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Abstract
Soybean isoflavones play diverse roles in human health, including cancers, osteoporosis, heart disease, menopausal symptoms
and pabulums. The objective of this study was to identify the quantitative trait loci (QTL) associated with the isoflavones
daidzein (DC), genistein (GeC), glycitein (GlC) and total isoflavone contents (TIC) in soybean seeds. A population of 184
F2:10 recombinant inbred lines derived from a ‘Xiaoheidou’ ×‘GR8836’ cross was planted in pot and field conditions to
evaluate soybean isoflavones. Twenty-one QTL were detected by composite interval mapping. Several QTL were associated
with the traits for DC, GeC, GlC and TIC only. QDGeGlTIC4_1 and QDGlTIC12_1 are reported first in this study and were
associated with the DC, GeC, GlC and TIC traits simultaneously. The QTL identified have potential value for marker-assisted
selection to develop soybean varieties with desirable isoflavone content.

[Zhang H. J., Li J. W., Liu Y. J., Jiang W. Z., Du X. L., Li L., Li X. W., Su L. T., Wang Q. Y. and Wang Y. 2014 Quantitative trait loci analysis
of individual and total isoflavone contents in soybean seeds. J. Genet. 93, 331–338]

Introduction

Soybean (Glycine max L. Merr.) is one of the world’s
most important oilseed crops and comprises ∼20% oil
and 40% protein. Soybean seeds have received consider-
able attention for their high isoflavone concentrations (1.0–
3.0 μg·mg−1) (Wang and Murphy 1994; Cardinal et al.
2007). The three main isoflavone components, dadzein (DC),
genistein (GeC) and glycitein (GlC) made up ∼95% of total
isoflavones in soybean seeds (Kudou et al. 1991; Latunde-
Dada et al. 2001). Isoflavone had pharmacological activities
in preventing ovarian, breast, colon and prostate cancers as
well as osteoporosis and cardiovascular diseases (Naim et al.
1976; Weidenborner et al. 1990; Aedin et al. 2000; Tikkanen
and Adlerereutz 2000; Watanabe et al. 2002; Lo et al. 2007).
Manipulation of crop characteristics using molecular biol-
ogy is now possible. Previous studies have demonstrated that
the main isoflavone compounds are synthesized in a reac-
tion catalysed by several key enzymes from a branch of
the general phenylpropanoid pathway, and that isoflavone
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synthase (IFS), phenylalanine ammonialyase (PAL), chal-
cone synthase (CHS), chalcone isomerase and certain
CytP450s are involved in the GeC and DC biosynthetic
pathways (Akashi et al. 1999; Jung et al. 2000; Yu et al.
2003). Compared with transgenic technology, molecular
markers may be easier to utilize in a breeding programme.
The two genetic IFS loci polymorphisms (IFS1 and IFS2)
have been mapped and associated with isoflavone concen-
tration (Cheng et al. 2008) and several quantitative trait loci
(QTL) for isoflavones are located on the same linkage group
as the CHS family genes (Kassem et al. 2004; Matsumura
et al. 2005; Primomo et al. 2005; Sangeeta et al. 2007). For
example, the QTL for GlC share the same chromosome (Chr)
5, 9, 1 and 11 as CHS2, CHS6, CHS7 and CHS8, respectively
(Matsumura et al. 2005; Sangeeta et al. 2007). Thus, these
QTL might be important.

Other QTL among various mapping populations have been
mapped for DC, GeC, GlC and TIC (Njiti et al. 1999;
Meksem et al. 2001; Kassem et al. 2004, 2006; Primomo
et al. 2005; Sangeeta et al. 2007; Yang et al. 2008, 2011;
Gutierrez-Gonzalez et al. 2009; Liang et al. 2009; Murphy
et al. 2009; Zeng et al. 2009; Zhang et al. 2012). In total, 18
major QTL for DC have been mapped on Chr1, Chr3, Chr5,
Chr7, Chr8, Chr13 and Chr14, and these explain 3.4% to
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50.2% of the phenotypic variation. Twenty-one QTL for GlC
are located on Chr1, Chr3, Chr5, Chr7, Chr11 and Chr18;
these explain 3.4–50.2% of the genetic variation. Eighteen
QTL for GeC are present on Chr1, Chr3, Chr5, Chr7, Chr11,
Chr13 and Chr18 and these explaine 9.3% to 29.5% of the
phenotypic variation, respectively. Twenty major QTL for
TIC are mapped on Chr5, Chr6, Chr7, Chr8, Chr12 and
Chr13; these explain 4.1–32.3% of the genetic variation.

