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This contribution presents for the first time a digital elevation map and 1:50,000 scale geological map of
Sitagota syncline, Khairagarh Group, which is spread in around 1000 km? area in the north Bastar Craton
(survey of India toposheets 64 C/11 and C/15). We report for the first time, exposures of Algoma-type
banded iron formation, intertrappean shale, and oxide and sulphide mineralization in Mangikhuta basalt.
Mafic enclaves are reported in the Dongargarh granite. Geochemistry and petrogenetic study of Man-
gikhuta and Kotima volcanics of Khairagarh Group is presented. Although field investigation and digital
elevation map reveal Khairagarh volcano-sedimentary sequence underwent more than one phase of
orogeny, the ubiquitous presence of very low-grade metamorphic mineral assemblages in volcanic rocks
indicates they did not undergo high P-T transformation and most of the alteration and metamorphism
took place at near-surface conditions. Our tectonomagmatic model proposes the occurrence of a rift basin
in the north Bastar Craton from 2.46 to 2.2 Ga, resulting in sedimentation and high-Mg basalt to basaltic-
andesite magmatism. The genesis of Sitagota syncline is attributed to closure and deformation of this rift
basin due to compressive forces, probably related to Paleoproterozoic Dongargarh Kotri mobile belt and
Mesoproterozoic central Indian tectonic zone. Tectonomagmatic and geochronological similarity of
Khairagarh Group to Lower Wyloo Group of Ashburton basin in Pilbara Craton and Hekpoort and
Ongeluk basalt formations of Transvaal basin in Kaapvaal Craton indicates Bastar Craton was part of
Vaalbara supercontinent in Paleoproterozoic times.

Keywords. Bastar Craton; Dongargarh Supergroup; Paleoproterozoic; Khairagarh Group; basalt; rift
basin; Vaalbara supercontinent.

1. Introduction of India toposheets 64 C/11, C/12 and C/15). It is

a constituent of the NNE-SSW trending Dongar-
The Khairagarh Group is spread in approx. 1000  garh Kotri mobile belt (DKMB) (Ramakrishna and
km? area towards W, NW, and SW of Khairagarh ~ Vaidyanathan 2010), and located south of the
(21°25'15"N, 80°58'50"E) in Central India (Survey Central Indian Tectonic Zone (CITZ) (Yedekar
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et al. 1990). The genesis of Paleoproterozoic
(2.46-2.21 Ga) Khairagarh Group volcano-sedi-
mentary succession has been attributed to rapid
crustal growth of the north Bastar Craton (Sarkar
1957; Sarkar et al. 1994; Srivastava and Gautam
2009; Longjam and Talat 2012; Sensarma and
Mukhopadhyay 2014; Manikyamba et al. 2016;
Khanna et al. 2019) near Archean Proterozoic
transition. Tectonomagmatic study of Khairagarh
Group assumes special importance due to its tem-
poral proximity to global Neoarchean Paleopro-
terozoic phenomena of onset of mature plate
tectonics (c.f. Condie and Kroner 2008; Cawood
et al. 2018; Hawkesworth and Brown 2018; Wind-
ley et al. 2021). Since Khairagarh volcanic forma-
tions exhibit alteration and very low-grade regional
metamorphism (Asthana et al. 1996; Patel et al.
2008; Khanna et al. 2019; Khare and Asthana 2020;
Khare et al. 2022), they provide a unique oppor-
tunity to undertake reliable geochemical and pet-
rogenetic study to elucidate crust mantle processes
responsible for Paleoproterozoic crustal evolution
of north Bastar Craton. There is temporal and
spatial proximity of Khairagarh volcanism to
Malanjkhand (22°00'54”N; 80°42'36"E) Cu £ Mo
+ Au metallogeny (Sikka and Nehru 1997; Kumar
and Rino 2006; Pandit and Panigrahi 2012; Nehru
and Sikka 2014; Pandit et al. 2014; Kumar and
Asthana 2018; Arya et al. 2021). Therefore, it
becomes imperative to undertake field geological,
geochemical and petrogenetic study of Khairagarh
volcanic formations and look for any evidence
which indicates a relationship between Khairagarh
volcanism and Malanjkhand metallogeny.

With this context, in this contribution, we pre-
sent for the first time a detailed 1:50,000-scale
geological map of Khairagarh Group, which is well
exposed in Sitagota syncline. Our work presents a
digital elevation map (DEM) of syncline prepared
on ArcGIS software. We report the presence of
faults in the syncline not reported earlier. Algoma-
type BIF and intertrappean shale beds are reported
in the Mangikhuta basalt of the Khairagarh Group.
Magmatic oxide and sulphide mineralization is also
reported in the Mangikhuta basalt. We report the
presence of mafic enclaves in Dongargarh granite,
which is the basement of the Khairagarh Group.
Geochemical and petrogenetic study is presented
for the Mangikhuta and Kotima volcanic forma-
tions, and a tectonomagmatic model presented for
the genesis of the Khairagarh Group. A post-
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deposition orogenic model of Khairagarh Group is
presented in this work.

