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Investigating the geochemical composition of bulk sediments stands as a crucial method for unraveling
the complexities of various sedimentary processes. However, the intricacies arising from extensive
datasets and alterations in sediment due to diverse factors often impede the clear identiBcation of
underlying patterns in geochemical Cuctuations. In addressing these, employing multivariate statistical
analyses has proven to be an invaluable tool for elucidating intricate patterns within large dataset. In this
study, we focus on the utilization of Principal Component Analysis (PCA), a multivariate statistical
technique, to uncover the underlying sedimentary processes inCuencing distinct geochemical dataset.
Specifically, our attention is directed towards the examination of geochemical data from the previously
published geochemical data of metasediments from Shimla and Chail group (referred to as SCM) and the
mudCat sediments of Diu Island (referred to as DMS). Our PCA outcomes reveal that the initial three
principal components (PC1, PC2, and PC3) account for 52.51% and 79.30% of the total variance within
the SCM and DMS geochemical data, respectively. Notably, the negative loading of SiO2, alongside
positive loadings of incompatible elements and those associated with maBc rocks on PC1 within the SCM
dataset, indicates sediment origins ranging from felsic to intermediate sources. Additionally, the coex-
istence of Th, U, Zr, and Sc, exhibiting positive loadings in PC1 and PC2, suggests a significant inCuence
of reworking and recycling from felsic to intermediate sources. In the context of the DMS dataset, PCA
analysis highlights the dominant inCuence of in-situ productivity and maBc sediment sources along the
positive axis of PC1. Conversely, the negative axis of PC1 is shaped by intermediate and potentially other
sources. Further granularity in interpretation reveals the positive axis of PC2 being attributed to
weathering proxies, while the dominance of plagioclase minerals in the clayey fraction controls the
positive axis of PC3. Through this investigation, our study underscores the essential role of PCA-assisted
geochemical data analysis in unraveling the intricate web of processes contributing to the variance
observed within sedimentary systems. By eAectively distilling the multifaceted factors driving geo-
chemical variability, this approach emerges as a pivotal asset in enhancing our understanding of
sedimentary dynamics.

This article is part of the Topical Collection: AI/ML in Earth System Sciences.
Supplementary materials pertaining to this article are available on the Journal of Earth Science Website (http://www.ias.ac.in/
Journals/Journal˙of˙Earth˙System˙Science).
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1. Introduction

The realm of comprehensive geochemical and iso-
topic dataset concerning rocks and sediments has
unfurled expansive avenues for delving into the
gradual evolution of the continental crust
(Haughton et al. 1991; Schwab 2003; Joshi et al.
2022a), the intricate genesis of rocks (Joshi et al.
2017, 2022b), as well as the nuanced reconstruction
of paleoclimatic and paleogeographic conditions
(Ramirez-Herrera et al. 2007; Tripathy et al. 2014;
Shaji et al. 2022), and the estimation of provenance
(Lipp et al. 2020; Hifzurrahman et al. 2023; Banerji
et al. 2022a; Joshi et al. 2021a). The intricate
geochemical characteristics of Bne-grained sedi-
ments and sedimentary rocks are fundamentally
shaped by their provenance rocks, followed by
intricate interactions with Cuids that metamor-
phose source-rock particles into solutes and/or
nascent minerals via the mechanisms of weathering
(Nesbitt 1979; Nesbitt et al. 1980; Taylor and
McLennan 1985). Moreover, the compositions of
these sedimentary assemblages are malleable,
subject to modiBcations stemming from an array of
factors encompassing hydrodynamic sorting,
interactions with porewater Cuids during the
interment process, and the exchange of cations
with ambient waters (Fedo et al. 1995; Nesbitt
et al. 1996; Garzanti et al. 2009; Garzanti 2016;
Lipp et al. 2020). Notwithstanding the profusion of
expansive geochemical dataset, untangling the
multifaceted contributions of these disparate fac-
tors to the formation of sediments and sedimentary
rocks persists as a formidable enigma. The com-
plexities intertwined with managing such colossal
dataset have posed formidable challenges for
practitioners in sedimentary geochemistry (Lipp
et al. 2020). Consequently, in recent times, the
acumen of harnessing multivariate statistical
approaches (MSA), inclusive of methodologies like
principal component analysis (PCA), discriminant
analysis, linear discriminant analysis, factor anal-
ysis, singular value decomposition, and hierarchi-
cal cluster analysis, has emerged as a salient
strategy to grapple with the intricacies inherent in
navigating extensive data arrays. The PCA is a

