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With the high demand for fossil fuels, exploring the frontier areas for hydrocarbon reserves has become
imperative. The recent discoveries in Gojalia, Sonamura, Baramura, and Sundalbari Belds emphasize the
need to explore additional anticlinal structures in Tripura for hydrocarbon exploration. Tulamura
anticline (the study area) produced gas from Upper Bhuban, establishing hydrocarbon prospectivity in
the northern part, but the southern part remains largely unexplored. An electro-log interpretation
revealed the presence of sand facies deposited in a Bning upward sequence, suggesting channel deposition.
An integrated geophysical approach using seismic inversion and machine learning techniques was per-
formed to delineate and characterize the litho-facies dispersal patterns in the Tulamura Beld. Spectral
decomposition (12, 20 and 28 Hz) of stacked seismic data were RGB (red-green-blue) blended, revealing
the southward striking channel geometry of the Bhuban Formation at a depth of 2220 m. The 3D
P-impedance and Vp/Vs ratio volumes were estimated using the model-based pre-stack seismic inversion.
Inversion results help discriminate among sand, shale and siltstone litho-facies. Petrophysical property
(effective porosity) was predicted by combining the post-stack seismic attributes and well-log data using
neural network modelling. The identiBed sand facies within the channel geometry exhibit relatively
moderate to low P-impedance (9800–10600 m/s * gm/cm3), low Vp/Vs ratio (1.68–1.76), and moderately
high eAective porosity (8–13%) from surroundings, indicating favourable conditions for hydrocarbon
accumulations. Shale between channels and major faults can create favourable stratigraphic entrapment,
while an upward Bning sequence suggests an intact top seal. This study advocates an integrated approach
involving geophysical inversion and machine learning to identify optimal conditions for hydrocarbon
accumulation within sand facies, supported by structural and stratigraphic entrapment.

Keywords. Reservoir characterization; machine learning; pre-stack inversion; petrophysical properties;
Tripura–Cachar Fold Belt.
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1. Introduction

India ranks third globally in oil/gas consumption,
around 5 million barrels per day, with a yearly
demand growth of 3–4%. Hydrocarbon exploration
in India was initiated in the middle of the nine-
teenth century and geared up with commercial oil
production in Assam in 1889. Since then, several
Belds in northeast India with proven oil/gas
reserves have been explored. Previously, various
geoscientists have applied many conventional geo-
physical methods to identify and delineate the
responsible factors for hydrocarbon accumulations
(Darijani et al. 2019; Narayan et al. 2022a, b,
2023b). However, these methods provide limited
insights regarding the characteristics of the differ-
ent litho-facies at depth (Biswas et al. 2014). In the
recent past, several studies have demonstrated the
successful application of inversion and machine
learning algorithms integrating seismic and wire-
line log data to minimize the risk involved in
hydrocarbon exploration (Kumar et al. 2016; Gogoi
et al. 2018; Narayan et al. 2022a, b). Tulamura
anticline is a linear, NNW–SSE trending, doubly
plunging, asymmetric anticline, about 40 km long
and 18 km wide at its widest part (Bgures 1 and 2).

The study area has experienced intense folding,
faulting, and thrusting during post-collision oro-
geny (Murty 1983; Naik et al. 2001). In general, the
thick clastic sequence of Tertiary sediments rep-
resents the stratigraphy of the study area. Based
on the relative abundance of coarse and Bner
clastics presence, the Bhuban Formation (Early to
Middle Miocene) was subdivided into three mem-
bers such as Lower Bhuban, Middle Bhuban and
Upper Bhuban (Evans 1932).
In the present study, we applied various cutting-

edge geophysical and machine learning tools on
high-resolution 3D seismic and well-log data to
delineate and characterize the possible dispersal
pattern of the hydrocarbon-containing sandstone
facies in the study area. Spectrally decomposed
seismic data was initially analyzed to bring out
possible channel geometry. Then, the seismic
inversion method was used to calculate the rock
parameters to identify and characterize the litho-
facies. The acoustic impedance and Vp/Vs ratio
were estimated by performing pre-stack seismic
inversion (Latimer et al. 2000). In general, acoustic
impedance is a good indicator of lithology. In
contrast, the Vp/Vs ratio indicates the presence of
Cuid types within the reservoir rock.
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Figure 1. Tectonic map of northeast India. The study area (Tulamura Beld) is shown by the red rectangle. MH: Mikir Hill, SP:
Shillong Plateau, DF: Dauki Fault and DuF: Dupitila Fault.