2. Regional geology

Bastar Craton is an important Archean province of
peninsular India, which lies to the south of Central
Indian Tectonic Zone (CITZ) (Yedekar et al. 1990),
and surrounded from the east and west by Singhb-
hum and Dharwar cratons, respectively (figure 1a)
(Radhakrishna and Naqvi 1986; Naqvi and Rogers
1987; Mondal et al. 2006). The Dongargarh Super-
group, an important constituent of Bastar Craton is
a Neoarchean—Paleoproterozoic succession of gran-
ite intrusions, bimodal volcanic formations, and
volcano-sedimentary sequence spanning a 90 km
wide and 150 km long NNE-SSW trending belt
between Sakoli and Chhattisgarh basin in Central
India (figure 1b) (Sarkar 1957, 1994; Mohanty
2015). The constituents of Dongargarh Supergroup
are Nandgaon bimodal basalt and rhyolite forma-
tions, Dongargarh granite and Khairagarh Group
(Rao 1981; Krishnamurthy et al. 1990; Neogi et al.
1996; Khanna et al. 2019; Santosh et al. 2020).
Detailed chronostratigraphic succession of the
Dongargarh Supergroup is given in table 1.
The Khairagarh Group is around 12-km thick vol-
cano-sedimentary sequence, which unconformably
overlies above Dongargarh granite and Nandgaon
bimodal volcanics. Sarkar (1957, 1958) published
the geological map of Dongargarh System
(figure 1c), which included map of Khairagarh
Group from faulted western limb of Sitagota syn-
cline (toposheet 64 C/12). However, a major portion
of syncline towards north-northeast (toposheet 64
C/11 and C/15) remained unmapped due to inac-
cessible terrain. Rao (1981) published a regional
map of Malanjkhand extension area which included
the Sitagota syncline but detail mapping of
Khairagarh volcanics and sediments towards centre
of the Sitagota syncline (toposheet 64 C/11 and
C/15) was not done. Later, several workers studied
Dongargarh Supergroup (Sarkar et al. 1981; Krish-
namurthy et al. 1990; Sarkar et al. 1994; Asthana
et al. 1996, 1997, 2001; Neogi et al. 1996; Ghosh
et al. 2006; Longjam and Talat 2012; Sensarma and
Mukhopadhyay 2014; Khanna et al. 2019; Santosh
et al. 2020). However, none of these studies reported
detailed geology and field relations of volcanics and
sediments from the centre of Sitagota syncline,
which is part of our current work.
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Figure 1. A geological map prepared after detailed field investigation of Sitagota syncline. (a) shows the location of Bastar
Craton (BC) in Peninsular India vis-a-vis CITZ and other Archean cratons (Radhakrishna and Naqvi 1986). (b) shows the
overall geology of Bastar Craton and location of the Dongargarh Supergroup in Bastar Craton (Kumar and Asthana 2018). (c) is
geological map of Dongargarh Supergroup after Sarkar (1957). This map shows unmapped NE portion of Sitagota syncline. (d) is
a geological map of Sitagota syncline made during the course of current field study. Black circles show location of samples

collected for geochemical studies.

3. Field geology of Sitagota syncline

The Nandgaon bimodal volcanics and Dongargarh
granite form the basement of Khairagarh Group.
The outcrops of Dongargarh granite (figure 2a) are
well exposed in and around Dongargarh
(21°10°37"N; 80°45'04"E). The Pitepani basalt
(figure 2b) and Bijli rhyolite (figure 2¢) of Nand-
gaon Group are well exposed in Pitepani

(21°09'55”"N;  80°35'12"E)  and  Bagrekasa
(21°08'54”"N; 80°34'26"E), respectively. Dark grey-
coloured, micro-granular mafic enclaves are pre-
sent in Dongargarh granite outcrops (figure 2d),
which could be either remnants of underlying
Pitepani basalt or a product of magma mixing and
assimilation. One km north of Dhara (21°15'45"N;
80°51'03"E), a 50-m thick conglomerate horizon in
lower portion of Bortalao Formation establishes an
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Table 1. Chronostratigraphic succession of Dongargarh Supergroup and Khairagarh Group in Sitagota syncline after Rao (1981)
and Sarkar (1994). The geochronology data taken from Krishnamurthy et al. (1990), Manikyamba et al. (2016) and Khanna et al.
(2019). The thickness of volcanic and sedimentary units in Sitagota syncline estimated during the course of the current study.
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unconformable relationship between Dongargarh
granite and Khairagarh Group (figure 2e). Con-
glomerate outcrops of Bortalao Formation are also
seen near Bortalao (21°13'33"N; 80°36’57"E) along
Dongargarh Darekasa Road (figure 2f). Khairagarh
volcano-sedimentary sequence consists of Sitagota,
Mangikhuta and Kotima basalt formations,
respectively, overlying Bortalao, Karutola and
Ghoghra sandstone formations (figure 1d). Borta-
lao Formation occurs as a prominent sandstone
ridge near Dhara (figure 2g). The Sitagota basalt
outcrops (figure 2h) are seen between Bortalao
and Darekasa near Jamakudo (21°15'26"N;
80°35'36"E). During a traverse along Khairagarh
Lanji Road, the outcrops of Mangikhuta basalt
are exposed in the nallah section near Temri
(21°23'39"N; 80°47'23"E). The Khairagarh volcanic
formations occur as dispersed outcrops between
sandstone ridges. They are fresh green to greenish
grey coloured, non-schistose and devoid of pillow
structures. Intertrappean shale of 5~10 m thickness
is present in Mangikhuta basalt. Although flow
layers are not evident in the field, quartz and cal-
cite-filled vesicles and amygdules easily identify
them (figure 2i). A 10-m thick Algoma-type ban-
ded iron formation (BIF) was discovered in inter-
trappean shales in Mangikhuta basalt near the
contact of Karutola and Mangikhuta formations.