multivariate statistical method used for the
reduction of dimension and identiBcation of pat-
tern or trend in data (Reid and Spencer 2009) while
discriminant analysis discriminates between two or
more groups based on their characteristics (Chien
and Lautz 2018). As per Braun et al. (2013), linear
discriminant analysis is a method that identiBes
linear combination of features to discriminate
between two or more groups. Factor analysis is a
method that identiBes and quantiBes underlying
factors which explain the observed correlation
among a set of variables (Hoseinzade and Mokhtari
2017). Singular value decomposition is related to
PCA and is applied to the covariance matrix of the
data to Bnd principal components (PCs; Chen
et al. 2015). Hierarchical cluster analysis is a
method of cluster analysis that builds a hierarchy
of clusters (similar elements into clusters, Jiang
et al. 2015).
The assimilation of these statistical techniques

has not solely proffered glimpses into the art of
deducing provenance (Ohta 2004; Pe-Piper et al.
2008; Tolosana-Delgado et al. 2018; Armstrong-
Altrin 2020; Banerji et al. 2022b; McManus et al.
2020) but has also deftly illuminated the inCuence
of hydrodynamic fractionation and sorting within
the intricate tapestry of the sedimentary environ-
ment (Pe-Piper et al. 2008). Through systematic
mathematical adjustments, the practice of multi-
variate analysis kindles the revelation of height-
ened variations within a more tractable dimension
scape (Gazley et al. 2015). This paradigm duly
embraces multiple determinants that contempora-
neously impact the data variability (Borvka et al.
2005), thus presenting an upper hand over the
univariate and bivariate methodologies susceptible
to distortions stemming from repetitive statistical
trials (Manly1997). Multivariate statistical analy-
sis is a type of statistical analysis that deals with
more than two variables. It is used to decipher the
correlation among large and complex datasets by
reducing the number of variables without any
loss of crucial information (Nadiri et al. 2013).
Multivariate statistical analysis has emerged as a
highly advantageous approach across diverse geo-
chemical investigations. Its widespread utilization
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encompasses the examination of geochemical data
derived from stream sediment, soil, and estuarine
sediments, facilitating the detection of mineraliza-
tion or contamination (Chork and Salminen 1993;
Dominech et al. 2022; Paternie et al. 2023). In the
realm of petrology, this methodology has proven
pivotal in the discernment of diagenetic processes
and the comprehension of how provenance impacts
the overarching chemistry of rocks and sediments
(Hakstege et al. 1992). Furthermore, the applica-
tion of multivariate statistical analysis has enabled
the characterization of Cuvial deposits through the
scrutiny of intricate and heterogeneous geochemi-
cal datasets (Helvoort et al. 2005). Notably, Garcia
et al. (2020) successfully showcased the method’s
eDcacy in differentiating depositional paleo-envi-
ronments on the basis of geochemical data.
Within the scope of the present study, we have

harnessed the PCA technique to reevaluate the
previously published geochemical dataset origi-
nating from two distinct systems: The Shimla and
Chail metasediments (SCM) situated in Himachal
Himalayas, Himachal Pradesh (Joshi et al. 2021c),
as well as the Diu Island mudCat sediments (DMS)
located in outhern Saurashtra, Gujarat (Banerji
et al. 2021a). The primary objective was to unravel
the provenance intricacies by underpinning these
two systems, one was sedimentary and the other
metasedimentary in nature.

2. Principal component analysis (PCA)

In recent times, the remarkable advancement in
computational capabilities has ushered in the wide-
spread adoption of the PCA across diverse geoscien-
tiBc investigations. The origins of PCA trace back to
Pearson’s groundwork in 1901, which was subse-
quently reBned by Hotelling in 1933. The PCA is a
multivariate statisticalmethodused for the reduction
of dimensions that is generally used in statistical
analysis and machine learning. The prime objective
of PCA is to transform high-dimensional data into a
lower-dimensional representation, seizing all the
valuable data while discarding the less relevant
details (Hongyu et al. 2016). PCA assumes that the
relationships between variables are linear and the
data is normally distributed. However, the PCA also
has some limitations as it converts the large dimen-
sion of data into a square matrix. There may be some
data loss as well, as it sometimes reduces the inter-
pretability and thus, it is not suitable for columns
having many missing values (Lee 2010).

