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Climate change can have adverse eAects on various ecosystems on the globe, with the cryosphere being
aAected to a significant extent. Of the cryosphere, mountain or alpine glaciers are essential resources for
freshwater and various ecosystem services. Glacial ablation is the process of removal of snow and ice from
a glacier, which includes melting, evaporation, and erosion. The increase in temperature on the Earth due
to climate changes is causing rapid glacial abrasion. The rapid global decline in alpine glaciers makes it
necessary to identify the key drivers responsible for a glacial retreat to understand the eventual modi-
Bcations to the surroundings and the Earth’s ecosystem. This study attempts to understand the inCuence
of different driving factors leading to glacier retreat using Machine Learning (ML) and Remote Sensing
(RS) techniques. Three models have been developed to estimate the glacial retreat: Feedforward ArtiBcial
Neural Network (ANN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM). The
RNN performed the best with an average training and validation accuracy of 0.9. The overall shift of the
area estimate has been identiBed over 10 years. The model thus generated can lead to a better under-
standing of the region and can provide a baseline for policy and mitigation strategies in the future.

Keywords. Glacier; glacier retreat; artiBcial neural networks; recurrent neural networks; long-short
term memory.

1. Introduction

Glaciers are permanent bodies of ice formed
through the recrystallization of snow that show
evidence of gravitational movement. Glaciers are
an integral part of the cryosphere, where the water
exists primordially in a frozen state. Presently,
glaciers are found mostly in polar regions at high
altitudes. Glaciers and ice sheets cover 11% of the
Earth’s surface and 50% of the Atlantic coastline
is covered by Coating ice shelves (Rees 2005).

Glaciers are dynamic systems that move by and
under the inCuence of gravity, change drastically
w.r.t. the surrounding climatic conditions. Thus,
glaciers may be considered important indicators of
climate change that reCect environmental changes
(Romshoo et al. 2022; Guidicelli et al. 2023).
Climate change and global warming have severely

aAected the survival of various ecosystems around
the Earth’s surface and oceans. The planet has
experienced various episodes of climate change with
different periods of the Earth being much colder or
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hotter than at present (Kusky 2010). The pace at
which the planet is warming up, however, has
become much more rapid that brings forward last-
ing longer-term consequences including but not
limited to greenhouse gas-dominated atmosphere,
drastic increase in sea levels, estimated to rise at a
rate of 8–16 mm per year by 2100, 10 times more
than that of the mean rise rate in the 20th century
(Church et al. 2013). The factors contributing to the
rise in sea levels include thermal expansion of ocean
water as thewater warms due to global warming and
the melting of glaciers, ice caps and snow. Glaciers
have been observed to be shrinking in Northern and
Southern hemispheres, and theArctic andAntarctic
ice caps are also observing rapid shrinkage (Kusky
2010). Decreasing snow cover and retreating gla-
ciers have had and continue to have vast conse-
quences on regional ecosystems with significant
implications for socio-economic development and
ecosystem services (Singh et al. 2016).
Glaciers are permanent bodies of ice formed

through the recrystallization of snow that show
evidence of gravitational movement. Glaciers are an
integral part of the cryosphere, where the low tem-
peratures imply that thewater exists primordially in
a frozen state. Most glaciers presently are found in
polar regions at high altitudes. Glaciers and ice
sheets cover 11% of the Earth’s surface; 50% of the
Atlantic coastline is covered by Coating ice shelves
(Rees 2005; Pellikka and Rees 2009). Glaciers are
dynamic systems that have moved in accordance
with and under the inCuence of gravity and change
drastically w.r.t. the surrounding climatic condi-
tions. Thus, glaciers may be considered important
indicators of climate change that reCect changes in
the environment (Kusky 2010). Glaciers have been
observed to be shrinking in Northern and Southern
hemispheres, and the Arctic and Antarctic ice caps
are also undergoing rapid shrinkage (Stokes et al.
2022).Decreasing snow cover and retreating glaciers
have vast consequences on regional ecosystems with
significant implications on socio-economic develop-
ment and ecosystem services (Singh et al. 2016). The
glacial landuse is a key part of the natural ecosystem
that thrives within these regions. The implications
of glacial retreat can have adverse eAects on the
system. Not only does it disrupt the natural water
cycle, but the amount of ice available for replenish-
ment will become a challenge as the over-glacial
retreats (Carey et al. 2017). But this will also entail
the eAects on the natural Cora and fauna. The
declining ice can also develop sludge-infused mud,
which can further lead to landslides and other