The BIF extends for nearly 30-40 m and consists of
alternate meso to micro clay and iron-rich bands.
The maturity of Khairagarh sediments progres-
sively increases from lower Bortalao to upper
Ghoghra Formation. Field study indicates that the
Ghoghra Formation pinches out laterally in both
limbs of the syncline, and underlying Mangikhuta
basalt continues without any overlying sediments
into the Kotima basalt in the centre of the syn-
cline (figure 1d). Khairagarh volcano-sedimentary
sequence was gently folded (dips varying from 10°
to 45°) to give rise to a regional NNE-SSW
trending syncline structure spread in survey of
India toposheets 64 C/11 and 64 C/15. The west-
ern limb of the Sitagota syncline was sinistrally
displaced southwards (toposheet 64 C/12) by the
‘Great Darekasa Fault’ (figure 1d, Sarkar 1957).

Towards the east, the syncline abuts against
buff-coloured, NS trending and vertical dipping
beds of the Chilpi Group (figure 2j, Rao 1981). This
contact between Khairagarh Group and the Chilpi
Group is a major fault, which is evident from
occasional brecciated and silicified outcrops from
Dhara to Karelagarh (figure 1d). Due to its
prominent exposure near Lachhna, we name this
fault as ‘Lachhna Fault’. A NS trending sinistral
‘Borla Fault’ was traced in the field, which runs
parallel to Lachhna Fault (figure 1d).
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Figure 2. Pictures of geological features in and around Sitagota syncline. (a) Dongargarh granite batholith outcrops in
Dongargarh. (b) A visual of fresh Pitepani basalt sample taken from Pitepani village. (c) Bijli rhyolite outcrops near Bagrekasa
village. (d) Mafic enclaves seen in Dongargarh granite outcrop located in Dongargarh town. (e) Bortalao Basal conglomerates
present near Dhara. (f) Conglomerate horizon near Bortalao railway station along Dongargarh Darekasa road. (g) Bortalao
sandstone ridge seen from Dhara water tank. (h) Sitagota basalt outcrops near Dongargarh Darekasa road. (i) Vesicles seen in
Mangikhuta basalt. (j) Chilpi shale outcrops along Khairagarh Lanji road near Lachhna.
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4. Digital elevation map

Figure 3 is a digital elevation map (DEM) of
Sitagota syncline, and its adjacent area prepared
from United States Geological Survey (USGS)
earth explorer digital data of terrain. The digital
data was plotted on ArcGIS Arc Scene application
to get a DEM of Sitagota syncline. DEM represents
absolute vertical elevation of the earth surface that
excludes any surface objects and has wvertical
accuracy of around 0.82 m (www.usgs.gov). DEM
reveals volcano-sedimentary sequence underwent
more than one phase of compression and orogeny
post its deposition. Syncline is elevated towards the
centre with a maximum elevation of around 800 m
(2625 ft). The red-labelled elevations (>600 m)
show a regional NS trend irrespective of formations
of the Khairagarh Group, which indicates an EW
compressive force probably acted on the volcano-
sedimentary sequence giving rise to a NS trending
dome/anticline structure.

5. Geochemistry of Khairagarh volcanics

5.1 Petrography

Petrography of Mangikhuta and Kotima volcanic
samples collected from the centre of the syncline
reveals the presence of quenched, sub-variolitic,
and subophitic-to-ophitic relict igneous textures.
Vesicles are filled with chalcedony and calcite
(figure 4a). Some samples show pseudomorphs
after olivine (7) in a matrix of quenched pyroxenes
and plagioclase, indicating relict porphyritic tex-
tures (figure 4b). Flow top samples reveal relict
quenched texture (figure 4c). Interior of the flow
samples reveal subophitic to ophitic relict igneous
textures where prismatic altered euhedral crystals

of plagioclase are partially to completely enclosed
by fresh magmatic clinopyroxenes, which indicates
cotectic precipitation of clinopyroxene and plagio-
clase (figure 4d). Plagioclase occurs both as
microphenocrysts and in groundmass, shows twin-
ning and occasional sericitization. The glassy
matrix is altered to secondary mineral aggregate
consisting of chlorite, zoisite, clinozoisite, prehnite
and pumpellyite. Few samples contain a good
number of opaque minerals that occur randomly
throughout the section. The reflected light study of
opaque minerals indicates they are typical mag-
matic oxides predominantly Ti-magnetite, skeletal
magnetite, vanadiferous magnetite, ilmenite, and
hematite (figure 4e). Other than these typical
magmatic oxide mineral assemblages, some sulfide
minerals like pyrrhotite, pyrite and chalcopyrite
grains are also seen in some samples (figure 4f) (c.f.
Khare et al. 2024).

5.2 Whole rock analytical techniques

Nine non-vesicular, unweathered, fine-grained and
least altered Mangikhuta and Kotima volcanic
samples collected from Sitagota syncline (location
given in figure 1d) were chosen for whole-rock geo-
chemical analyses. Major oxides and trace element
concentrations were measured on a Wavelength
Dispersive X-ray Fluorescence Spectrometer (WD-
XRF; Bruker, Tiger S8) at the Wadia Institute of
Himalayan Geology (WIHG), Dehradun, India.
Precision of analysis is estimated to be +2-3% for
major oxides and £5-6% for trace elements. Rare
earth elements (REE) and selected trace element
concentrations were analyzed with Perkin-Elmer
SCIEX ELAN DRC-e Inductively Coupled Plasma
Mass Spectrometer (ICP-MS) at WIHG, Dehradun.
Accuracy from 2 to 12%, and precision varying from
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Figure 3. Digital elevation map of Sitagota syncline plotted on ArcGIS from terrain digital data downloaded from USGS earth

explorer.