As a robust multivariate statistical exploratory
tool, PCA empowers researchers to navigate data
variability adeptly. Its prowess becomes particu-
larly pronounced when grappling with extensive
datasets, where intricate interdependencies among
variables render interpretation and comprehension
a formidable challenge. The core objective of PCA
involves the transformation of a comprehensive set
of potentially correlated variables into a more
succinct set of uncorrelated variables known as
PCs. These PCs eDciently encapsulate and pre-
serve the pivotal information within the original
dataset (Wishart et al. 2013; Sunkari and Abu
2019). Each PC epitomizes a linear amalgamation
of the original variables, weighted in accordance
with their contributions to elucidate the variance
along a speciBc orthogonal dimension, sequenced
in descending order (Geladi and Grahn 1996).
Through this mechanism, PCA streamlines data
representation while retaining its intrinsic char-
acteristics, thereby simplifying the compre-
hension and visualization of intricate variable
relationships.
Within PCA, the linear and non-linear relation-

ship among samples manifests through scatter
plots of scores where each data point corresponds
to a distinct sample. Similar chemical attributes
lead to the clustering of corresponding samples in
proximity. On the converse, the association
between different variables is expounded by load-
ings. These loadings intricately illustrate the fusion
of concentration values for diverse chemical ele-
ments, forming the basis for the scores. The mag-
nitude and sign of loadings unveil the significance
of speciBc elements in shaping overall variance,
thereby unveiling correlations between elements.
Variables that coalesce signify positive correla-
tions, while those positioned in diagonally opposing
quadrants suggest negative correlations. The
inaugural PC (PC1) accounts for the preeminent
share of variance within the dataset, representing
the primary axis of variability. Successively, the
second PC (PC2) captures orthogonal variance, a
pattern that endures through subsequent compo-
nents (Geladi and Grahn 1996; Makvandi et al.
2016). Each PC furnishes a distinctive perspective
on the data, collectively elucidating the majority of
the dataset’s variability.
The PCA emerges as most crucial tool in the

realm of high-dimensional data (Ueki and Iwamori
2017; Corcoran et al. 2019; Henrichs et al. 2019),
where the trend and patterns of the dataset often
elude direct observation, causing the graphical
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representation poorly understandable. By
condensing the data’s dimensionality and high-
lighting thet pivotal sources of variation, PCA
empowers researchers to decode and interpret
intricate datasets with greater manageability.

3. Geological background of metasediments
and mudCat sediments

In the present study, the geochemical datasets
from the metasediments of Lesser Himalaya and
mudCat sediment of Diu Island have been studied
through the statistical approach of PCA in order to
decipher the sediment source and the dominant
factor controlling the sedimentary system of the
region. The published geochemical datasets of
nearly 30 samples each for Shimla and Chail
metasediment (hereafter SCM) from Lesser Hima-
layas (Joshi et al. 2021a) and Diu Island mudCat
sediments (hereafter DMS) core (Banerji et al.
2021a) were studied and analysed through PCA
approach. By embarking upon the PCA analysis
on the metasediments (SCM) and mudCat sedi-
ments (DMS), we aim to investigate the plausible
source and mechanism responsible for the intri-
cate patterns and correlation in the geochemical
variables.

3.1 Shimla and Chail metasediments (SCM)

The expansive Himalayan mountain range has
been methodically subdivided into distinctive
litho-tectonic units for the purpose of geological
classiBcation. Among these units are the Sub-
Himalaya, Lesser Himalaya Sediments (LHS),
Lesser Himalayan Crystalline sequence (LHCS),
Higher Himalaya Crystalline Sequence (HHCS),
and Tethyan Himalaya (Chambers et al. 2008;
Bhargava et al. 2011; Law et al. 2013). Notably,
Ahmad et al. (2000), employing isotopic markers,
further reBned the LHS into the relatively youthful
outer zone and the elder inner zone. The outer
Lesser Himalaya sediments were attributed to a
dominant provenance from Meso- to Neo-protero-
zoic sources. Interestingly, both outer LHS and
HHCS sediments exhibited congruent depositional
ages and isotopic traits, hinting at a shared origin
(Parrish and Hodges 1996; Ahmad et al. 2000;
Richards et al. 2005). In contrast, the inner Lesser
Himalaya sediments emerged as products largely
sourced from Late-Archean to Paleoproterozoic
origins.

Within this intricate geological landscape, the
Chail, Shimla (Simla), and Blaini series exist as
moderate to weakly metamorphosed strata, lying
beneath the medium-grade Jutogh group of rocks.
A stratigraphic marker in the form of stromatolite-
bearing limestone horizons led Raha and Sastry
(1982) to propose an upper Riphean age for the
Shimla group, with 40Ar/39Ar mica dating yielding
a maximum depositional age of 860 Ma (Frank
2001; Bhargava et al. 2011). The Shimla group
exhibits a diverse composition comprising slates,
greywackes, quartzites, and carbonates, with ori-
gins attributed to sedimentation via north-directed
turbidity currents (Valdiya 1970; Srikantia and
Sharma 1971, 1976; Sinha 1978; Joshi et al. 2021b).
In contrast, the Chail Group (Bgure 1a) encom-
passes phyllites, phyllitic quartzite, psammitic and
pelitic schists, orthoquartzites, arkose, chlorite
schist, limestones, and meta-basic rocks, aDliating
it with the Lesser Himalaya (Valdiya 1980). The
outer LHS sediments, comprising formations like
Chail, Tal, Krol, and others (Bgure 1), have been
ascribed Neoproterozoic to Cambrian depositional
ages (Richards et al. 2005).