calamities. Impacting greatly on the natural human
settlements as well (Garrard et al. 2016).
The observation of and collection of information

from an object without direct physical contact is
termed remote sensing, and observations are usu-
ally made from a space-borne or an airborne plat-
form with the information carried over via
electromagnetic radiation (Pellikka and Rees
2009). The potential for observations of environ-
mental sciences has been vastly widened by the use
of space-borne platforms, given the sheer quantity
of information that can be obtained over areas on a
large scale, especially the locations that may be
difBcult to tread via land or airborne means.
Another important factor that space-borne plat-
forms add is the continuity for data collection, with
satellite missions being launched for information to
be relayed over decades. All these factors prove
especially advantageous when it comes to the
observation of glaciers making it quicker to retrieve
and exploit the satellite data, especially given the
difBculties in the physical exploration of glacial
terrains (Pellikka and Rees 2009).
The importance of glaciers as aforementioned,

brings with it the need for their monitoring and
measurement. This can be done via the quantiB-
cation of the interrelationships that the glacial
extent has with various aAecting factors (Romshoo
et al. 2022). The glacial zones of dry snow, Brn, ice,
and wet snow have distinctive reCectance charac-
teristics. Albedo is the measure of this reCectance;
it is the ratio of radiation reCected from a surface to
the incident radiation on that surface. Precipita-
tion is an integral factor in the formation of a
glacier in connection to surface temperature. Pre-
cipitation is an integral factor in the formation of a
glacier in connection to surface temperature (Yue
et al. 2020). With the variations and undulations
within the precipitations near the snow line, there
is a lot of water accumulation. Liquid water is
warmer than snow, Brn or ice. Thus, wet snow
zones, which can be detected easily using thermal
remote sensing methods and surface temperature,
play a role counter to that of precipitation in gla-
ciers as the higher temperatures are what lead to
glacial melt. The quantiBcation of these parame-
ters can assist in understanding the inCuence of
these factors with each other and their collective
(as well as individual) inCuence on the snow cover
of glaciers (Dubey and Goyal 2020).
ArtiBcial Intelligence (AI) and Machine Learn-

ing (ML) techniques have observed a rise in newer
approaches to better quantify the various
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interlinked variables and parameters (Gao 2020).
AI can be deBned as the science and engineering
of making intelligent machines and/or computer
programs, not necessarily conBned to biologically
observable methods (McCarthy 2007). The recent
progress and changes in methods, techniques and
the large-scale availability of quality datasets have
vastly enhanced the applicability of AI (Gao 2020).
In the process, geospatial-driven AI techniques
have gained significant traction. Geospatial Arti-
Bcial Intelligence or GeoAI is AI and ML tech-
niques used to simulate future outcomes that run
on geospatial technology, often drawing on com-
puter vision, simulation tools and statistical mod-
elling; it combines spatial science methods, data
mining and high-performance computing to extract
meaningful information from geospatial data and/
or tools (Kamel Boulos et al. 2019). To that end,
ML and DL have emerged as good tools for han-
dling big data, especially those that may pertain to
glacial parameters (Kadota et al. 1997; Kaushik
et al. 2020). Through means of ML and DL, the
shrinking boundary of the glacier may be eAec-
tively delineated, thus allowing for the forecasting
of the same (Baraka et al. 2020; Bolibar et al.
2020). The large-scale prediction for the delin-
eation over a region can be difBcult using tradi-
tional methods, but with the use of ML (Machine
Learning) and DL techniques within Geospatial
ArtiBcial Intelligence (GeoAI), these challenges
can be handled. The shrinkage in glacial ice may be
linked to a wide array of parameters, as previously
discussed; modelling this shrinkage for estimation
of the retreat can be demanding when considering
traditional remote sensing techniques given the
large temporal and spatial resolutions (Sood et al.
2022).