  135 Page 2 of 16 J. Earth Syst. Sci.         (2024) 133:135 



Moreover, the Vp/Vs ratio also discriminates
between sand and shale facies based on their dis-
tinct magnitude response. Generally, channel fea-
tures consist of porous sands that create more
accommodation space for the concentration of
hydrocarbon and mineralization Cuids (Bhat-
tacharjee et al. 2017). Therefore, porosity estima-
tion is crucial to assess the sand quality and the
Cuids’ holding capacity. The neural network-based
tool allows additional inputs from the seismic and
well-log data to generate the target outcomes
(Hami-Eddine et al. 2009; Singh et al. 2016; Pandey
et al. 2020; Dixit et al. 2020; Narayan et al.
2023a, b). The primary objective of the present
study is to delineate the possible channel geometry
within the Bhuban Formation in the Tulamura
Beld and its characterization based on petrophysi-
cal properties derived using joint inversion and
machine learning methods. This study in Tula-
mura anticline, Tripura, unveils a promising lead
for hydrocarbon exploration. The Cowchart for

Figure 2. The DEM map shows the topographic variation in
the study area. Red represents topographic high, and blue
represents topographic low.
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Figure 3a. Methodology Cowchart for the delineation and reservoir characterization of Middle Bhuban in Tulamura anticline,
Assam Basin.
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delineation and reservoir characterization of the
Bhuban Formation in Tulamura anticline, Assam
Basin, is shown in Bgure 3(a).

2. Geology of the study area

2.1 Regional tectonics

The Assam and Assam Arakan Basin evolved due to
rifting and drifting of the Indian plate towards the
north andnortheast after theGondwanaland break up
during the Cretaceous (Murty 1983; Naik et al. 2001;
Narayan et al. 2023b, d). Indian subcontinent drifting
caused Indian plate subduction below the Burmese
plate. Oblique subduction of the Indian plate initiated
the closing of the Neo-Tethys Ocean on the northeast
and then gradually progressed southward. The west-
wardmigrationof theprismcomplexextended into the
Tripura–Cachar Fold Belt (TCFB) as the Neogene
Accretionary Prism (Dasgupta and Nandy 1995).
Initiation of structuration is considered to have
occurred during the Mio-Pliocene, probably after the
deposition of the Tipam Formation (Mohan and
Pandey 1973).Detachment folding is the predominant
mechanism of fold formation in the Tripura area.
Several major anticlinal structures have been identi-
Bed in Tripura through remote sensing studies and
systematic geological mapping, and Tulamura anti-
cline is among them.

2.2 Stratigraphy

The generalized litho-stratigraphy of the Tripura–
Cachar area is shown in Bgure 3(b). A thick succession
of argillaceous and arenaceous sequences represents
the Neogene sediments of the Miocene Surma Group
(Nandy et al. 1983). Surma Group is unconformably
overlain by dominantly arenaceous Tipam Formation
deposited in a Cuvial environment. The Surma Group
of sediments is further subdivided into Bhuban and
Bokabil Formations. Bhuban Formation was further
subdivided into three members: Lower Bhuban, Mid-
dle Bhuban, and Upper Bhuban, depending upon the
relative abundance of coarser and Bner clastics (Evans
1932). Bokabil Formation of Late Miocene to Early
Pliocene age overlies the Bhuban Formations. Lower
and Upper Bhuban Formations are more arenaceous
than the Middle Bhuban, which is dominantly
argillaceous, comprising mainly mudstone, shale,
shale-siltstone alternation, and shale-sandstone alter-
nation. The Surma Group of sedimentary succession
lacks age-diagnostic fauna and marker horizons;
hence, biostratigraphy control is minimal. During the
Middle Eocene to Early Miocene, the collision of the
Indian platewith theBurmese plate andTibetanplate
resulted in a major switch in sedimentation pattern
over the Bengal Basin (Pal et al. 2016; Narayan et al.
2021, 2022a, b). The TCFB has undergone several
stages of sedimentation. SurmaGroup sediments were
deposited inadeltaic setting (HoltropandKeizer1970;

