TFsearch program was applied to predict
the SNP effect of the regulatory region of the ESR1 gene
on putative transcription factor-binding sites. For this, a total
of 167 SNPs were analysed and the results revealed that
28 SNPs (16.8%) change the transcription factor-binding
sites. Most of these variations were related to the variant
NM_001122742.1 (22 SNPs, 20.8% of the SNPs of the vari-
ant NM_001122742.1), while 13 SNPs (27.1% of the SNPs
of the variant NM_001122741.1) were related to the variant
NM_001122741.1 and 16 SNPs (35.5 and 34% of the SNPs
of the variant NM_001122740.1 and NM_000125.3, respec-
tively) were related to the variants NM_001122740.1 and
NM_000125.3 (table 6).

The Medline database was reviewed to determine a list
of functional SNPs from the data of association studies per-
formed on the ESR1 gene. Polymorphisms of the ESR1 gene
were associated with numerous diseases (coronary artery
disease, cancer, diabetes, etc.) and physiological parame-
ters such as cholesterol level, body height, total fat mass,
height at menarche, testosterone level, etc. A high number of
associations were observed with cancers, bone diseases and
coronary artery disease (table 1 in electronic supplementary
material at http://www.ias.ac.in/jgenet/).

Reviewing the literature, 89 SNPs of the ESR1 gene were
selected to be functional SNPs. Among these variations, only
four SNPs (4.5%) are located in exons, while the others
were in noncoding regions (95.5%). However, reviewing the
number of positive studies associated to each of these func-
tional SNPs, six SNPs (rs2077647, rs1801132, rs2228480,
rs2234693, rs3020314 and rs9340799) were found to be
the most important and where the SNPs rs2234693 and
rs9340799 were in the lead of this list.

By combining the results of SNP prioritization and associ-
ation studies, six SNPs (1.6%) among the 362 SNPs analysed
were found to be shared (rs2077647, rs851993, rs291740,
rs2881766, rs6903180 and rs9478245) (table 3). All these
SNPs, except rs2077647, were located in regulatory region
and were found to change putative-binding site for transcrip-
tion factors. While, the rs2077647 is a nsSNP and it was
found to change putative splicing site.
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Table 4. nsSNPs of the ESR1 gene predicted to have functional significance by Net O-glyc.

SNP ID Genomic position Nucleotide change Variation Glycosylation changement

rs201617046 152129480 G145S A/G Gain of glycosylation
rs149308960 152163757 G160S G/T Gain of glycosylation
rs146924427 152420000 T563A A/G Loss of glycosylation
rs201118302 152420040 S576L C/T Gain of glycosylation

Table 5. SNPs in UTR region predicted to have significance by UTRscan or MicroSNiPER.

SNP ID Nucleotide change Genomic position Site change

rs9340771 C/T 152128555 No pattern → GY-BOX
rs148368610 G/T 152422731 IRES → no pattern
rs33986155 C/G/T 152420685 hsa-miR-4271 (G) → no pattern
rs3020385 A/G/T 152420848 hsa-miR-367-5p, hsa-miR-5691 (A) → no pattern
rs2982901 A/C 152421320 No pattern → hsa-miR-6077, hsa-miR-5197-3p,

hsa-miR-3185, hsa-miR-3192
rs114409231 C/T 152420121 No pattern → hsa-miR-761, hsa-miR-299-3p, hsa-miR-4296
rs139705407 A/G 152420122 hsa-miR-4539, hsa-miR-299-3p, hsa-miR-892a → no pattern
rs189550638 A/T 152420350 No pattern → hsa-miR-494
rs187602901 A/G 152420428 No pattern → hsa-miR-105-5p
rs3798757 C/T 152424243 No pattern → hsa-miR-586, hsa-miR-548al, hsa-miR-491-3p,

hsa-miR-222-5p, hsa-miR-4711-5p

Discussion

Understanding the functions of SNPs will greatly help in
understanding the genetics of the human phenotype varia-
tion, especially the genetic basis of human complex diseases.
However, to identify functional SNPs from a pool containing
both functional and neutral SNPs is challenging.