2. Glaciers and remote sensing

Given the difBculties in physical exploration due
to the terrain inaccessibility of glacial terrains
(Kulkarni et al. 2007), complex environmental
conditions (Taloor et al. 2021) and inconsistencies
in the availability of credible baseline data (RaBq
et al. 2019), various studies have preferred a
remote sensing approach for glacial observations
over the conventional methods of Beld-based
observations. Glacial delineation for the observa-
tion of spatiotemporal changes in glaciers has been
a common approach in making observations and
estimations as to the changes and retreat in

glaciers (Patel et al. 2018; Kaushik et al. 2020;
Tripathi et al. 2022) to observe the Cuctuations in
the glacial terminus and snout position (Bhambri
et al. 2012; Patel et al. 2018), mapping and iden-
tiBcation of clean ice glacier (Kaushik et al. 2020),
inCuence on environmental parameters such as
land surface temperature (Tripathi et al. 2022),
topographical and geomorphological characteris-
tics in the region such as elevation, slope and debris
cover (Patel et al. 2018; Kaushik et al. 2020; Taloor
et al. 2021). Quantifying the applicability of these
parameters, a series of studies have observed the
approach within the domain. Tripathi et al. (2022)
has observed that shrinkage in glaciers and an
increase in glacial lake area have vastly con-
tributed to risks of Glacial Lake Outburst Floods
(GLOFs) that are a result of the sudden discharge
of large volumes of water from glacial lakes to Cow
downstream, that have repeatedly caused loss of
lives and damages to infrastructure (Jain et al.
2012); the melting of glaciers has been contributed
significantly by the gradual increase in surface
temperature; concludes that global warming has
had a drastic eAect on the glacier shrinkage.
Kaushik et al. (2020) notes that glaciers in lower
elevations have retreated by considerable amounts,
while the ones in higher elevations have stayed
relatively stable. Patel et al. (2018) notes that the
presence of debris cover in the glacial area greatly
inCuences the melt rate of the glacier, while con-
trary to this observation, higher retreat has been
observed in debris-free glaciers. The paper also
notes that steeper-sloped glaciers are less sensitive
to environmental factors and climate change than
gentler-sloped glaciers. The general approach to
the studies predominantly has been to use satellite
imagery such as the Landsat series (Bhambri et al.
2012; Patel et al. 2018; Kaushik et al. 2020; Tri-
pathi et al. 2022), Cartosat 1 (Bhambri et al. 2012),
LISS III and IV (Kulkarni et al. 2007); Kaushik
et al. (2020) applied a semi-automated technique
for clean ice and snow mapping through various
input parameters, which was merged with parallel
output for debris cover mapping for a base glacial
boundary, which has been used for change detec-
tion over different periods. In contrast to this
approach, Taloor et al. (2021) delineated the gla-
cier manually using geospatial tools which were
then correlated with the manually derived LST.
Other aforementioned studies have also relied on
delineating glacial boundaries to estimate the
retreat patterns. It may also be noted that using
different imageries derived from different datasets
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with varying properties might result in erroneous
or difBcult to resolve to map accuracies, thus
making analysis difBcult (Romshoo and Rashid
2010; Bhambri et al. 2012). Thus, several studies
have approached glacial studies through a mod-
elling aspect for quantifying the relationships
between the aforementioned variables with that of
glacial retreat.
Modelling of glaciers has largely involved physical

models such as surface mass balance model (Kadota
et al. 1997; Shea et al. 2015) and general circulation
model (Hock 2005; Jury et al. 2020) for the moni-
toring of retreat in glaciers. Bolibar et al. (2020)
has presented a unique approach that combines
the physical modelling of glacier w.r.t. actualized
through a feedforward ANN architecture for the
simulation of annual surface mass balance by taking
into consideration a vast array of parameters.

3. Study region and datasets

The area of focus or the ROI spans 2341.79 km2, as
depicted in Bgure 1. It is a dense mountainous
region in Uttarakhand that surrounds alpine peaks