Soybean isoflavone content is a quantitative trait (Hoeck
et al. 2000) and is regulated by environmental factors, includ-
ing crop year, planting date, fertilizer, water and temperature
(Tsukamoto et al. 1995; Bennett et al. 2004; Caldwell et al.
2005; Lozovaya et al. 2005; Murphy et al. 2009). The effects
of genotype, environment, and the genotype × environment
interaction are significant (Wang and Murphy 1994; Hoeck
et al. 2000; Lee et al. 2003; Primomo et al. 2005; Murphy
et al. 2009). The genetic basis of regulation of the amount
of isoflavones is not well-understood, due to the tremendous
variability in isoflavone content in seeds harvested from dif-
ferent environments (Njiti et al. 1999; Meksem et al. 2001;
Kassem et al. 2004, 2006; Primomo et al. 2005; Zeng et al.
2009; Gutierrez-Gonzalez et al. 2009; Yang et al. 2011;
Meng et al. 2011). Several QTL have been detected across
different environments (Primomo et al. 2005; Zeng et al.
2009); however, they are insufficient for use in a breed-
ing programme. Thus, it is important to identify soybean
isoflavone QTL in different environments and populations.

The main objective of this study was to identify QTL
associated with loci-conditioned variations in DC, GlC, GeC
and TIC used a recombinant inbred lines (RILs) population
derived from ‘Xiaoheidou’ and ‘GR8836’ grown in field-
cultured and pot-cultured environments. The parents were
derived from varieties that displayed wide genetic diversity
in terms of isoflavone content.

Materials and methods

Plant materials

The mapping population contained 184 RILs of F2:10
advanced by single-seed-descent and derived from a ‘Xiao-
heidou’ × ‘GR8836’ cross. The parents, Xiaoheidou (♀, with
low individual as well as total isoflavone content in
seeds: DC, 1.85 μg·mg−1; GeC, 0.21 μg·mg−1; GlC,
1.26 μg·mg−1; TIC, 3.32 μg·mg−1) is a Chinese lan-
drace and GR8836 (PI534647, maturity group III, ♂, with
high individual and total isoflavone content in seeds: DC,
2.04 μg·mg−1; GeC, 0.44 μg·mg−1; GlC, 1.95 μg·mg−1;
TIC, 4.43 μg·mg−1) was introduced from USA.

Field and greenhouse experiments

A set of 184 RILs were grown together with parents in
a field-culture environment at the Jilin University Exper-
imental Station, Changchun, China (43◦54′N, 125◦19′E),
following a randomized complete block design with three

replicates. The frost-free period was 145 days. The farming
soil style was phaeozem which contained 120.19 μg·mg−1

rapidly available nitrogen, 17.33 μg·mg−1 rapidly available
phosphorus and 153.74 μg·mg−1 rapidly available potas-
sium. The previous crop was corn. The population was sown
on 2 May 2010 in a field containing 5-m long rows with a
row width of 0.65 m and was thinned to a uniform density
with a space of 12.5 cm between plants two weeks after emer-
gence. Weeds and pests were controlled routinely. The same
RIL population was sown with three replicates on 20 April
2010 in plastic barrels (30 cm in diametre) contained ∼6 kg
local soil, each pot contained three plants. Management of
plants was similar to field-culture environment, except that
irrigation was used as needed for the pot-cultured condition.
Seed samples were harvested from single plants until com-
plete ripeness. No symptoms of fertilizer deficiency were
identified in plants under two conditions.

Isoflavone extraction and determination

Sample preparation: Soybean seed powder (100 mg) was dis-
solved in 4 mL of 80% methanol (Dingguo, Beijing, China)
in distilled water and stirred in an ultrasonic cleaning bath
(Kunshan KQ3200DE, Jiangsu, China) for 30 min at 80◦C
and then left overnight at room temperature. The supernatant
was filtered through a 0.45-μm filter and transferred to a 5-
mL high-performance liquid chromatography (HPLC) volu-
metric flask. A 20 μL aliquot of the filtrate was subjected to
HPLC analysis.

Chromatographic conditions: A C18 column (Shimadzu LC-
20A, Tokyo, Japan; 150 × 4.6 mm, 5.0 μm) was used for all
separations at a column temperature of 40◦C. The linear gra-
dient system consisted of solvent A (HPLC-grade methanol)
and solvent B (0.4% orthophosphoric acid in distilled water).
The solvent flow rate was 1.0 mL·min−1 and UV absorption
was measured at 254 nm.