Age Formation Approx
Thickness Dominant Lithology

Early
Pliocene Tipam 720 m Mainly arenaceous with shale and

siltstone interlamination

Late
Miocene Bokabil 900m Dominantly shale/claystone with few

sandstone beds

Middle
Miocene

Upper
Bhuban 550m Mainly sandstone with alternation of

thick shale with siltstone

Early
Miocene

Middle
Bhuban 700m Dominantly argillaceous sequence with

siltstone and sandstone intercalations

Lower
Bhuban 1200m

Mainly arenaceous with siltstone

interlamination and few thick shale

sequences

(b)

Figure 3b. Stratigraphic chart of the Tripura–Cachar Fold Belt.
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Johnson and Nur Alam 1991) with occasional marine
transgressions (Seshavataram et al. 1998).Most of the
sand facies in Tripura are heterogeneous and lenticu-
lar. The sedimentological studies indicate that the
Middle Bhuban sediments were deposited in the delta
front environment. In contrast, the Upper Bhuban
sediments in the area are believed to be deposited
under marginal marine in the mouth bar to distal bar
regime (Dutta 1993) with Cuctuating sea levels. Sand
facies consisting of channels, distributary mouth bars,
tidal bars and channel lobes are expected to occur
under this depositional setup.

3. Data used

The 3D survey (southTulamura anticline) covers an
area of around 50 km2 of pre-stack seismic data. The
seismic data used for the study is the processed pre-
stack time migration (PSTM) gathered in the time
domain. It is found that the event is dipping at the
far oAset (Bgure 4a), which warrants gathering
seismic data conditioning. To improve the quality of
input seismic gathers, data conditioning through
radon Bltering was performed to remove the random
noise. Subsequently, mild trim statics were applied
for the event Cattening. Figure 4(b) shows the seis-
mic gather data quality improvement after condi-
tioning. Further, well-to-seismic calibration was
carried out to tie the formation tops marked at well
with seismic reCectors (Bgure 4c). Three horizons
(Upper, Middle and Lower Bhuban) have been
mapped using the stacked seismic data. Fig-
ure 5(a) shows a representative seismic section
showing the structural and stratigraphic conBgu-
ration of the Tulamura anticline. Frequency band-
width between 8 and 48 Hz was found in the zone of
interest (Bgure 5b). The time structure map at the
top ofMiddle Bhuban is depicted in Bgure 5(c). This
two-way time structure map demonstrates the dis-
tinct anticlinal high signature bounded by the two
longitudinal NNW–SSE trending thrust faults
(Bgure 5c). The time range for the Middle Bhuban
horizon varies from 1936 ms at anticline Canks to
569 ms at anticline crest. Faults are considered
conduits and play a key role in Cuid movement.
Major faults with a substantial throw also restrict
Cuid movement and provide suitable entrapment
conditions.
The only well (W-1) in the study area has a

variety of recorded logs, viz., gamma-ray (GR),
P- and S-waves (sonic wave velocity (DT) and
shear wave velocity (DTSM)), density (RHOB),

resistivity and porosity throughout the Bhuban
Formation. Depth matching between logs of a
particular well is the Brst step for arriving at an
accurate petrophysical evaluation. The well-log
panel, comprising gamma-ray, density, resistivity,
neutron porosity, P-impedance, Vp/Vs ratio, and
eAective porosity (PHIE), were studied to recog-
nize the thickness of the sandstone facies from
Middle Bhuban (2230–2340 ms). It is found that
the identiBed sandstone facies were deposited in a
Bning upward sequence (Bgure 6a).
Well-based reservoir characterization was initially

performed by cross-plotting the P-impedance vs. Vp/
Vs ratio and P-impedance vs. eAective porosity, col-
our-coded with litho-facies logs (Bgure 6b, c). It is
found that the targeted sand facies correspond to the
relatively low Vp/Vs ratio (1.6–1.8) and high eAec-
tive porosity (10–20%) response with respect to shale
and siltstone facies. On the other hand, it was also
found that the sand, siltstone, and shale facies over-
lap in P-impedance response. Taking the lead from
the above analysis, we attempted to delineate and
characterize the sand facies using seismic-derived
elastic and petrophysical properties.