such as Gangotri Peak, Sri Kailas Peak; key gla-
ciers in the ROI include Chorabari Glacier and
Gangotri Glacier. Chorabari Glacial Lake is loca-
ted in the basin of river Mandakini, near the pil-
grimage Kedarnath (Das 2013). It is a valley
glacier with a surface extent of 6.7 km2. It is the
source of the Mandakini River that joins the
Alaknanda River near Rudraprayag (Mehta et al.
2014). The Glacial Lake Cows north to south with
its accumulation area below Bharatkund and
Kedarnath peaks (Mehta et al. 2012). Gangotri is
an alpine glacier originating between the peaks of
Chaukhamba; Gangotri is the chief source of the
Ganges River (Bhambri et al. 2012). The region
holds special significance in the glacier retreat as
many major rivers originate from the Himalayan
region and pass through the region of interest. The
region is also a key factor for hydroelectricity, with
the entire region and beyond relying heavily on the
same. Also, the region has a high human footfall on
account of tourism and religious pilgrimages
(Kumar et al. 2021a, b). The shifting landscapes
due to ice reduction and glacier retreat can aAect
the local economy. Not only this, but as mentioned
earlier, the ice sludge can lead to landslides, which

Figure 1. Area of focus.
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can lead to heavy losses of life. This is also
enhanced due to the phenomenon of the glacial lake
outburst Coods, which can result in sudden and
massive Coods downstream and aAect communi-
ties, infrastructure, and agriculture (Khanal et al.
2015). The region itself plays a key role in the
regional climate and its patterns have a direct
inCuence on the southern pollution space of Delhi
to the overall ice development on the north of the
Upper Himalayas. The landuse change can inCu-
ence the local economy as well as reduce the
available natural resources, Cora and fauna, which
heavily rely on the cold environment (Saikawa
et al. 2019).
The study focuses on the usage of multi-source

datasets by extraction through Google Earth
Engine for the sensors of MODerate Resolution
Imaging Spectrometer (MODIS), Shuttle Radar
Topography Mission (SRTM), European Centre
for Medium-Range Weather Forecasts Reanalysis
v5 (ECMWF-R) and Breathing Earth System
Simulator (BESS). Datasets have been acquired
from sources as mentioned in table 1. The temporal
resolution of the retrieved daily datasets has been
aggregated yearly, from years 2005 to 2021. Due to
the temporal variations within the parameters,
each parameter was scaled to match the standard
references. Furthermore, the study was conducted
on an yearly basis to avoid data gaps and missing
observations within the study. The parameters
were Bltered out with cloud mask to avoid over-
contamination and aggregated over an yearly
basis. This pre-processing step was only under-
taken for parameters without yearly observations
like LST. The remaining were directly considered
and scaled to match the NDSI observations. The
identiBcation of glacial delineation has been

attributed to the NDSI. A demarcation of 0.5 and
higher is deBned as pure snow and the boundaries
have been identiBed through the same. The inCu-
ence of different parameters needs to be understood
properly. A heat map is a graphically represented
correlation matrix quantifying the correlations
between the different variables (Rajagopalan and
Rajagopalan 2021), as depicted in Bgure 2 and their
sources in table 1.
Given the presence of water at freezing temper-

atures in the surrounding area and the inCuence of
water from precipitation in forming a glacier, as
previously described, a strong correlation can be
observed in NDWI with glacial ice and NDSI.
Albedo is a measure of the solar energy scattered
back into space upon its incidence on the Earth’s
surface (Stephens et al. 2015); the albedo of snow,
especially fresh snow surfaces, is very high (Ang-
strom 1925) given their higher surface reCectance,
thus the strong correlations that albedo and RSDN
share with glacial ice and NDSI. The glacial extent
has an inverse relation with LST, as discussed in
the literature review, which can be observed in the
heat map. Due to the higher retreat rate of snow on
higher altitudes (Ghatak et al. 2014), a strong
inverse relation may be observed in the case of
elevation with glacial ice, NDSI and albedo. Fur-
thermore, the detailed trend patterns of 15-year
aggregated and trend mean over the year have
been depicted in Bgure 3, so as to ascertain the
similarities or the dissimilarities between the
parameters in the years 2005–2021.
Since the surface reCectance of snow is high,

albedo would turn up higher when there is a higher
incidence of snow and NDWI is following a similar
trend as it is water under freezing temperatures
that also contributes to the crystallization of snow

Table 1. Parameters used within the study.