1 to 8% were obtained. Details of whole rock XRF
and ICP-MS analytical techniques are given else-
where (c.f. Saini et al. 2000; Khanna et al. 2009).
Whole rock major, trace, LOI, REE composition and
CIPW norm of the Khairagarh volcanic samples are
given in table 2.

5.3 Geochemistry

CIPW norm mineralogy reveals all Khairagarh
volcanic samples chosen for analysis are quartz
normative. Plagioclase, orthopyroxene, clinopy-
roxene, orthoclase, and Fe-oxide are the other
major precipitating minerals inferred from norm
mineralogy. Total alkali content of Khairagarh
volcanics is low (Nay,O + K0 < 4.17 wt%), indi-
cating their sub-alkaline nature. SiO, content from
51.19 to 55.25 wt% indicates basalt to basaltic
andesite composition. On the TAS plot of Cox
et al. (1979), Khairagarh volcanics plot in the field
of sub-alkali basalt, basaltic andesite to andesite
(figure 5). Low Nb (<10 ppm) and low Nb/Y ratios
(0.1-0.4) corroborate their sub alkaline tholeiitic to
calc-alkaline nature (Pearce and Cann 1973;
Winchester and Floyd 1977; Hastie et al. 2007). On
Nb/Y ws. Zr/Ti plot after Pearce (1996), Khaira-
garh volcanics plot in the field of sub-alkali basalt
to basaltic andesite (figure 6). TiO, content is
overall low (0.48-0.76 wt%), which indicates they
belong to the low-Ti suite of Asthana et al. (1996).
MgO content is high (6.9-11.2 wt%) while Al,O3 is
relatively low (9.15-14.01 wt%). On Al,O3 vs. MgO
plot after Kersting and Arculus (1994), Khairagarh

volcanics plot in the field of high-Mg basalt
(figure 7), similar to Boninite like composition
reported from modern day arcs (Murton 1989;
Taylor et al. 1994; Li et al. 2022). CaO varies from
4.8 to 10.9 wt%, while FeO(T) varies from 10.2 to
11.6 wt%. On the AFM plot after Winchester and
Floyd (1977), Khairagarh basalt shows a moderate
iron enrichment trend indicating tholeiitic to
transitional affinity (figure 8). However, on TYC
plot after Davies et al. (1979), they show charac-
teristic  transitional to calc-alkaline trend
(figure 9). Due to immobility of Cobalt and Th in
altered rocks, Co vs. Th plot (Hastie et al. 2007) is
drawn for Khairagarh basalt (figure 10). On this
plot, which acts as proxy to K,0-SiO, plot,
Khairagarh volcanics plot in calc-alkaline field.
Therefore, based on relatively immobile element
plot findings, we assign transitional to calc-alkaline
affinity to Khairagarh volcanics. Overall, the whole
rock composition indicates sub-alkaline, low-Ti,
high Mg tholeiitic, transitional to calc-alkaline
basalt-basaltic-andesite to andesite composition of
Khairagarh volcanics.

The chondrite-normalized REE plot is drawn for
Khairagarh volcanics (figure 11) with normalization
values taken from McDonough and Sun (1995). The
plot shows moderate LREE enrichment with respect
to HREE. (La/Sm)y varies from 2 to 3.4, which
indicates moderate enrichment of LREE with
respect to MREE either due to magma source
enrichment with an LREE-enriched melt/fluid or
enrichment of LREE due to magma fractionation.
(Gd/Lu)y varies from 1.3 to 1.8 indicating least
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Figure 4. Photomicrographs of Khairagarh volcanics in transmitted (a, b, ¢, d) and reflected (e, f) light. (a) Photomicrograph
(x10) of Khairagarh volcanics showing presence of chalcedony as vesicle filling mineral. (b) Pseudomorphs after olivine (?) in a
quenched groundmass forming relict porphyritic texture. (c) Photomicrograph (x10) of quenched textures obtained from
Khairagarh volcanics flow top, formed due to rapid cooling of lava on surface that led to formation of dendritic pyroxene grains.
(d) Grains of fresh unaltered pyroxenes, altered plagioclase and opaques showing sub-ophitic to ophitic relict textures (x10). (e)
A reflected light photomicrograph showing typical euhedral magnetite grains exhibiting skeletal to exsolution features with laths
of ilmenite occupying the octahedral cleavage planes of magnetite. (f) A reflected light photomicrograph showing magnetite
grain along with ilmenite lamellae as an exsolution feature substituting the octahedral cleavage of magnetite. Other minerals
include aligned pyrrhotite and chalcopyrite as ductile assemblages.

impact of fractionation and partial melting on 6. Nature of mantle source

their relative abundance. Negative Eu anomaly

indicates plagioclase fractionation from the melt, HFSE ratios remain unchanged due to various
also evident from petrography and normative degrees of partial melting, fractional crystalliza-
mineralogy. tion, alteration, and low-grade metamorphism;
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Table 2. Whole rock major, trace and REE analysis data of Khairagarh volcanic samples collected from centre of syncline,
location given in figure 2(d). Normative mineralogy is given in the table.