4. Methods

4.1 Spectral decomposition and RGB blending

Spectral decomposition is also one of the most
eAective techniques for delineating channel geom-
etry and its continuity (Chopra and Marfurt 2016).
The wavelet transform technique known as the
continuous wavelet transform (CWT) is exten-
sively useful in the spectral decomposition of seis-
mic data. Mathematically, the CWT technique is
expressed as the inner product of the wavelet
family wr,s(t) with the signal u(t).

Swðr; sÞ ¼
1
ffiffiffi

r
p

Z

1

�1

uðtÞw t � s
r

� �

dt ð1Þ

where w is the complex conjugate of w, and Sw is
the time scale map used to extract the instanta-
neous frequency. s is the time shift applied to the
mother wavelet, and r is the scale.
Spectral decomposition is the most eAective

technique for delineating channel geometry and its
continuity (Chopra and Marfurt 2016). The PSTM
stacked seismic data contains a frequency band-
width of 8–48 Hz with a dominant frequency of
26 Hz (Bgure 5a, b). Considering this, we have
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generated iso-frequency volumes of 12, 20, 28 and
36 Hz. RGB (red-green-blue) blending of the
spectrally decomposed (12, 20 and 28 Hz) seismic
amplitude illuminates a southward trending chan-
nel geometry (Bgure 12a). Moreover, the identiBed
channel feature must be characterized using
advanced seismic attributes to ascertain the pres-
ence of good sand facies within the channel. The
shale facies present in the surroundings of the

channel geometry will provide the lateral seal to
restrict the Cuid Cow that may contain
hydrocarbons.

4.2 Pre-stack seismic inversion and P-impedance
and Vp/Vs ratio estimation

Several authors have discussed pre-stack seismic
inversion methods to obtain reliable estimates of

Figure 4. Seismic gather data. (a) Vintage processed seismic gather, (b) conditioned seismic gather and (c) noise. (d) Well to
seismic tie using pre-stack seismic data for the zone of interest (marked yellow dotted box). A good correlation was achieved
between the synthetic and the actual seismic.
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P-impedance, S-impedance, density and Vp/Vs
ratio (Simmons and Backus 1996; Buland and
Omre 2003; Hampson et al. 2005; Russel et al. 2006;
Zhang et al. 2011; Xiao et al. 2020; Sun et al. 2022).

This research used model-based inversion to esti-
mate the acoustic impedance and Vp/Vs ratio
volumes. The discussion about the detailed
methodology for estimating the P-impedance and

Fault-1

Fault-2

Tulamura Anticline

 Well

(c)

Figure 5. (a) The inverse seismic section passing through well W-1 demonstrates the formation tops and major and minor faults.
(b) Frequency bandwidth between 8–48 Hz was found in the zone of interest. (c) The structure map at the Middle Bhuban top
shows the Tulamura anticline and structure-bounding thrust faults.
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Vp/Vs ratio is beyond the scope of this paper. This
study found a suitable wavelet time length of 160
ms, requiring a seismic window of 500 to 600 ms
for reliable inversion. Including shallower seismic
responses in wavelet estimation captures the

inCuence of lithologies encountered by seismic rays.
However, readers seeking detailed information
regarding the pre-stack inversion process may refer
to the research articles by Fatti et al. (1994),
Hampson et al. (2005) and Russel et al. (2006). We
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Figure 6. (a) Well-log panel showing various log signatures. Gamma-ray log interpretation indicates thick sand facies deposited
in a Bning upward sequence at the Middle Bhuban base. (b)Well-based cross-plot between P-impedance vs. Vp/Vs ratio and (c)
P-impedance vs. eAective porosity (PHIE), indicating the characteristics of the sand (yellow), siltstone (brown) and shale facies
(green).
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adopted the workCow to invert the 3D pre-stack
seismic data shown in Bgure 7.
This study carried out pre-stack seismic inver-