Genetic analysis: Young trifoliate leaves of the parents and
each recombinant inbred line were collected from seedlings
in the pot-cultured condition. Total DNA was purified as
described by Yuan et al. (2002). SSR primers developed by
Song et al. (2004) were screened from Soybase (2005). Poly-
merase chain reaction (PCR) amplification was performed
as described by Zeng et al. (2009). The PCR products were
separated in 6% (w/v) denaturing polyacrylamide gels and
visualized by silver staining (Trigizano and Caetano-Anolles
1998).

Frequency distribution and statistical parameters for the
parental and RIL populations were analysed by using
the SPSS 13.0 (SPSS, Chicago, USA) and Excel 2003
(Microsoft, Redmond, USA) software. A linkage map con-
tained 87 SSR markers was constructed using Mapmaker/
Exp 3.0b (Lander et al. 1987) and the Kosambi map-
ping function (Kosambi 1944). The commands ‘group’,
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‘map’, ‘try’, and ‘compare’ were used to build the linkage
groups. The type I error detection ratio was set to 5%. The
Haldane mapping function (Haldane 1919) was used with
a minimum LOD score of 2.5 and a maximum distance
of 50 cM (Promomo et al. 2005). QTL were identified by
composite interval mapping (Zeng 1993, 1994).

Results

Phenotypic analysis of individual and total isoflavone contents

Ranges, means, standard deviations, coefficients of variation
(CV), skewness, kurtosis, and broad-sense heritability for
seed isoflavone contents of the parents and RIL population
across the two environments (field-cultured and pot-cultured)
are presented in table 1. ‘GR8836’ had significantly higher
values than those of ‘Xiaoheidou’ for all isoflavone contents
across both environments, indicated that the two parents dif-
fered in the genes controlling individual and total isoflavone
contents. In fact, isoflavone content was significantly higher
in pot-cultured than in the field-cultured environment, and
the reason may be consistent with the large environmental
interaction generally associated with isoflavone content in
soybean seeds (Wang and Murphy 1994; Hoeck et al. 2000;
Lee et al. 2003; Primomo et al. 2005; Murphy et al. 2009).
Frequency distribution of field cultured and pot cultured con-
ditions for the RILs population was determined for the sam-
ples and both displayed a continuous distribution (table 1;
figure 1). DC was higher than GeC and GlC was the low-
est in soybean seeds. Widely transgressive segregations were
detected in all research environments.

The CV values that were not significant were < 0.5 for
the isoflavone content means. Broad-sense heritability esti-
mates for DC, GeC, GlC and TIC across field-cultured and
pot-cultured environments were 0.54, 0.66, 0.61, 0.52, 0.44,
0.49, 0.56, and 0.69 (table 1), individually. Broad-sense her-
itability estimates for the isoflavone content were similar to
those reported previously by Primomo et al. (2005) and Zeng
et al. (2009), which ranged from 0.35 to 0.57. However, heri-
tability estimates reported by Meksem et al. (2001) and Yang
et al. (2011) were higher than the values obtained here.

Both skewness and kurtosis values for relative traits were
<1.0, and all isoflavone contents were normally distributed.
Positive values for skewness (table 1; figure 1) indicated that
all distributions were skewed towards ‘GR8836’. An analy-
sis of variance of isoflavone content indicated a significant
(P < 0.001) genotypic variation for DC, GeC, GlC and TIC
among RILs. Significant variation was also detected between
the different environments (P < 0.001).

Linkage analysis

A total of 667 SSR markers were screened between the
two parents and 232 SSR primers had polymorphisms. A Ta
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Figure 1. Frequency distribution of daidzein, genistein, glycitein and total isoflavone contents in soybeans seeds among 184 F2:10 RIL
derived from a cross between the cultivars ‘Xiaoheidou’ and ‘GR8836’ in field-cultured environments (A) and pot-cultured environments
(B). Values next to the x-axis are the upper limit of each category. Parental values are indicated for ‘Xiaoheidou’ and ‘GR8836’.

geneticlinkage map that covered 20 chromosomes and con-
tained 87 SSR markers was constructed (Lander et al. 1987).
Total length of the map was 1733 cM with an average dis-
tance between markers of 25.1 cM. The markers were ini-
tially grouped and anchored based on a consensus map (Song
et al. 2004).

Isoflavone QTL mapping

Twenty-one QTL associated with DC, GeC, GlC and
TIC, including many novel regions, were identified in the
field-cultured and pot-cultured environments (table 2;
figure 2). The QTL were located on eight chromosomes

Table 2. QTL associated with DC, GeC, GlC and TIC in soybean seeds in the field-cultured and pot-cultured environments.