Sample # SK13 SK14 SK16 SK17 SK18 SK20 SK21 SK31 SK37
Si04 55.02 54.36 54.65 54.78 52.87 51.19 51.78 52.93 55.25
TiOo 0.65 0.68 0.68 0.67 0.64 0.72 0.48 0.76 0.75
Al,O4 13.55 13.63 14.01 13.38 14.10 12.83 9.15 13.50 12.89
FeoO3 10.33 11.12 11.07 10.74 10.83 11.49 11.61 11.45 10.18
MnO 0.15 0.17 0.17 0.15 0.17 0.19 0.18 0.18 0.16
MgO 6.93 7.46 7.39 7.22 7.72 11.06 11.23 11.00 9.96
CaO 7.84 7.63 8.06 7.69 9.05 6.69 12.91 4.80 5.75
Na,O 1.36 1.90 2.11 1.62 2.11 2.12 1.11 2.01 2.24
K>,0O 2.16 0.97 0.73 1.30 0.86 1.21 1.03 1.00 1.13
P,0Os5 0.09 0.08 0.09 0.08 0.07 0.09 0.05 0.08 0.08
Total 98.08 98.00 98.96 97.63 98.42 97.59 99.53 97.71 98.39
L.O.L 2.53 2.75 2.60 2.72 2.71 4.09 4.06 4.11 3.26
Normative mineralogy

Quartz 14.93 14.82 14.29 16.00 10.47 5.96 9.35 10.94 12.29
Plagioclase 36.00 41.87 44.45 39.10 44.32 39.86 26.33 40.30 40.73
Orthoclase 12.76 5.73 4.31 7.68 5.08 7.15 6.09 5.91 6.68
Diopside 9.44 7.64 8.62 8.44 12.61 6.77 27.77 0.00 3.13
Hypersthene 12.81 15.04 14.41 14.07 13.38 24.41 15.10 27.40 23.36
Olivine 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00
Ilmenite 0.31 0.35 0.35 0.52 0.24 0.29 0.27 0.27 0.22
Hematite 10.33 11.12 11.07 10.74 10.83 11.49 11.61 11.45 10.18
Trace element (ppm)

Y 33 29 28 30 23 31 13 31 27
Ba 268 167 152 239 171 258 29 247 266
Cr 227 215 208 215 195 504 1214 518 514
\Y% 190 208 207 202 236 221 198 223 194
Sc 32 32 33 33 37 33 38 36 36
Co 55 63 57 55 82 61 65 63 66
Ni 97 108 105 105 108 191 229 185 166
Cu 86 89 86 88 107 86 58 67 65
Zn 78 85 84 83 86 85 63 99 80
Ga 16 15 16 18 13 14 11 15 10
Pb 21 12 15 14 4 17 10 8 27
Th 6.5 8.3 7.6 6.2 3.0 6.9 1.2 8.5 74
Rb 93 48 40 64 22 49 1 45 45
U 0.4 0.4 0.5 0.4 0.4 0.4 0.1 0.4 0.4
Sr 141 129 163 150 183 152 65 135 124
Y 33 29 28 30 23 31 13 31 27
Zr 112 117 117 116 70 109 48 130 129
Nb 8 8 8 8 3 8 5 9 9
REE (ppm)

La 18.12 9.33 12.83 7.09 4.00 15.31 6.47 17.54 6.49
Ce 37.24 21.15 30.73 14.44 9.89 35.34 14.12 37.34 14.47
Pr 4.47 2.37 3.31 1.89 1.14 3.90 1.80 4.29 1.94
Nd 16.16 8.56 11.99 6.70 4.37 14.27 6.92 15.64 6.92
Sm 3.39 1.88 2.80 1.43 1.04 3.10 1.74 3.24 1.40
Eu 0.89 0.45 0.68 0.35 0.34 0.75 0.52 0.71 0.27
Gd 3.61 2.03 2.78 1.53 1.17 3.33 1.97 3.47 1.51
Tb 0.55 0.29 0.43 0.22 0.18 0.51 0.33 0.53 0.20
Dy 3.43 1.77 2.26 1.33 1.16 3.02 2.09 3.13 1.16
Ho 0.73 0.39 0.57 0.27 0.25 0.66 0.43 0.67 0.23
Er 1.97 1.06 1.55 0.73 0.65 1.76 1.19 1.80 0.66

Tm 0.30 0.17 0.25 0.11 0.11 0.27 0.18 0.27 0.10
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Table 2. (Continued.)
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Sample # SK13 SK14 SK16 SK17 SK18 SK20 SK21 SK31 SK37
Yb 1.99 1.04 1.64 0.75 0.69 1.79 1.15 1.76 0.71
Lu 0.33 0.18 0.26 0.12 0.11 0.28 0.17 0.29 0.11
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Figure 5. TAS plot of Khairagarh volcanics after Cox et al.
(1979). Brown data points in plot taken from Khare and
Asthana (2020). Khairagarh volcanics are sub-alkaline and
plot in the fields of basalt, basaltic andesite to andesite.
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Figure 6. Nb/Y wvs. Zr/TiOz plot of Khairagarh volcanics after
Pearce (1996). Brown data points in the plot were taken from
Khare and Asthana (2020). Khairagarh volcanics plot in the
field of basalt and basaltic andesite.

therefore, they give insights into the nature of
mantle source. Table 3 presents HFSE ratios of
Khairagarh volcanics, Fertile MORB Mantle
(FMM), Primitive Upper Mantle (PUM), Enriched
Upper Mantle (EUM) and Ocean Island Basalt
(OIB) (c.f., McDonough and Sun 1995). Overall,
HFSE ratios indicate mantle source with an ele-
mental ratio close to PUM. CaO/TiO, ratios vary
from 6 to 23, while Al,O3/TiO, vary from 15 to 22,
which indicates a non-refractory fertile mantle
source of Khairagarh volcanics.