sion to generate P-impedance and Vp/Vs ratio
volumes. The accuracy of the inverted results was
evaluated through cross-plot analysis and com-
parison with log signatures at the well point
(Bgure 8a–c). A linear relationship with good cor-
relation (P-impedance: 87.8% and Vp/Vs ratio:
93.1%) was found between the inverted and actual
logs with errors of nearly 337 m/s * gm/cm3 and
0.23, respectively. The estimated P-impedance and
Vp/Vs ratio inline sections passing through well
(W-1) overlaid with log P-impedance validate the
inverted outcomes (Bgure 9a, b). The target sand
facies are characterized by relatively moderate
P-impedance (9800–10600 m/s * gm/cm3) and low
Vp/Vs ratio (1.68–1.76), as shown in Bgure 9(a, b).
It is also found that the Vp/Vs ratio and P-impe-
dance attributes eDciently discriminate between
the sand and shale facies.

4.3 Multilayer perceptron (MLP) modelling
and effective porosity prediction

The perceptron is a widely used neural network
approach for binary problem-solving. It utilizes
activation functions that exhibit monotonically
increasing behaviours (Van der Baan and Jutten
2000; Dixit and Mandal 2020; Narayan et al.
2023a, c). As a fundamental model, the perceptron

serves as a mathematical representation of how the
human mind operates. It receives input informa-
tion from the input layer (seismic attributes),
applies weights to the inputs, calculates their sum,
passes the result through an activation function,
and generates an output in the output layer. The
network’s performance is assessed based on its
number of hidden layers. InsufBcient hidden layers
can lead to poor performance. In contrast, exces-
sive hidden layers may cause the network to merely
memorize the training data and fail when presented
with unknown datasets (McCormack 1991).
To create an improved multilayer perceptron

(MLP) model, adjustments are required to the
number of neurons in the hidden layers, in addition
to appropriately updating the weights based on the
complexity of the problem at hand (Van der Baan
and Jutten 2000; Hami-Eddine et al. 2009).
Assuming the input vectors as x1, x2, ..., xn, and the
corresponding weights as w1, w2, ..., wn, the output
of a perceptron can be represented by the following
equation:

y ¼
X

n

i¼1

wixi þ bias: ð2Þ

It can also be written as,

y ¼ wtx þ bias: ð3Þ

The difference between the expected and
actual output is minimized through iterative

Seismic Data 
(Processed)

Well log Data          
(Sonic, Shear & Density)

Horizon mapping Log preparationWell correlation and 
Wavelet

Initial Model             
 (Low Frequency Model)

Inversion Analysis

P-Impedance &
 Vp/Vs ratio

Figure 7. WorkCow adopted for the inversion of pre-stack seismic data.
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back-propagation learning (Singhetal. 2016;Dixitand
Mandal 2020). Seismic attributes (listed in table 1)
involve diverse mathematical transformations

of seismic trace data, enhancing predictive
capabilities and pattern recognition through the
nonlinear responses of attributes during MLP

(a)

(b) (c)

P-imp S-imp Density Vp/Vs

W-1

Figure 8. (a) Inversion analysis using single trace seismic attribute showing good correlation between original and inverted
impedance/(Vp/Vs) ratio and lower synthetic error at well W-1. The wavelet used in this inversion process is shown in the inset.
(b, c) Cross-plot results indicate a linear relationship between the inverted P-impedance/(Vp/Vs) ratio and the actual
P-impedance/(Vp/Vs) ratio.
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model training (Hampson et al. 2005). Before the
combination, all input data were randomized and
standardized to eliminate any potential bias. The
model is trained using 75% of the input data, while
the remaining 25% is left out for validation

(testing) purposes. Sensitivity analyses identiBed
vital features in eAective porosity prediction and
found that each attribute significantly contributes
to property prediction. Among all input attributes,
we found that the P-imp attribute has more feature
importance than the other attributes (Bgure 10a).
The correlation coefBcient between initial and
predicted PHIE values was 94.1% (Bgure 10b).
The trained model achieved the lower mean
absolute error (MAE) (*0.015) and average loss
(*0.005) on the test data (Bgure 10c and d). MAE
measures how close the predicted values are to the
actual values on average. A lower MAE indicates
better accuracy, representing a smaller average
deviation from the actual values. The high
correlation coefBcient and reduced errors
demonstrate the model’s eDcacy in predicting
PHIE volume. After getting an error below an
acceptable threshold, the predicted PHIE was
accepted, and the PHIE volume was generated.
The predicted PHIE values closely matched the
overlaid log PHIE strip. The PHIE measures the
interconnected pore spaces in the sedimentary
rock. The PHIE eDciently discriminates between
the sand facies (relatively high PHIE) and shale
facies (very low PHIE) and signiBes the quality of
sand facies. We found a high-PHIE (8–13%)
response for the target sand zone (Bgure 11).