A number of studies have been reported on associations
between ESR1 gene polymorphisms and many diseases, such
as osteoporosis (Ioannidis et al. 2004; Harsløf et al. 2010;
Luo et al. 2014), osteoarthritis (Tawonsawatruk et al. 2009;
Riancho et al. 2010), breast cancer (Tapper et al. 2008; Ding
et al. 2010), endometrial cancer (Sliwinski et al. 2010), some
brain disorders as depressive disorders (Tsai et al. 2003),
Alzheimer’s disease (Lin et al. 2003; Monastero et al. 2006;
Ma et al. 2009) and coronary artery disease (Wu et al. 2010).
However, most of the SNPs of the ESR1 gene have not
been studied yet. In this study, we surveyed and prioritized
362 SNPs of the ESR1 gene. Using different computational
algorithm tools, we found that 18 nsSNPs were evolution-
ary conserved by SIFT, 18 nsSNPs might alter protein struc-
ture by Polyphen-2, nine nsSNPs were nonneutral by SNAP
and eight nsSNPs were deleterious by PROVEAN. An agree-
ment between the four programs used was observed in three
nsSNPs (rs121913044, rs121913043 and rs182943916). This
result suggests that these variants may be considered to be
most likely damaging or deleterious SNPs. The analysis of
protein stability change allows confirmation of this finding.
In fact, using the INPS program, 22 nsSNPs were found to
induce an increase in energy in comparison with the native
structure and the most destabilizing SNPs were rs121913044
(V364E) and rs121913043 (C447A).

Using ESEfinder, our results showed that 17 nsSNPs
might change functional pattern of putative splicing site.
Among the functional nsSNPs predicted, a coding nonsense
SNP (rs104893956) was found. This variation caused by a
nucleotide change from C to T and leads to a codon stop gain.
This result suggests that this SNP may have a very high level
of risk to be involved in some diseases as it can truncate and
even inactivate the ER protein.

Equally, our results showed that, four nsSNPs (rs200924028,
rs121913044, rs141662120 and rs138891155) might alter
protein structure and function as well as splicing phenomen.
This result suggests that these markers might have a high
potential to be candidate SNPs in association studies. Fur-
ther, four nsSNPs (rs201617046, rs149308960, rs146924427
and rs201118302) were found to change putative sites of gly-
cosylation among which three nsSNPs created new site of
glycosylation. Protein glycosylation is an important post-
translational modification that confers both structural and
functional properties to the molecules. However, many stud-
ies have shown that up to 1.4% of known disease-causing
missense mutations are predicted to give rise to gains of gly-
cosylation and for some of these mutations, the novel gly-
cans have been shown to be both necessary and sufficient to
account for the deleterious impact of the mutation (Schulte
am Esch et al. 2005; Vogt et al. 2007). Thereby, it may be
suggested that these nsSNPs can be added to the list of candi-
date SNPs in association studies to determine their potential
role in diseases.

Analysing SNPs in regulatory regions, we found that
one SNP might change functional binding motif at 5′UTR,
nine SNPs might change pattern of miRNA binding site and
28 SNPs might modulate gene regulation.
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Table 6. SNPs in regulatory region predicted to have significance by TFsearch.

SNP ID Nucleotide change Position∗ Site change

rs79543702a C/T −9930 No pattern → CdxA
rs851999a A/C −9673 USF → no pattern
rs75691244a A/C −9448 GATA1, GATA2 → no pattern
rs75453684a G/T −8373 No pattern → HFH-2
rs11969897a A/G −7451 No pattern → AP-1
rs2982574a C/G −6427 No pattern → GATA-1
rs851995a A/G −6097 Evi-1 → no pattern
rs851993a C/T −5620 No pattern → SRY
rs9383939a A/G −5453 IRF-2 → no pattern
rs851988a A/G −3815 No pattern → GATA-1, GATA-2
rs11963534a A/G −3670 GATA-2 → no pattern
rs2941740a C/T −1993 No pattern → Nkx-2
rs189179070a C/T −1629 No pattern → CdxA
rs17840349a A/T −1260 No pattern → CdxA
rs368772753a A/G −1226 C/EBPb → no pattern
rs2982572a A/G −1070 CdxA → no pattern
rs113692904a C/T −912 No pattern → HFH-1, 2, HNF-3b, CdxA
rs34620075a −/T −904 No pattern → CdxA
rs191313267a A/G −823 SRY → no pattern
rs375192774a C/T −815 No pattern → CdxA
rs75027116a A/C −781 CdxA → no pattern
rs147158208a C/T −391 AP-1 → no pattern
rs2881766b G/T −9694/−9336/−7688& No pattern → CdxA
rs9479118b C/T −9689/−9329/−7683& No pattern → Nkx-2
rs6914569b C/G −9196/−8836/−7190& No pattern → Nkx-2
rs538098b C/T −7640/−7584/−5938& c-Ets, Elk-1 → no pattern
rs11964281b C/T −7371/−7012/−5365& No pattern → HSF2
rs4329125b C/T −7230/−6870/−5224& No pattern → Oct-1
rs79994281b A/C −5221/−48861/−3215& No pattern → SRY, HNF-3b
rs57977903b A/G −5141/−4781/−3135& No pattern → C/EBP, HNF-3b
rs77480311b A/G −5004/−4644/−2998& No pattern → GATA-2, GATA-1
rs523736b A/G −4918/−4558/−2912& USF, delta-E → no pattern
rs6903180b A/G −3582/−3222/−1576& Nkx-2 → no pattern
rs9478245b C/T −2640/−2866/−1220& No pattern → sox-5
rs79646490b G/T −2202/−1842/−196& Sp-1 → no pattern
rs28462265c G/T −1708/ − 1348§ HSF2 → no pattern
rs73780864c C/T −1378/ − 1018§ No pattern → CdxA
rs9371556c A/G −1154/ − 789§ CdxA → no pattern