Trait Environment QTL Chr. Near marker LOD value AAE R2/ %

DC Field cultureda QDTIC9_1 9 Sat_319 2.85 0.20 5.81
Pot culturedb QDGlTIC3_1 3 Satt009 2.63 –0.25 4.87

QDGeGlTIC4_1 4 Satt524 2.78 0.39 6.70
QDTIC4_2 4 Sat_140 4.17 0.24 7.37
QDGlTIC12_1 12 Satt353 2.57 0.23 5.11

GeC Field cultured QGeC13_1 13 Satt395 2.77 0.02 5.26
Pot cultured QDGeGlTIC4_1 4 Satt524 3.48 0.11 7.87

QGeC7_1 7 Satt323 2.92 0.07 5.78
QGeC10_1 10 Satt479 4.01 0.09 8.83

GlC Field cultured QGlC4_1 4 Satt150 3.98 0.18 5.53
QGlC17_1 17 Satt488 2.92 0.14 5.90

Pot cultured QDGlTIC3_1 3 Satt009 3.27 –0.24 7.29
QDGeGlTIC4_1 4 Satt524 2.97 0.29 4.87
QDGlTIC12_1 12 Satt353 2.97 0.29 4.92
QGlC17_1 17 Satt488 2.77 0.14 5.90

TIC Field cultured QDTIC9_1 9 Sat_319 2.69 0.38 5.32
QDGlTIC12_1 12 Satt353 2.69 0.40 4.87

Pot cultured QDGlTIC3_1 3 Satt009 2.68 –0.53 5.75
QDGeGlTIC4_1 4 Satt524 3.40 0.59 6.63
QDTIC4_2 4 Sat_140 2.76 0.42 5.09
QDGlTIC12_1 12 Satt353 2.58 0.60 4.48

Chr, chromosome number; AAE, additive allelic effect; R2, the proportion of phenotypic data explained by the marker locus
aField-cultured environment in Changchun in 2010
b Pot-cultured environment in Changchun in 2010
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Figure 2. Locations of some of the chromosomes with major QTL for DC, GeC, GlC and TIC in field-cultured and pot-cultured environ-
ments in Changchun in 2010. � Daidzein content, � glycitein content, � genistein content and � total isoflavone content. Chromosome
number is indicated at the top of the linkage group diagram. QTL names, marker names and distances for the interval are given. Genetic
distances are from the RIL function of Mapmaker/EXP 3.0b (Lander et al. 1987). Linkage groups were named using the consensus map
(Song et al. 2004) and coincided with the chromosome number on Soybase website (http://www.soybase.org/).

(Chr3, Chr4, Chr7, Chr9, Chr10, Chr12, Chr13 and
Chr17). The total explained phenotypic variation for spe-
cific isoflavone content was 4.48–8.83%. Nine of the 10 QTL
effects were positive that was contributed by ‘GR8836’ and
only one QTL named QDGlTIC3_1 had a negative effect that
was donated by ‘Xiaoheidou’.

Five QTL (table 2) associated with DC were mapped
on Chr3, Chr4, Chr9 and Chr12. Of them, two QTL for
DC, QDGeGlTIC4_1 and QDTIC4_2, both located on Chr4,
explained 6.70% and 7.73% of the phenotypic variation.
Four QTL for GeC were mapped on Chr4, Chr7, Chr10
and Chr13. Six QTL for GlC were detected on Chr3,
Chr4, Chr12 and Chr17. Of them, two QTL, QGlC4_1 and
QDGeGlTIC4_1 both located on Chr4, explained 5.53%
and 4.87% of the phenotypic variation in the two envi-
ronments, respectively. One QTL, QGlC17_1 for GlC
located on Chr17, was identified in both field-cultured and
pot-cultured conditions and was associated with Satt488. Six
QTL (table 2) for TIC were detected on Chr3, Chr4, Chr9,
and Chr12, which could explain 4.48–6.63% of the pheno-
typic variations. Of them, two QTL, QDGeGlTIC4_1 and
QDTIC4_2 for TIC both located on Chr4, explained 6.63%
and 5.09% of the genetic variation, individually.

Most of the QTL were clustered in genomic regions, par-
ticularly on Chr3, Chr4, Chr9 and Chr12 (table 2; figure 2).
One novel QTL, QDGeGlTIC4_1 associated with Satt524,

was identified for DC, GeC, GlC and TIC, simultaneously.
Two QTL, QDGlTIC12_1 associated with Satt353 and
QDGlTIC3_1 with Satt009, were identified for DC, GlC

and TIC, respectively. Another two QTL, QDTIC4_2 with
Sat_140 and QDTIC9_1 with Sat_319, were detected across
only one environment for DC and TIC, respectively. Two
major QTL, QGlC17_1 for GlC and QDGlTIC12_1 for
TIC were detected in both culture environments. One QTL,
QGlC17_1 for GlC, explained 6.7% of the phenotypic varia-
tion in both environments. Another QTL, QDGlTIC12_1 for
TIC, was also detected in both environments and it explained
4.87% of the phenotypic variation in the field-cultured
environment and 4.48% in the pot-cultured environment,
individually.