3.2 Diu Island mudCat sediments (DMS)

The mudCat of Diu Island is located along the
southern Saurashtra coast of western Gujarat
(Bgure 1). Majority of the Saurashtra peninsula
comprises of a basalts and its derivatives belonging
to the Deccan Trap Formation of upper Cretaceous
period (Bhonde and Bhatt 2009). Unlike the Dec-
can plateau of west-central India, the Saurashtra
Deccan basalts can be differentiated based on its
tholeiitic Cood basalts thickness (NajaB et al.
1981), dominance of granophyre and rhyolite, vol-
cano plutonic complexes (Naushad et al. 2019) and
pervasive compositional variety (Melluso et al.
1995; Sheth et al. 2011, 2012a). The Saurashtra
Deccan basalts are unconformably overlain by Gaj,
Dwarka formations of Tertiary and Miliolites,
Chaya formations, Katpur and Mahuva formations
of Quaternary Period (Pandey et al. 2007). Gaj
Formation consists of marly limestone which is rich
in fossils (foraminifera, echinodermata, lamelli-
branch and gastropods) and is well exposed near
Una–Veraval Road. Dwarka Formation is only
exposed near Jafrabad, SW of Diu Island (Verma
and Mathur 1979a). Miliolite are considered to be
of both marine as well as aeolian and are distin-
guished based on their sedimentary structures and
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quantitative faunal characteristics (Verma 1982).
They includes only pelletoid (and oolitic) calc-
arenites and associated micrites but devoid of
megafossils (Verma and Moitra 1975). The milio-
lite exposures are found near the Machundri river
section (Verma and Mathur 1979b). The coastal
rocks such as the dead coral reefs, oyster beds and
other highly fossiliferous limestone are included in
the Chaya Formation. The age of the Chaya For-
mation ranges from the late Pleistocene to the
Holocene (Gupta 1972; Gupta and Amin 1974).
Katpur and Mahuva formations were deposited
during the Holocene epoch wherein the former
includes oxidized and pedoogenised tidal Cat clays/
silts while the latter comprises freshwater alluvium
(sand and clays), coastal deposits, lime mud, cal-
careous sand with marine shells (Mathur et al.
1987; Bhatt 2003; Pandey et al. 2007).

4. Computational methodology

PCA is a robust statistical technique that leverages
orthogonal transformations to transmute an
assortment of potentially interrelated observations
into an array of linearly uncorrelated variables.
These newly formed uncorrelated variables, com-
monly referred to as PCs, act as crucial tools in
rendering intricate high-dimensional datasets into
easily recognisable 2D or 3D patterns. A series of
systematic steps unfold when conducting PCA
on a matrix characterized by n variables and
m samples, encapsulating the following convoluted
progression.

4.1 Data preparation and mean centering

Standardization emerges as a pivotal phase within
the PCA, serving to grant equanimity to dissimilar
variables with divergent scales in contributing to
the analysis. Through standardization, parity is
established, encompassing a uniform range and
data variability for all variables. This process of
standardization unfolds in two essential steps.
Initially, data is standardized by aligning each
variable onto a shared scale; subsequently, data is
centered by adjusting it in relation to the means of
each variable. This centering maneuver situates
the data at the origin of the PCs. The method of
standardization employed varies depending on
data characteristics. For instance, integration of
the median or median absolute deviation can prove
instrumental in mitigating the sway of outliers
within the dataset. Notably, when grappling with
geochemical datasets, meticulous attention to
analytical uncertainties is warranted for their
proper integration into the analysis.
In certain scenarios, the raw data necessitates

preprocessing via log ratios, particularly when
grappling with data constrained by constants like
percentages or parts per million (Aitchison1986).
This transformation guarantees conformity to the
imposed constraints, rendering the data amenable
to PCA. Within the scope of this study, the pre-
ferred standardization methodology revolves
around the mean and standard deviation for
its simplicity and eAectiveness. The standardiza-
tion process is realized through equation (1),
thereby ensuring data achieves the requisite

Figure 1. The geological map of the southern Saurashtra coast surrounding the active mudCat of Diu, Gujarat, modiBed after
Banerji et al. (2019) and Pant and Juyal (1993), Blled square indicates sampling site (DM) (Banerji et al. 2021a, b) and modiBed
geological map of Sutlej section of Himachal Lesser Himalaya (Thakur 1992; Vannay and Grasemann 1998; Richards et al. 2005)
sample locations shown as red square after Joshi et al. (2021a, b, c).
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standardization, thereby priming it for subsequent
PCA exploration.