aSNP in regulatory region of the variant NM_001122742.1, bSNP in regulatory region of NM_000125.3, NM_001122740.1
and NM_001122741.1 variants, cSNP in regulatory region of the variants NM_000125.3 and NM_001122740.1, ∗relative to
the transcription start site, &position of the variants NM_000125.3/NM_001122740.1/NM_001122741.1, §position of the variants
NM_000125.3/NM_001122740.1.

Our predictions are in good agreement with previous
reports, especially those which have demonstrated that the
variation rs121913044 (V364E) which has a single amino
acid substitution in hormone-binding domain of the ERα,
allows the receptor to act as a strong dominant negative
inhibitor of oestrogen action (McInerney et al. 1996) and
the rs121913043 (C447A) which causes a decoupling of
hormone binding and transcriptional activation functions of
the receptor (Reese and Katzenellenbogen 1991). We also
identified rs397509428 (Q375H) as a key SNP, a prediction
supported by the fact that it corresponds to a substitution
in ligand-binding domain of ERα and causes a com-
plete oestrogen insensitivity and puberty delay in women
(Quaynor et al. 2013). Another functional SNP is

rs104893956 which is characterized by cytosine to thymine
transition at codon 157 and results in a premature stop codon
and oestrogen resistance (Smith et al. 1994).

Reviewing the literature, 89 SNPs were selected as func-
tional SNPs where most of them were located in noncoding
regions. This result is consistent with the view of Frazer et al.
(2009) who suggested that disease risk associated SNP map
predominantly to noncoding regions of the human genome.
In fact, among the most important polymorphic sites of the
ESR1 gene are rs2234693 and rs9340799, located in the
first intron and are separated by only 46 bp. The rs2234693
(T397C) is caused by a T/C transition in intron 1, whereas
the rs9340799 (G351A) polymorphism is caused by a G/A
transition located 50 bp downstream of the rs2234693
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(Shearman et al. 2003; Pollak et al. 2004). These two
polymorphisms of the ESR1 gene have been described and
studied for possible association with several clinical out-
comes including cardiovascular risk (Herrington et al. 2002;
Alevizaki et al. 2007), multiple sclerosis (Niino et al. 2000;
Kikuchi et al. 2002), osteoporosis (Harsløf et al. 2010; Kim
et al. 2010), uterine leiomyomas (Al-Hendy and Salama
2006), cancer (Chattopadhyay et al. 2014) as well as type 2
diabetes, obesity (Speer et al. 2001), bone mineral density
(Yamada et al. 2002), azoospermia or severe oligozoosper-
mia (Kukuvitis et al. 2002; Suzuki et al. 2002; Lazaros et al.
2010) and systemic lupus erythematosus (Wang et al. 2010).

By combining the results of SNP prioritization and asso-
ciation studies, we come with six functional SNPs among
which only SNP rs2077647 is located in the coding region
and was already reported to be associated with numerous
diseases such as coronary artery disease (Peter et al. 2005,
2009), cancers (Anghel et al. 2010; Sonoda et al. 2010),
Alzheimer disease (Ma et al. 2009) as well as to response
to drugs administration (Zhang et al. 2010). The correla-
tion between our prediction results and data from association
studies supports the results of this study and suggests that
SNP-based pathogenicity detection tools can appropriately
reflect the role of a disease associated SNP. Since association
studies and SNP prioritization are two nonredundant source
of knowledge, we think that a good correlation between them
can support the use of computational tools for the selection
of SNPs to be investigated by association studies.

Conclusion

Genetic screening of the ESR1 gene locus has revealed the
existence of thousands of polymorphic sites, some of them
alter the function of the receptor and were associated to phe-
notypic traits and diseases risk. However, giving the high
number of SNPs in this gene, association studies should be
carried on genetic variants that have functional significance.
The correlation between our results and data from associa-
tion studies suggests that application of computational tools
might provide an alternative approach to select functional
SNPs in association studies. Since association studies and
SNP prioritization are two nonredundant source of knowl-
edge, we think that a good correlation between them can sup-
port the use of computational tools for the selection of SNPs
to be investigated by association studies.
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