Datasets used in study Symbol Source

Resolution

(m) Source

Albedo MODIS 500 Angstrom (1925); Pellikka and Rees (2009)

Elevation Z SRTM 30 Jury et al. (2020); Sood et al. (2022)

Enhanced vegetation index EVI MODIS 500 Angstrom (1925); Baraka et al. (2020)

Land surface temperature LST MODIS 1000 Bolibar et al. (2020); Shea et al. (2015)

Normalised difference snow index NDSI MODIS 500 Baraka et al. (2020)

Normalised difference water index NDWI MODIS 500 Baraka et al. (2020)

Precipitation ECMWF-R 11132 Jury et al. (2020); Shea et al. (2015)

Shortwave radiation RSDN BESS 1000 Pellicciotti et al. (2005)
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into glacial ice. Albedo, which may not deviate
considering water surfaces to a significant extent,
the angle of incidence of radiation has proven to be
eAective in giving higher deviation (Angstrom
1925), and given the waters in the surrounding area
are at freezing temperatures, the wavelength of
radiation emitted radiation from the water surface
can be higher, as can be seen in the strong simi-
larity in trend lines that albedo and NDSI share
with NDWI. Considering vegetation, albedo varies
w.r.t. type of vegetation, but on average returns
lesser values to most vegetation types (Karthi-
keyan et al. 2019), thus the inverse trend lines that
they share. There is a strong similarity in the trend
lines of albedo in Bgure 4 and that of RSDN as
previously established.
RSDN and LST share similarities in trend lines

since the presence of radiation in the atmosphere
increases the temperature in the surrounding area
(Calleja et al. 2021).

4. Models and methodology

The study focuses on the identiBcation of the best-
Bt model for modelling glacial retreat over the
region. Three separate models, i.e., three of the
most common models used within Machine
Learning and Deep Learning studies – Feedforward
ArtiBcial Neural Networks (ANN), Recurrent
Neural Networks (RNN) and Long-Short Term
Memory (LSTM) are considered for the identiB-
cation of the best-Bt model for glacial delineation.
Function optimization is a vital factor to consider,
to minimize the overall network error. One such
method is Levenberg Marquardt (LM), which has
recently been adapted to a great degree by engi-
neers, researchers and scientists as it provides an
eDcient method since it is a combination of the
Gauss–Newton algorithm (speed) and the steepest
gradient decent method (stability) (Sharifahma-
dian 2015). Due to its performance and handling

Figure 2. InCuencing correlation between different parameters.
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capabilities, LM is being used for meteorological
applications, and ecological and biological assess-
ments (Ferreira et al. 2011). The algorithm accu-
rately estimates the desired outputs by generating
the sum square error for evaluation. The
LM–backpropogation (BP), on the other hand,
compensates for the number of hidden layers based
on the partial derivatives which are used to
improve the performance of the gradient descent
based on the Jacobian matrix. The LM derivates
the nonlinear function between the input neuron
and output based on the activation function (Jan-
kowski and Duch 2001). The net input (netj)

projects the dataset based on the non-linearity
necessary to estimate the desired measurements.
Every activation function (or non-linearity)
accepts a single number and performs a precise
Bxed mathematical operation on it (Ramachan-
dran et al. 2017). The model was trained with 1000
iterations, while the condition was kept for the
model to stop training provided it reached the
global minimum of error prior to the completion of
iterations. For proper comparative purposes, the
number of hidden layers, nodes, activation and
training-validation datasets have been kept the
same. Each architecture has Bve hidden layers with

Figure 3. Trend variation of parameters: (a) Albedo, (b) enhanced vegetation index, (c) land surface temperature, (d)
normalized difference snow index, (e) normalized difference water index, (f) precipitation, and (g) shortwave downwelling Cux.
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128, 246, 512, 256, and 128; the number of hidden
nodes following the 2n – 1 rule suggested by Hea-
ton. Along with the same, the symmetry between
each side of the middle-hidden layer has been kept
the same for better approximation (Heaton 2008).
The activation functions are a combination of tanh
and ReLU as they provide a better approximation
for regression-centric studies (Pomerat et al. 2019).
The parameters for model evaluation include mean
square error (MSE) and root mean square error
(RMSE) along with the regression accuracy, after
which the best model is tested with a dataset of a
differing temporal range for its validation, using
the same metrics of MSE, RMSE and accuracy
over 1000 iterations. The temporal range of the
dataset is between 2005 and 2021, of which the
datasets have been divided into a 70:30 ratio ran-
domly prior to model training.