AR2O3 (Wt%)

Figure 7. Al,O3 vs. MgO plot of Khairagarh volcanics after
Kersting and Arculus (1994). Brown data points in the plot
were taken from Khare and Asthana (2020). All samples plot
in the field of high-Mg basalt.

A4

Na20 + K20 MgO

Figure 8. AFM plot of Khairagarh volcanics after Winchester
and Floyd (1977). Volcanics show moderate iron enrichment
tholeiitic trend. Brown data points in the plot were taken from
Khare and Asthana (2020).

7. Discussion

The beginning of the Proterozoic era in the northern
Bastar Craton was marked with widespread Nand-
gaon bimodal volcanism, Dongargarh granite intru-
sion, followed by mafic magmatism in the Khairagarh
basin. U-Pb dating by Manikyamba et al. (2016) has



J. Earth Syst. Sci. (2024)133 160

TiO2 * 100
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Figure 9. TYC plot of Khairagarh volcanics after Davies et al.
(1979). Volcanics show an overall trend transitional between
tholeiitic and calc-alkaline. Brown data points in the plot
were taken from Khare and Asthana (2020).

revealed near similar ages of Dongargarh granite
(~2.5 Ga) and Bijli rhyolite (~2.48 Ga). U-Pb zircon
geochronology by Khanna et al. (2019) has revealed
the 2463 + 45 Ma age of the Bortalao Formation,
which marked the first phase of sedimentation in the
Khairagarh basin. Bortalao Formation and its base-
ment have near similar age, which indicates a major
rapid crust formation event in northern Bastar Craton
at around 2.4-2.5 Ga, which led to intrusion of Don-
gargarh granite, bimodal Bijli rhyolite volcanism and
rifting of continental crust, resulting in formation of
Khairagarh basin. U-Pb dating of Khairagarh sedi-
ments by Khanna et al. (2019) has revealed ~ 2453 Ma
age of Karutola sandstone and ~2210 Ma age of
Ghoghra sandstone, which indicates that sedimenta-
tion and volcanism in Khairagarh basin continued for
around 243 million years.

7.1 Tectonomagmatic model

Our geochemical work reveals quartz normative,
sub-alkaline, transitional to calc-alkaline, high-Mg
basalt to basaltic andesite composition of Mangi-
khuta and Kotima volcanic formations. NMORB
normalized incompatible element plots drawn for
Khairagarh volcanic samples (figure 12) reveal
negative anomaly of Nb with respect to Th, U and
K50. Enrichment of LILE (K50, U, Th) and LREE
(Ce, Nd, Sm) compared to HFSE of similar com-
patibility (Nb, Zr, Ti and Y) indicates enrichment
of LILE and LREE in the mantle source of
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Figure 10. Co vs. Th plot of Khairagarh volcanics after Hastie
et al. (2007). All samples plot in the field of calc-alkaline
basalt. Brown data points in the plot were taken from Khare
and Asthana (2020).

Khairagarh volcanics, which could be attributed to
either fluid flux enrichment of the mantle source
or to metasomatic and magma mixing processes.
Slight enrichment of LREE with respect to HREE
in REE plot (figure 11) can be attributed to both
arc and continental rift setting. On Co ws. Th plot
(figure 10), Khairagarh volcanics plot in calc-al-
kaline field indicating their genesis either in supra-
subduction zone or due to magma mixing. On Zr
vs. Ti plot (figure 13), Khairagarh volcanics plot
in field of arc lava. However, on Ti vs. V plot
(figure 14), Khairagarh volcanics plot in field
transitional between arc and MORB. Ti/V in some
samples is more than 20, which indicates their
calc-alkaline character. From such contrasting
geochemical signatures, we conclude that tectono-
magmatic inferences solely drawn from geochemi-
cal data of volcanics can lead to misleading
inferences, if not substantiated by field relations.
Besides, tectonomagmatic models for the genesis of
Phanerozoic igneous provinces cannot be super-
imposed on Archean Paleoproterozoic provinces.
Several previous workers (Asthana et al. 1996;
Neogi et al. 1996; Khanna et al. 2019) have inferred
rift basin, back-arc basin to Andean type supra-
subduction zone tectonic environment for Khaira-
garh  Group. Neogi et al (1996) inferred
stable continental margin environment of Khaira-
garh sediments, which is distinct from trench/arc
sediments. Field investigation of the Sitagota syn-
cline reveals the presence of intertrappean ferrug-
inous shales and thin Algoma-type BIF beds in
Mangikhuta basalt, besides the presence of sul-
phide and oxide mineralization in volcanics. Such
BIFs are chemically precipitated sediments with
alternate thin layers of Fe minerals and chert
(Gourcerol et al. 2016). Local deposition of
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Figure 11. Chondrite normalized REE plot of Khairagarh volcanics with normalization values taken from McDonough and Sun
(1995). Mild enrichment of LREE and negative Eu anomaly seen in the plot.