Discussion

Individual and total isoflavone contents in the pot-cultured
environment were markedly higher than those in the field-
cultured environment. The reason might be the interaction
between genetic and multiple environmental factors
(Tsukamoto et al. 1995; Bennett et al. 2004; Caldwell et al.
2005; Lozovaya et al. 2005; Murphy et al. 2009), as we
detected a significant environmental effect (P < 0.001).
Differences between the two environments were water avail-
ability and early sowing, which have been demonstrated to
benefit the accumulation of individual and total isoflavone
contents (Bennett et al. 2004; Caldwell et al. 2005; Lozovaya
et al. 2005). Thus, it could be inferred that irrigation and/or
an early sowing date should be considered to produce high
isoflavone content soybeans.
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Notably, two QTL, QDGeGlTIC4_1 located on Chr4 asso-
ciated with Satt524 and QDGlTIC12_1 located on Chr12
with Satt353, are first reported here. The two QTL were
associated with the DC, GeC, GlC and TIC traits simulta-
neously, suggesting that these QTL are linked to the same
gene or represent the action of clustered genes. If so, it
may be inferred that these QTL are linked to the upstream
genes in the isoflavone biosynthetic and regulatory path-
ways. Genes linked to new intervals were identified on
the SoyBase website. QDGeGlTIC4_1 might associate with
Glyma04g42110 which was noted as a R2R3-MYB tran-
scription factor. Previous studies had proved that the R2R3-
MYB transcription factor gene family could increase the
expression abundance of some key enzyme genes in flavonid
biosynthesis in transgenic Arabidopsis plants (Stracke et al.
2001). It can be inferred that Glyma04g42110 is a candi-
date gene for QDGeGlTIC4_1. No candidate gene associate
with QDGlTIC12_1 was found to relate to the synthesis of
isoflavone in the adjacent region of Satt353.

Stability of the QTL across environments and genetic
backgrounds is key to determine if they can be used in a
breeding programme (Brummer et al. 1997). In this study,
three QTL were consistent with previously mapped results.
The QTL QDGlTIC3_1 for DC, GeC and TIC associated
with Satt009 was first mapped by Liang et al. (2009).
QGeC7_1 for GeC associated with Satt323 detected in the
present study was ∼20 cM away from the QTL loci asso-
ciated with Satt540 detected by Zeng et al. (2009) and
Primomo et al. (2005). QDTIC4_2 corresponded to Sat_140
and was similar to the QTL QGC4 for GeC detected by
Yang et al. (2011). In addition, three QTL of QGlC4_1,
QGlC17_1 and QDGlTIC12_1 were detected simultaneously
in pot cultured and field cultured conditions and were sig-
nificantly different (P < 0.001) in the present study. How-
ever, these QTL were not detected in other study populations,
suggested that they may be unique to the ‘Xiaoheidou’ and
‘GRRR36’ parents, which have a distant genetic relationship.
All these stable QTL should be considered to narrow down
the genomic regions and identify related genes for future
research.

Previous studies have shown that genomic regions asso-
ciated with soybean isoflavone content are always linked
to other agronomic (seed yield, weight, maturity, lodg-
ing and height) and quality (oil and protein content) traits
(Wang et al. 2000; Meksem et al. 2001; Kassem et al.
2004; Primomo et al. 2005). In this study, the location of
QDGlTIC3_1 was shared by oil content, iron efficiency, reac-
tion to Sclerotinia sclerotiorum and flower number; the loca-
tion of QDGeGlTIC4_1 was shared by oil content and pro-
tein content; and the locus of QDGlTIC12_1 was shared by
somatic embryos per explant and protein content (Qi et al.
2011; Lin et al. 1997; Zhang et al. 2010; Song et al.
2010). Such linkages should be considered in a breeding
programme.

Several QTL located on the same chromosome as key
enzymes or transcription factor genes have been reported

(Cheng et al. 2008; Kassem et al. 2004; Primomo et al. 2005;
Matsumura et al. 2005). In the present study, three QTL,
named QDGlTIC12_1, QDTIC9_1 and QDGlTIC3_1, were
matched with the candidate genes, CHS, bHLH and those
of the DFR2 family, which are related to isoflavone accu-
mulation. Although these assumptions should be confirmed
by further studies, these QTL may facilitate improvement of
soybean lines in terms of their isoflavone content.
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