Standardization ¼ Mean ðdataÞ
Standard deviation ðdataÞ

� �
:

ð1Þ

The mean is a measure of central tendency that
represents the average value of a set of numbers. It
is obtained by summing up all the values in a
dataset and then dividing that sum by the total
number of data points. The mean is located
between the median (the middle value in a sorted
list of data) and the mode (the most frequently
occurring value). The formula for calculating the
mean of a dataset is as follows:

Mean ¼
Xn
i¼1

Xi

n
; ð2Þ

where Xi is the ith element of the individual
data points of variable X and Xm is the mean
of X variables while n represents the number of
elements.
The standard deviation is a statistical measure

that quantiBes the spread or dispersion of a dataset
in relation to its mean value. It is computed as the
square root of the variance, which represents the
average squared deviation of each data point from
the mean. By determining the distance of each data
point from the mean, the standard deviation
assesses how much the values in the dataset devi-
ate from the average value. The formula to calcu-
late the standard deviation is as follows:

Standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xi �Xmð Þ2

n � 1
:

s
ð3Þ

Adjustment refers to a series of processes
undertaken to enhance the classiBcation, timing,
valuation or coverage of data. It also involves
adapting data to a speciBc recording or accounting
basis and addressing any discrepancies in data
quality during the assembly of dataset. To carry
out data adjustment, we employ a speciBc formula
or method (equation 4) that helps to modify the
original data to better suit the intended analysis or
reporting requirements. The adjustment process
aims to ensure the accuracy and reliability of the
data for further analysis and interpretation.

Adjusting data ¼
Xn
i¼1

Xi � Xmð Þ ð4Þ

where the term Xi represents the ith element of the
individual data points of the variable X . Xm

denotes the mean of the X variable, which is the
average value of all the data points in the dataset.
The variable n represents the total number of ele-
ments in the dataset, reCecting the size of the data
sample.

4.2 Variance and covariance

The scaled data obtained from section 4.1 is utilized
to compute the covariance, which measures the
relationship between two different datasets in terms
of their positive and negative values. A positive
covariance suggests that the variables tend to
increase and decrease together, while a negative
covariance indicates that the two variables vary in
opposite directions. The covariance analysis also
provides insights into the spatial relationship and
variance of the dataset concerningdifferent variables.
The covariance between any two variables, X and
Ycan be calculated using the following equations:

VarðX ;XÞ ¼
Xn
i¼1

Xi � Xmð Þ2

n � 1
ð5Þ

and

CovðX ;Y Þ ¼
Xn
i¼1

Xi � Xmð Þ Y i �Ymð Þf g
n � 1

ð6Þ

where the term Xi represents the ith element of the
individual data points of the variable X . Xm

denotes the mean of the X variable; Y i represents
the ith element of the individual data points of the
variable Y , and Ym denotes the mean of the Y
variables; the variable n represents the total
number of elements in the dataset, reCecting the
size of the data sample.

4.3 Eigen decomposition

The covariance matrix provides the necessary
information to calculate the eigenvalues and
eigenvectors, which are essential in PCA. These
eigenvalues and eigenvectors play a crucial role in
representing the overall variability of the dataset.
Eigenvalues and eigenvectors always come in pairs,
where eigenvalues determine the magnitude or
importance of each PC, and eigenvectors demon-
strate the direction of the data with the largest
variance in the dataset. The eigenvector associated
with the highest eigenvalue corresponds to the Brst
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PC, which accounts for the greatest possible
variance in the dataset. Subsequent PCs have
progressively lower variances, capturing less and
less of the total variability in the data. Eigenvalues
and eigenvectors can be calculated using the fol-
lowing procedure:

det A� kIð ÞX ¼ 0 ð7Þ

where A is a covariance matrix, I is the identity
matrix, k is the eigenvalue, and X is the eigen-
vector matrix.

4.4 Selection of principal components

After computing the eigenpairs (eigenvalues and
eigenvectors), it is necessary to sort them based on
the magnitude of their eigenvalues. This sorting
process allows us to select the desired number of PCs
with higher scores and loadings, which are more
significant for dimensionality reduction. Typically,
the eigenvectors with higher eigenvalues are chosen
as the feature vectors, as they capture the most
important information about the data. This selec-
tion can be accomplished by plotting the cumulative
sum of the eigenvalues and identifying the point
where the explained variance reaches a satisfactory
level. Once the desired PCs (feature vectors) are
identiBed, the transformed feature vector is multi-
plied with the transformed, adjusted data (the data
centered around the means) to reconstruct the
original data in the new lower-dimensional space.
This transformation (equation 8) helps to retain the
maximum relevant information about the original
data while reducing its dimensionality, enabling
easier visualization and analysis.