Table 3. HFSE ratios of Khairagarh volcanics compared with HESE ratios of fertile MORB mantle (FMM), Primitive Upper
Mantle (PUM), Enriched MORB (EMORB) and Ocean Island Basalts (OIB). The HFSE values taken from McDonough and Sun
(1995).

Element ratio FMM  PUM  EMORB  OIB  Current study = Khare and Asthana (2020)  Khanna et al. (2019)
Zr /Nb 32 16 9 6 10-23 11-15 16-17

Ti/Zr 130 116 82 61 34-60 34-39 43-54

Ti/V 13 15 40 15-23 19-22 14-33

Zr/Y 2.6 2.5 3.3 97 3-6 5-6 5-6

Algoma-type BIF is a common feature of Eoarch-
ean Paleoproterozoic volcano-sedimentary sequen-
ces in greenstone belts. Such a BIF deposition
model corresponds to semi-closed Khairagarh basin
with extensive volcanism and hydrothermal fluids
(c.f. Bekker et al. 2010; Gourcerol et al. 2016).
Radiating mafic dyke swarms reported in this area
have geochemical and geochronological similarities
with the Khairagarh volcanics. Such dykes indicate
a rift rather than subduction zone tectonic envi-
ronment for Khairagarh basin. Therefore, based
on geochronology, field geological and geochem-
ical data, we infer rifting in stable continental
crust led to the genesis of the Khairagarh basin,
which led to the deposition of continent-derived
sediments and massive mafic magmatism
(figure 15a). The presence of calc-alkaline and
quartz normative composition of Khairagarh
volcanics is consistent with an evolved or late
stages of a continental rift. Arc-related geo-
chemical signatures of Khairagarh mafics could
be due to its spatial and temporal proximity to
Dongargarh Kotri mobile belt, which some
workers infer as a paleo subduction zone. From a
modern plate tectonics perspective, the rapid
opening of stable continental crust along a con-
tinental margin could be due to the formation of
a back-arc basin, although the nature of plate
tectonics, size of plates, and prevailing geother-
mal gradients in Archean Proterozoic times vis-
a-vis Phanerozoic are little understood.

7.2 Post emplacement deformation

Our current and previous work reveals the ubiqui-
tous presence of chlorite, zoisite, prehnite, and
pumpellyite mineral aggregates in Khairagarh vol-
canics, which, along with the absence of schistosity
and foliations in them, indicates their very low-grade
regional metamorphism. Previous work by Patel
et al. (2008) and Khanna et al. (2019) has established
alteration and very low-grade metamorphism of
Khairagarh volcanics. However, field investigation
and regional structures inferred from DEM indicate
several phases of orogeny undergone by volcano-
sedimentary succession post its deposition in the
Khairagarh basin. Khairagarh sediments gradually
mature from the lower Bortalao to the upper Karu-
tola and Ghoghra formations. The lower Bortalao
Formation consists of conglomerates, arenites,
arkosic sandstone, arenites, upper conglomerates,
and tuffaceous sandstones (Sarkar 1957, 1994)
whereas upper Karutola and Ghoghra sandstone
formations consist of quartz arenite and sub-arkosic
arenite (Chakraborty and Sensarma 2008; Khanna
et al. 2019). Sarkar et al. (1994) and Sensarma
(2007, 2011) reported relation of Mangikhuta and
Sitagota volcanics through fractionation, although
several previous workers (Sarkar 1957; Rao et al.
1981; Longjam and Talat 2012) classified each vol-
canic unit as a separate lithostratigraphic unit.
Sensarma and Mukhopadhyay (2014) reported the
absence of any discordance between the volcanic and
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Figure 12. NMORB normalized incompatible element plot of Khairagarh volcanics. Th and U are enriched with respect to Nb.
Ce is enriched with respect to Sr. Ti is depleted with respect to elements of similar compatibility. Normalization values are taken
from Pearce and Parkinson (1993). Brown curves are plotted from Khare and Asthana (2020).
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Figure 13. Khairgarh volcanics plotted on Zr vs. Ti plot after
Pearce (1982). Ti shows coherent increasing trend with
fractionation. All samples plot in the field of arc lava. Brown
data points in plot taken from Khare and Asthana (2020).
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Figure 14. Ti vs. V plot of Khairagarh volcanics after Shervais
(1982). Brown data points in plot taken from Khare and
Asthana (2020).

sedimentary formations of the Khairagarh Group.
Khanna et al. (2019) inferred that Khairagarh vol-
canics formed in a few tens of million years, although