W E W E
W-1

2.00 1.80 1.60

VpVs ratio

Fault

Time W-1

Middle Bhuban

Lower Bhuban

Upper Bhuban

Middle Bhuban

Lower Bhuban

Upper Bhuban

Time

11000 9500 8000

P-impedance

Fault

(a) (b)

Figure 9. Inline passing through well W-1 extracted from (a) P-impedance and (b) Vp/Vs ratio are shown here. The log
impedance and Vp/Vs ratio strips overlaid on the corresponding inverted impedance and Vp/Vs ratio show an excellent match.

Table 1. Post-stack seismic derived attributes used for neural
network training and validation.

Sl. no. Different attributes

1 Acoustic Impedance (Inverted P-imp)

2 Instantaneous Average Amplitude (IAA)

3 Amplitude Weightage Frequency (AWF)

4 Average Frequency (AF)

5 Dominant Frequency (DF)

6 Amplitude Envelope (AE)

7 Derivative (DER)

8 Amplitude Weightage Cosine Phase (AWCP)

9 Second Derivative (SD)

10 Apparent Polarity (AP)

11 Dominant Instantaneous Amplitude (DIA)

12 Raw Seismic (DSMF)

13 Quadrature Trace (QT)

14 Integrate (INT)

15 Amplitude Weightage Phase (AWP)

16 Cosine Instantaneous Phase (CIP)

17 Instantaneous Frequency (IF)

18 Instantaneous Phase (IP)

J. Earth Syst. Sci.         (2024) 133:135 Page 11 of 16   135 



5. Results and discussions

We identiBed thick sandstone facies (*60 m)
deposited in channel geometry at the Middle
Bhuban base encountered in the well W-1. State-
of-the-art geophysical and machine learning tech-
niques were utilized to pursue this lead in the
Tulamura Beld, combining well-log and seismic
data. High-resolution 3D seismic data provides
broader coverage with enhanced continuous

subsurface imaging capability. Subsequently, it can
be best utilized in mapping various litho-strati-
graphic layers and in subsurface facies characteri-
zation from the surrounding rocks.
In the Tripura–Cachar Fold Belt, India, most

channel features have been observed along the
NNE–SSW direction with SSW Cow (Kumar et al.
2016; Bhattacharjee et al. 2017). The sandstone
facies within the channel geometry were mainly
coarse to medium-grained, arkosic, and reducing.

(c) (d)

(b)(a)

Figure 10. (a) Relative feature importance found for different attributes used in machine learning modelling. (b) Cross-plot
result indicating a linear relationship between the actual and predicted eAective porosity with high correlation. (c) Lower
training/validation mean absolute error. (d) Lower training/validation loss values obtained at 500 iterations indicate that the
porosity volume was estimated with high accuracy.
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The studies reveal that the sandstone facies were
deposited in fan, braided rivers of typical proximal
facies with Bning upward sequences (Kumar et al.
2016). We studied 3D seismic and well-log data to
delineate the structural architecture and charac-
terize the stratigraphic sequences in the Tulamura
Beld. Gamma-ray log study suggests that the por-
ous sand facies were deposited in a Bning upward
sequence (Bgure 6a). The overlying shale layer
(impermeable) may act as the top seal for the
hydrocarbon accumulations. The correlation
between the sand facies and the elastic and petro-
physical properties (P-impedance, Vp/Vs ratio and
eAective porosity) was established through cross-
plot analysis at the well point (Bgure 6b, c). The
results suggest that the ore-containing sandstone
facies pose relatively moderate P-impedance, low-
Vp/Vs ratio and highly eAective porosity signa-
tures with respect to surroundings. The structural
mapping shows two NNW–SSE trending thrust
faults bound the Tulamura anticline and may
provide suitable structural entrapment conditions
(particularly eastward fault) for Cuid accumulation
(Bgure 5b).
Seismic-derived attributes were analyzed to

delineate and characterize the possible dispersal
pattern of the identiBed sandstone facies in the
study area. RGB blend spectrally decomposed
seismic response indicates an almost southward
trending channel geometry almost parallel to the