4.1 ArtiBcial Neural Network (ANN)

Feedforward ANN or Multilayer Perception
(MLP) (depicted in Bgure 4) is the most common
neural network whose structure resembles that of
the human brain (Popescu et al. 2009; Ramchoun
et al. 2016), wherein the transmission of signals
occurs unidirectionally from Input (I/P) to Output
(O/P). The neurons themselves remain unaffected
by their O/P without the presence of any loop,
which makes it a feedforward architecture
(Popescu et al. 2009). A nonlinear function is
generated via the architecture that allows for the
prediction of O/P given the I/P data. Feedforward
ANNs, however, are limited to classiBcations of the

static kind for mapping I/P to generate the O/P;
time-series data necessitate more dynamicity than
made available by ANN architectures (Staude-
meyer and Morris 2019).

4.2 Recurrent Neural Network (RNN)

RNN, contrary to the feedforward architecture of
the ANN, has closed-loop feedback connections
that are designed for sequential data through pro-
cessing real sequences step by step for the predic-
tion of the next in the sequence (Fausett 1994;
Medsker and Jain 2001; Graves 2013) as depicted
in Bgure 5.
Similar to ANN, RNNs have distinct I/P, O/P

and hidden layers that are interconnected with
their respective weights, biases and activations,
but ones that are interconnected partially or fully
depending on the intended architecture of the RNN
model (Medsker and Jain 2001). The predictions
from an RNN, however, are generated not from the
input training data itself but the multi-dimensional
interpolation made from the model’s own ‘under-
standing’ of the data, the predictions themselves
being derived from matches between the training
data and the input dataset for prediction (Graves
2013). RNNs are able to ‘memorize’ earlier events
as they process current data due to the presence of
their internal state at each iteration and the cir-
cular or recurrent connections to the lower and
higher layers of neurons. RNNs are, however, lim-
ited to looking back nearly 10 timesteps due to the
vanishing fed-back signal (Staudemeyer and Morris
2019).

Figure 4. ANN architecture used in the study.
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4.3 Long-Short Term Memory (LSTM)

LSTM or an LSTM-RNN is a variant of RNN
architecture that addresses the long-term depen-
dency problem and the lack of ANN’s ability to
deal with sequential data adequately via memory
cells that Blter data out, cell-by-cell, as depicted in
Bgure 6.
It allows for bridging of time gaps of over a

thousand by allowing for a consistent error Cow
within the specialized versions of the RNN cells,
the access to and exit from which being handled by
gates that regularize the cell-to-cell data access
(Staudemeyer and Morris 2019). Each LSTM cell
has three cells: the forget gate, the I/P gate and the
O/P gate. The forget gate allows for the Bltering of
information as to which information enters the cell
through the sigmoid function; tanh adds weights to
the information, which then passes through the I/P
gate that decides which information is stored in the
cell, and the O/P gate deciding which information

leaves the cell, in both instances, through sigmoid
that Blters out the values and tanh that adds
weights, similar to the forget gate. It is through
this mechanism that LSTM can retain the neces-
sary information while ‘forgetting’ the irrelevant
past information. An additional layer that LSTM
adds to RNN is the states; the hidden state is the
information that is passed to the cell from the
immediately preceding cell that also backpropa-
gates for prediction purposes, while the cell state
is all the previously remembered information
(Staudemeyer and Morris 2019).

5. Model performance and results

The models were trained on a 70–30 split of data
division, with a 1000-epoch limit, to consider a
standard for comparison and the results are shown
in Bgure 7. It was observed that the accuracy of
ANN has saturated at 62.35% while the RMSE

Figure 5. Typical architecture of a RNN (Son and Kim 2020).

Figure 6. Typical architecture of an LSTM cell (Lazaris and Prasanna 2020).
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remains unchanged at the high value of 1.45 and
MSE at 2.1. On the other hand, LSTM provided a
similar accuracy performance; however, the error
continues to reduce. RNN provided the best per-
formance across the three with an accuracy score of
0.9, RMSE of 0.27 and MAE of 0.07, the perfor-
mances are shown in Bgure 7. The RNN trends are
depicted in Bgure 8.
From the temporal graphs depicted above, the