no geochronology data exists for Khairagarh vol-
canics. Our previous relict clinopyroxenes chemistry
study (Khare and Asthana 2020; Khare et al. 2022)
indicates the formation of Mangikhuta high-Mg
andesite from fractionation of Kotima high Mg-
basalt, which supports the findings of Khanna et al.
(2019). It also validates the findings of Sensarma and
Mukhopadhyay (2014) that volcanic are related by
fractionation. With this perspective, we present a
tectonomagmatic model (figure 15) for the genesis of
Khairagarh volcano-sedimentary basin. This model
proposes rapid opening and closure of continental
crust in the northern Bastar Craton from ~2.46 to
2.2 Ga. EW trending extension tectonics and rifting
in the northern portion of Bastar Craton around 2.46
Ga led to the formation of the Khairagarh basin in
which Bortalao sediments were deposited near the
shore, whereas Karutola and Ghoghra sediments
were deposited away from the shore (figure 15a). The
Bortalao and Karutola sediments give overlapping
U-Pb zircon ages (around 2.51-2.4 Ga and 2.48-2.4
Ga, respectively). The sediments were derived
from a continental basement made of mafic and
felsic rocks (Sarkar 1957, 1994; Sensarma and
Mukhopadhyay 2014). Magmatism from the centre
of the basin led to the deposition of primitive Kotima,
basalt towards the centre and fractionated Mangi-
khuta basaltic andesite towards the shore (c.f. Khare
and Asthana 2020; Khare et al. 2022). The discor-
dance between sediments and volcanics is not
reported by any worker. Rifting in continental crust
was followed by volcanism and sedimentation. Later
onset of EW compression led to the closure of the
Khairagarh basin (figure 15b). We correlate this
opening and closure of Khairagarh basin to a NS
trending Paleoproterozoic Dongargarh Kotri mobile
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Figure 15. Tectonomagmatic model of Khairagarh basin illustrating (a) rifting, sedimentation, magmatism and formation of
radiating dykes, (b) closure of Khairagarh basin due to EW compressive forces of Dongargarh Kotri mobile belt and
(c) formation of regional Sitagota syncline structure due to Mesoproterozoic central Indian tectonic zone (CITZ).

belt in the Bastar Craton (c.f. Ramakrishnan and
Vaidyanathan 2010). Later, the second phase NS
trending compressive regime led to the formation
of NE-SW trending Sitagota syncline with the
previous generation folds forming its two limbs
(figure 15¢). The second phase compression led to
the deformation and development of 12 major NS
trending faults affecting the limbs and hinges of
the syncline (Sarkar 1957). The NS trending
Darekasa fault in the western limb of syncline
(Sarkar 1957) and another prominent NS trending
Lachhna fault towards the east of syncline indicate
a regional NS compressive force operating in
northern Bastar Craton, which was probably due
to the collision of north Bastar Craton with Bun-
delkhand Craton manifested as a prominent EW
trending Mesoproterozoic Central Indian Suture
Zone (Yedekar et al. 1990; Acharyya 2003). Ghosh
et al. (2006) performed microstructural analyses
and grain-scale measurements of Sitagota syncline
sediments and reported two sets of cleavage fab-
rics peculiar to a low-grade low-strain belts. The
ubiquitous presence of very low-grade metamor-
phic mineral assemblages (prehnite, pumpellyite,
chlorite) in Khairagarh volcanics indicates that
the Mangikhuta, Kotima and lower Sitagota vol-
canic formations did not undergo high P-T
transformation, and the alteration and very low-
grade metamorphism took place at near surface
conditions.

7.3 Global implications

Previous workers (Rogers and Santosh 2003; Long-
jam and Talat 2012) relate Paleoproterozoic rapid
crustal growth of Bastar Craton to its association
with Ur supercontinent. However, paleomagnetic
dyke swarm data of neighbouring Singhbhum Cra-
ton in the Indian shield indicates its ancestry to
Vaalbara supercontinent (Kumar et al. 2017). Rift-
ing and mafic magmatism similar to Khairagarh
basin is reported from coeval Lower Wyloo Group in
Pilbara Craton and Hekpoort and Ongeluk basalt
formations of Transvaal basin in Kaapvaal Craton
(Eglington and Armstrong 2004; Humbert et al.
2018, 2020), which constitute Vaalbara supercon-
tinent. Therefore, we propose areal extent of
Vaalbara supercontinent (de Kock et al. 2009;
Smirnov et al. 2013; Kampmann et al. 2015;
Kumar et al. 2017) from Kaapvaal Craton in south
Africa through Bastar Craton and Singhbhum
Craton in Indian shield to Pilbara Craton in Aus-
traliain the Neoarchean Paleoproterozoic (2.8-2.1
Ga) times.

8. Conclusion

The following conclusions are drawn from the
geological study of Khairagarh Group rocks in
Sitagota syncline.
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1. The volcanic rocks towards centre of syncline
are sub-alkaline, low-Ti, high-Mg basalt to
basaltic andesite with geochemical characteris-
tics varying from tholeiitic, transitional to calc-
alkaline. The mantle source of volcanics was
enriched to primitive upper mantle.

2. Fe-oxide and Cu-sulphide mineralization is
reported in Mangikhuta basalt formation of
Khairagarh Group. Intertrappean shale and
Algoma-type BIF beds are present in this vol-
canic formation. Tectonomagmatic model indi-
cates rifting of stable continental crust led to
sedimentation, massive mafic magmatism, and
genesis of Khairagarh Group.

3. The Sitagota syncline is elevated towards the
centre with a maximum elevation of around 800
m. The Khairagarh basin underwent EW and
NS compression and orogeny probably related
to Paleoproterozoic DKMB and Mesoprotero-
zoic CITZ, respectively. NS compression led to
the genesis of sinistral NS trending Lachhna,
Borla and Darekasa faults. However, Khaira-
garh volcanic formations did not undergo high
P-T transformation and most of the alteration
and very low-grade metamorphism took place at
near surface conditions.

4. The areal extent of Vaalbara supercontinent
extended from Kaapvaal Craton in south Africa
through Bastar Craton and Singhbhum Craton
in Indian shield to Pilbara Craton in Australia
in the Neoarchean Paleoproterozoic (2.8-2.1
Ga) times.
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