Final data ¼ Row feature vector
� Row data adjusted ð8Þ

where row feature vector is the eigenvectors
transposed, and row data adjusted is the mean
adjusted data of the original data transposed.
In this study, a MATLAB-based computational

algorithm is developed to compute RQ-mode PCA,
following the steps mentioned in Cowchart dia-
grams (Bgures 2 and 3). R-mode PCA is primarily
based on variables and is suitable for identifying
associations between variables and a set of obser-
vations (elements). It processes the covariance
matrix and creates new orthogonal linear combi-
nations that preserve the variance of the original
variables. These new combinations account for
successively decreasing portions of the variance,

allowing for dimensionality reduction. On the other
hand, Q-mode PCA is primarily based on obser-
vations (samples) and is suitable for characterizing
samples. It analyzes the covariance matrix to
identify patterns and relationships among samples.
RQ-mode PCA is a method that calculates both

variables and object loadings simultaneously, com-
bining aspects of both R-mode andQ-mode PCA. For
this particular study, RQ-mode PCA computation is
chosen due to its detailed analysis of sedimentary
processes. It allows for the characterization of different
elements and their associations with the process under
investigation. Furthermore, it enables the identiBca-
tion of different rock types based on geochemical
datasets. Using RQ-mode PCA, the researchers can
gain valuable insights into the complex relationships
and patternswithin the geochemical dataset, aiding in
the understanding and interpretation of sedimentary
processes and rock types.

5. Results and discussion

In the present study, the PCA was applied to two
distinct sets of geochemical datasets, namely, the
SCM and DMS, with the aim of understanding the
dominant processes inCuencing these distinct sites.
For the SCM dataset, a total of 30 geochemical data
points, including major and trace elemental com-
positions, were analysed from the previous study
(Joshi et al. 2021c). The major and trace elements
retain important cues to sedimentary processes in
the SCM locality. In case of the DMS dataset, major
elements and selected trace elements were used to
delineate the processes acting on the region on a
temporal scale (Banerji et al. 2021a). The variations
in elemental compositions in the DMS dataset are
inCuenced by various geochemical proxies, such as
in-situ productivity, paleo-weathering, and sedi-
ment source. The detailed implications of these geo-
chemical proxies on a temporal scale are discussed in
Banerji et al. (2021a).
The developed algorithm was subsequently im-

plemented on the SCM and DMS datasets, and the
eigenvalues of the PCs were calculated. The contri-
butions of each PC to the total variance of the dataset
were estimated, and these results are presented in the
Supplementary Ble (tables S1 and S2). These contri-
butions provide valuable insights into the importance
of each PC in explaining the variability within the
dataset and can help to identify the most significant
factors or processes inCuencing the SCM and DMS
localities.
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This research helps us identify the major geo-
chemical factors that inCuence sediment composi-
tion and indicate the sedimentary settings in which
the sediments formed. We must normalize the data
before doing the PCA in order to avoid any kind of
error during the analysis and to make the contri-
bution of each variable proportional to the analy-
sis; otherwise, it might inCuence the geochemical
trends.

5.1 Shimla and Chail metasediments (SCM)

In PCA of the SCM dataset, a scree plot (Bgure 4a)
was generated, showing a total of 29 PCs. The

scores of the observations were depicted as sym-
bols, while the loadings of the different elements
were plotted in Bgure 4(b and c). From the scree
plot, it was evident that the Brst nine PCs showed
an elbow point, which collectively accounted for
85.53% of the total variance. The contributions of
these nine PCs were as follows: PC1 (20.86%), PC2
(19.75%), PC3 (11.90%), PC4 (7.42%), PC5
(7.06%), PC6 (5.56%), PC7 (5.35%), PC8 (4.67%),
and PC9 (2.96%).
Considering that most of the PCs had contri-

butions\10%, we focused on explaining the total
variability of the data using the Brst three PCs:
PC1, PC2, and PC3. These three PCs together
accounted for 52.51% of the total variation in the
dataset. Additionally, for simplicity and to high-
light the most significant relationships, only two
combinations of PCs were taken into consideration:
PC1 vs. PC2 and PC2 vs. PC3 (Bgure 4b and c).
These plots reveal the major patterns and associ-
ations between variables in the dataset. By
selecting the Brst three PCs and plotting these
speciBc combinations, the researchers aimed to
capture the most important information while
reducing the complexity of the analysis.
Upon careful analysis of the contribution from

PC1, it becomes clear that a significant number of
major oxides and trace elements in the dataset
demonstrate a positive correlation with PC1.