shortcoming within the ANN point made in
Staudemeyer and Morris (2019) regarding the need
for a dynamicity for time series data that ANN
does not exhibit has been proven in the instance.
RNN performed well given its feedback mechanism
properties and can reliably assist in the processing
of long-term sequential data (Mou et al. 2017),
unlike the ANN, which is unable to realize the
inherent dependencies between sequential inputs
(Sharma et al. 2018). For multi-temporal and
spectral data that has been used in the study,
RNN’s structure allows for connections between
hidden layers without any time delay, enables
better dealing with the inherent dependencies,

counter to the multilayer dense structure of an
ANN that cannot deal with the same (Lakhal et al.
2018). It is necessary to note here that despite
LSTM being cited to be better suited to temporal
and multi-spectral data in comparison to a stan-
dard RNN (Ienco et al. 2017; Lakhal et al. 2018;
Sharma et al. 2018) given that LSTM provides a
solution to the vanishing or exploding gradient
that standard RNNs have an issue with Mou et al.
(2017) and Ndikumana et al. (2018). However, in
the case of this study, standard RNN has given
better results than the oversaturated LSTM.
Moreover, LSTM saturates to the same perfor-
mance level as the ANN. This can be attributed to
the target of binary classiBcation during the
training phase. While LSTM is better as a model,
the binary classiBer problem cannot be directly
quantiBed for both feedforward and LSTM models
(Li et al. 2017). RNN model, however, due to its
lacking dependencies within the structure as well
as the gradient approach included, can be the
reason why it performed, nonetheless. The RNN
architecture is such that while being simpler in

Figure 7. Model performance matrix evaluation for (a) RMSE, (b) loss and (c) accuracy.

Figure 8. RNN model performance during training and validation for (a) RMSE, (b) loss and (c) accuracy.
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reference when compared to the LSTM design, it
can perform better under speciBc conditions. One
of the key aspects is the data characteristics; this is
a major shortcoming of LSTM (Sherstinsky 2020)
as the variations are significantly inCuenced by the
short-term period over the land term due to the
timescale considered. The very advantage of LSTM
is leading to its shortcoming in the performance.
Secondly, the feature representation, the features
extracted from the glacial data, might not require
the sophisticated memory mechanism of the
LSTMs (Rahmani et al. 2021). Since the informa-
tion needed for accurate delineation can be eAec-
tively captured by a model with simpler temporal
dependencies, RNN is sufBcient. Lastly, the train-
ing data size, while the LM–BP was deployed,
presents a possibility of generalization within the
model. The increased number of parameters may
not necessarily be needed when it comes to the
amount of and scale of datasets being used over the
region (Bhatia 2022).

6. Glacial boundary delineation

The glacial extent for each year within the tem-
poral range of observation was derived from the
best-Bt model (which includes the training and
validation periods). The Bgures that follow are the
maps for the aforementioned glacial extents. The
predictions from each year have been used for the
glacial change detection and a boundary delin-
eation was derived and depicted in Bgure 9.
Furthermore, the temporal area derivations from

the same, plotted in Bgure 9, show a breathing
pattern observation due to the shift in atmospheric
rivers. Whilst the overall trend is decreasing, the
extent of glaciers is still varying by a significant
extent year by year, which is not in a solely
decreasing fashion. This is the breathing eAect of
the glaciers; the glacial–interglacial cycles are
inCuenced to a significant extent by the ENSO
oscillations (Tudhope et al. 2001). El Niño implies
warmer water spreads further, thus releasing more
heat into the atmosphere, while La Niña wind and
precipitation are inCuenced heavily despite the
average temperatures in a region (Trenberth 1997).
Precipitation, water extent, surface temperature,
wind direction and wind speed are heavily inCu-
enced by the ENSO cycles (McCreary 1976; Tud-
hope et al. 2001). As in Bgure 10, the breathing
pattern of the ROI glacial extent observes an
increase every three years, then observes a decline

in the extent for three years. A glacial maximum is
observed in 3-year intervals, and thus in 2022, the
glacial extent is expected to decrease given the
trend line. The model, thus developed, can be used
to identify such conditions within the boundaries of
different glaciers.
Within the validation dataset, Bve-time periods