NNE–SSW trending major fault (Bgure 12a). The
varied tuning frequencies observed across different
segments of the channel geometry signify the
presence of lithological heterogeneities within its
structure. The type and nature of the facies from
the channel geometry were further characterized
based on P-impedance, Vp/Vs ratio and eAective
porosity responses (Bgure 12b–d) (Wood et al.
2012). The zones within the channel geometry
indicate relatively moderate P-impedance
(Bgure 12b), low Vp/Vs ratio (Bgure 12c) and high
eAective porosity (Bgure 12d), indicating good
porous sands (average eAective porosity *9%) for
hydrocarbon accumulations in Tulamura Beld,
Tripura, India. Our analysis reveals that the pre-
dominant sedimentary Bll within the channel
geometry consists of sand facies.
Nonetheless, transitions in litho-facies, poten-

tially from clean sand to silt or shaly sand, are
apparent, corroborating the Bndings derived from
RGB blending. Dasgupta and Nandy (1995) sug-
gested that the Bhuban Formation sediments were
deposited in the delta front environment to the
under marginal marine in the mouth bar to distal
bar regime with Cuctuating sea level. The levee
part is argillaceous. These shale facies between
channel geometry and the NNE–SSW trending
major fault may provide good lateral entrapment
conditions for Cuid accumulations. The present
study thoroughly discusses the structural and
stratigraphic aspects of hydrocarbon exploration in
the study area. Some studies have been conducted
in the Penobscot Beld; Nova Scotia poses complex
geological structures, limited well log data and
moderate seismic data quality. These studies pro-
vide an eDcient and reliable geological model in
petroleum exploration (Narayan et al. 2023a, c).

6. Conclusions

In this study, we applied machine learning and
state-of-the-art geophysical tools on 3D seismic
data to delineate and characterize the geologic
features containing hydrocarbon in the Tripura–
Cachar Fold Belt, India. The spectral decom-
position result eDciently delineates the almost
southward trending channel geometry. The petro-
physical properties (P-impedance, Vp/Vs ratio and
eAective porosity) estimated with high precision
have been utilized to delineate and characterize the
channel in-Bll litho-facies. Based on relatively
moderate P-impedance (9800–10600 m/s * gm/cm3),

Fault

0.30 0.15 0

Effective porosity (v/v)

W-1
W E

Figure 11. Inline passing through well W-1 extracted from the
eAective porosity is shown here. The log porosity strip overlaid
on the predicted porosity shows a good match.
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low Vp/Vs ratio (1.68–1.76) and high eAective
porosity (8–13%), it is found that the channel
geometry is mainly Blled with porous sand facies
deposited in Bning upward sequences. These por-
ous sand facies could be a favourable reservoir for
hydrocarbon exploration from Middle Bhuban
deposits in the Tulamura Beld in Tripura. The
impermeable shale facies at the sand top and
between the channel geometry and NNE–SSW
trending fault will provide a suitable stratigraphic
entrapment for hydrocarbon Cuids. The present

study estimates the extension, orientation, and
spatial occurrences of porous sand reservoir facies,
and the sand facies with good porosity are the
favourable zones possibly containing hydrocarbon.
The present study also highlights the importance of
machine learning and the utilization of geophysical
tools in hydrocarbon exploration to get a clearer
image of the subsurface. However, seismic data
quality and limited well data are the main prob-
lems in the Tulamura Beld that need to be
addressed.

(a) (b)

(c) (d)

Well

Well

WellWell

Fault 

Fault 

Channel

Channel
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Low
Low
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Figure 12. Attribute maps were generated for the (a) RGB blend spectral decomposed seismic, (b) P-impedance, (c) Vp/Vs
ratio, and (d) eAective porosity.
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