Figure 2. The process to carry out the PCA of any given
dataset in general.

Figure 3. The process to carry out the PCA of the given dataset in Matlab (where p is the number of samples and q is the number
of variables).
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Additionally, PC1 exhibits positive loadings for
elements such as K, Rb, Th, Ba, and LREEs (Light
Rare Earth Elements), which are typically con-
sidered incompatible elements and are indicative of
rocks with felsic composition. Interestingly, SiO2

shows a slight negative loading on PC1. This, in
combination with the positive loadings for incom-
patible elements, might suggest an intermediate
source for the rocks in the dataset. Furthermore,
major oxides and trace elements that have a strong
aDnity with maBc to intermediate rocks exhibit
positive loadings on both PC1 and PC3, while
showing negative loadings on PC2 (as seen in
Bgure 4b and c). These loading patterns provide
valuable insights into the relationships and char-
acteristics of different rock types present in the
dataset, helping to identify their composition and
potential sources.
Due to their higher compatibility, K2O, Na2O,

and CaO are typically enriched in feldspars. The
relative enrichment of K2O and depletion of Na2O
along PC1 and PC2 suggest that K-feldspar is the
primary repository of potassium and the predomi-
nant feldspar in the SCM, as compared to sodic
plagioclase. This observation aligns with the higher
K2O/Na2O ratios found in bulk rock geochemistry
(Joshi et al. 2021b). Furthermore, the close asso-
ciation of Al2O3 and TiO2 along the positive PC2
axis suggests that phyllosilicates are the main
carriers of these elements in the SCM. The fact
that both phyllosilicates and K-feldspar display
positive loadings along PC2 and PC3 further sup-
ports their role as major reservoirs for K2O, Al2O3,
and TiO2, as also noted by Joshi et al. (2021b)
based on oxide correlations.
Studies have indicated that heavy minerals, such

as zircon, apatite, and titanite, which possess
higher partition coefBcients for Rare Earth Ele-
ments (REEs), can inCuence the concentration of
trace elements in the SCM (Armstrong-Altrin et al.
2012). The enrichment of Light Rare Earth Ele-
ments (LREEs) and Heavy Rare Earth Elements
(HREEs) along both PC1 and PC2 suggests that
these accessory minerals control the REE budget of
the SCM. The distribution of least mobile incom-
patible elements, such as REEs, HFSEs (High
Field Strength Elements), Th and Y, can reCect the
provenance of the sediments and help differentiate
between various lithologies (McLennan 1989; Cul-
lers 1994; Taylor and McLennan 1995; Large et al.
2018). The enrichment of Th, U, Zr, and Sc along
positive PC1 and PC2 suggests the inCuence of
reworking and recycling of felsic to intermediate

sources. The slight negative loading of SiO2 with
PC1, along with the positive loadings of MgO,
Fe2O3, Co, Ni, Th, and U, might indicate the
possible contribution of intermediate rocks as a
source for the studied sediments. These Bndings
shed light on the origin and composition of the
SCM sediments, providing valuable insights into
the processes that have shaped their geochemical
characteristics.

5.2 Diu mudCat sediments (DMS)

In the PCA of the DMS dataset, a scree plot
(Bgure 5a) displayed a total of 13 PCs. The scree
plot revealed that the Brst three PCs showed an
elbow point and collectively accounted for 79.30%
of the total variance. The contributions of these
three PCs were as follows: PC1 (48.94%), PC2
(15.64%), and PC3 (14.72%). Due to the compa-
rable variance of PC2 and PC3, only two combi-
nations of PCs were considered for further analysis:
PC1 vs. PC2 and PC2 vs. PC3 (Bgure 5b and c).
The biplot for these combinations illustrates the
scores of the observations displayed as symbols, and
the loadings of the different elements are plotted.
Upon careful analysis of the contribution from PC1,
it becomes evident that oxides account for most of
the variations in this component compared to the
other elements. Combining PC1 and PC2 accounts
for a significant portion (64.58%) of the total vari-
ability in all datasets within this group. These
Bndings provide valuable insights into the major
factors contributing to the variations in the DMS
dataset and allow for a better understanding of the
geochemical characteristics of this region.
The positive correlation of Total Organic Carbon