were extracted, and a change within the boundaries
of the potential glacier can be observed in Bgure 10.
A direct reduction in the overall snow cover within
the span of 15 years can be observed. Trend lines
have been identiBed for the observation of the
breathing pattern of the glacier. Albeit the large
Cuctuations, the trend line suggests a gradual
retreat in the glacier, as in Bgure 9. It can be
observed that in each instance of the glacial ice
reduction from year to year, the decrease is parallel
to the trend line. The study can be further scaled to
the prediction of the glacial extent of various gla-
ciers and temporal ranges for the glacial delin-
eation studies. This can help with the decision-
making for local bodies in dealing with the in-situ
situations and respond accordingly to extreme sit-
uations, such as the Chorabari GLOF in 2013
(RaBq et al. 2019), landslides due to the glaciers
and rested pond on-site or a policy level; reducing
ice sheet levels, the decrease in freshwater on land
due to melting ice sheets pouring the glacial
freshwater into the ocean, shifting oceanic currents
in the process and so forth – various glacial climate
phenomena may be modelled and identiBed
through the approach undertaken in the study.

7. Discussion and way forward

The study highlights the breathing and variations
within the region. Some aspects need to be
accounted for, when considering the underlying
inCuences to mitigate the future. The region is
strongly inCuenced by climate change by a com-
bination of natural and human-induced factors.
One of the key drivers is the overall rise in global
temperatures. Warmer temperatures contribute to
increased melting of glaciers, leading to a reduction
in glacial mass and size over time (Kraaijenbrink
et al. 2017). Secondly, the emission of greenhouse
gases, such as carbon dioxide and methane, con-
tributes to the enhanced greenhouse eAect, trap-
ping heat in the Earth’s atmosphere. This warming
eAect accelerates glacial melting in the Himalayan
region. Along with the same, particles like black
carbon (soot) deposited on the glacier surface
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absorb sunlight, reducing the glacier’s albedo (re-
Cectivity) and accelerating the melting process.
This is often linked to industrial and biomass-
burning activities (Kumar et al. 2021a, b). This
may also lead to alterations in precipitation

patterns, such as changes in the form (rain vs.
snow) and timing of precipitation, which can
impact glacier mass balance. If more precipitation
falls as rain rather than snow, it can lead to faster
melting. The Himalayan region is inCuenced by

Figure 9. Model derived annual glacier boundary extent over the span of 2005–2021 and the variations in the overall area
(bottom right).
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complex climatic systems. Changes in atmospheric
circulation patterns and regional climate variability
can aAect the temperature and precipitation regimes,
inCuencing glacial dynamics (Singh and Bengtsson
2004). Lastly, human activities, such as deforestation
and urbanization, can inCuence local climate condi-
tions and indirectly impact glaciers. Changes in land
use can alter the albedo and heat absorption prop-
erties of the landscape (Massad et al. 2019). Under-
standing these drivers is crucial for developing
eAective strategies to mitigate the impacts of glacial
retreat and address the broader issue of climate
change. It requires both global eAorts to reduce
greenhouse gas emissions and regional initiatives to
adapt to the changing environment.
The current study does not directly account for

the underlying drivers for the region. The future
aspect of the same can consider these inCuences
directly, while suggesting possible mitigation,
adaptive and transformative strategies like higher
reliance on solar potential to reduce hydroelectric
dependencies. Better tourism policies to reduce the
amount of human inCuence over the region and
considering integrating reinforced nature-based

land use within the built forms to counterbalance
the loss of ecosystem serve as a barrier for landslide
and GLOF-infused calamities.

8. Conclusion

A study focused on observing the spatio-temporal
variations in glacial land use, through which a
machine learning model was developed to observe
the patterns of retreat in the glacier. Three com-
monly used machine learning models were com-
pared – ANN, RNN and LSTM and through the
results, it was concluded that RNN is the best-Bt
for the current study as it outperformed the other
two models by an R2 of roughly 0.3. Furthermore,
RNN was used for glacial boundary delineation to
observe the pattern of change in the glacier. The
ROI, which encompasses various glaciers, includ-
ing Chorabari and Gangotri glaciers, has been
observed to have an average extent of 403 km2,
over a span of 2342 km2. The model can be further
scaled for the prediction of the glacial extent of
different glaciers over various temporal ranges for

Figure 10. 5-year temporal interval variations in glacier extent over the region.
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the glacial delineation studies. This can help with
the decision-making of local bodies in dealing with
in-situ situations and responding accordingly to
extreme situations.
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