(TOC) andCuwith both PC1 and PC2 is significant
in the PCA of the DMS dataset. In marine, coastal,
and lacustrine sediments, TOC iswidely regarded as
a significant indicator of in-situ productivity (Tri-
bovillard et al. 2006; Chandana et al. 2017; Banerji
et al. 2019, 2021b). However, TOC is susceptible to
degradation over time. On the other hand, Cu is
delivered to the sediments through organometallic
complexes and serves as an additional proxy for in-
situ productivity. The close association between
TOC and Cu, as well as their enrichment towards
the positive axis of bothPC1andPC2, indicates that
in-situ productivity has played a crucial role in
shaping the geochemical variations observed in the
DMS dataset. The positive correlation of TOC and
Cuwith these PCs suggests that variations in in-situ
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productivity have had a significant impact on the
geochemical composition of the sediments in the
DMS region. These Bndings provide valuable
insights into the environmental conditions and
processes that have inCuenced the sedimentary
characteristics of the studied area.
The fact that some elements like Cu, Ba, TiO2,

Co, and Ni are more abundant along the positive
axis of PC1 suggests that similar lithologies are
involved. Hayashi et al. (1997) found important
minerals like olivine, pyroxene, hornblende, bio-
tite, and ilmenite with TiO2. The ferromagnesian
trace elements Cr, Ni, and Co generally exhibit a
similar behaviour during the magmatic processes,
although weathering may result in their fraction-
ation (Feng and Kerrich 1990). Nevertheless, they
are more abundant in maBc igneous rocks and their
associated weathering products (Armstrong-Altrin
et al. 2004; Joshi et al. 2021c). The simultaneous
enrichment of Ni and Cr in the Coodplain sedi-
ments of the Cauvery River has been interpreted as
a possible indication of a maBc origin (Singh and
Rajamani 2001). Furthermore, the concurrent
enrichment of Fe2O3, CaO, and SiO2 along the
negative axis of PC1 and PC2 demonstrated the
possible inCuence of an intermediate rock source.
The hinterland of the Saurashtra peninsula is
comprised of Deccan basalts, trachyte, rhyolite,
granophyre, and pitchstone dykes, which are
associated with maBc dolerite dykes at Sirohi-
Palitana (Chatterjee and Bhattacharji 2001) and
Picritic dykes at Dedan (Krishnamacharlu 1972).
In addition, scientists have found granophyre,
rhyolite, and obsidian at Barda (Cucciniello et al.
2019) and a sequence of rhyolite, pitchstone, and
basaltic andesite lava Cow at Osham (Sheth et al.
2012). A combination of different types of rock and
other sources (Banerji et al. 2021a) must have
caused the intermediate and maBc rock signatures
in the DMS geochemical data.
The enrichment of K2O and MgO along the

positive axis of PC2 and PC3 indicates enhanced
weathering intensities. Climate plays a pivotal role
in sediment weathering, while other factors, such
as the nature of source rocks, microbes, and relief,
also significantly inCuence the geochemical com-
position of sediments (Nesbitt and Young 1982;
Taylor and McLennan 1985; McLennan et al. 1993;
Joshi 2014; Madhavaraju et al. 2016). Notably,
K2O and MgO normalized with Al2O3 are exten-
sively used as paleo-weathering proxies in sediment
cores from coastal, marine, and lake environments
(Banerji et al. 2017, 2019, 2021b; Bhushan et al.

2018). Furthermore, the positive axis of PC3
reveals enrichments in Al2O3, SiO2, and Na2O,
suggesting a prevalence of clayey textures derived
from terrestrial sources, particularly plagioclase
minerals. These Bndings emphasize the significant
contribution of sediment sources originating from
the hinterland of the Saurashtra peninsula.
In summary, the control of the PC1 is mainly

attributed to in-situ productivity and the maBc
source, with a smaller contribution from the
intermediate source. PC2 is inCuenced by weath-
ering proxies, while PC3 is predominantly gov-
erned by the clayey fraction originating from
plagioclase minerals found in the Saurashtra
peninsula. These factors collectively shape the
geochemical composition and variations observed
in the sediments under study.

6. Conclusions

Geological processes govern the elemental assem-
blages derived from geochemical datasets, which
pose a challenge due to the vast amount of data
reCecting various geochemical processes. In our
study investigating the provenance using high-
dimensional bulk-sediment geochemical data
from Lesser Himalayan rocks (Shimla and Chail
groups) and Diu mudCats, we draw the following
conclusions:

• In the metasediments of the LHS region, the
examination of the eigenvectors of PCs reveals
that accessory minerals play a crucial role in
controlling the trace element budget of the
metasediments. Additionally, the presence of
reworking and recycling of felsic to intermediate
sources is suggested for the studied sedimentary
cover in the Lesser Himalayan region.

• In theDiumudCats, theBrst threePCs indicate an
intermediate to maBc source associated with
processes involving olivine and pyroxene. The
outcome of present work invokes the significance
and applicability of PCAon the high-dimensional
geochemical datasets in Geosciences.
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