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The altered ultramaBc rocks from Higher Himalayan Crystalline (HHC) are characterised by the mineral
assemblage of olivine, pyroxene, phlogopite, chromite, and opaques. Olivine and pyroxenes show alter-
ation to serpentine, talc, anthophyllite, and tremolite. In the present research work, the petrogenesis and
paleo-tectonic setting of the ultramaBc rocks from the Paddar sapphire mining area are understood using
chromite chemistry. The investigated chromite is characterised by a higher abundance of Cr2O3, FeO,
Al2O3, and low MgO and is classiBed as Al-chromite. They show higher Cr# (71.10–87.80) and Fe#
(71.66–86.04) and lower Mg# (13.95–28.16), suggesting their aDnity towards the ophiolitic peridotite.
Chromite geochemistry further suggests that the parent magma originated from the mantle and intruded
under high pressure and low oxygen fugacity. Chromite chemistry suggests arc to supra-subduction
tectonic setting for the crystallisation of chromite from ultramaBc magma. Based on the correlation
matrix and binary diagram, it is interpreted that Ti + Cr $ Al; Cr $ Fe+ substitution prevails at the
octahedral site, while Fe $ Mg; Al $ Fe and Al $ Mg substitution mechanism operated at the tetra-
hedral site during the crystallisation of chromite from magma. Further, compositional re-equilibration
occurs during hydrothermal alteration.
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1. Introduction

Chromite [(Mg, Fe2+) Cr2O4] is one of the end mem-
bers of the spinel group, represented by the general
formula AB2O4. While it frequently occurs as an
accessory mineral in maBc to ultramaBc rocks, it only
appears as a dominant mineral in chromitite (Irvine
1965; Rollinson et al. 2002). Because it is the Brst
mineral to crystallise from ultramaBc magma and a
highly sensitive indicator of the primary magma
composition, it is frequently utilised as a petrogenetic

indicator (Irvine 1965; Cameron 1975; Zhou et al.
2014; Gonzalez-Jimenez et al. 2015; Ishwar-Kumar
et al. 2016; Kang et al. 2022). Due to this, many
researchers have focused on how the degree of mantle
melting, the content of the magma, the order of crys-
tallisation, pressure–temperature parameters, and
tectonic context all aAect the composition of chromite
crystallisation frommagma (Barnes andRoeder 2001;
Rollinson 2005;Karipi et al. 2007;Boudier et al. 2021).
The composition of the chromite is controlled by

the different processes operating in the magma
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chamber like magma differentiation, magma mix-
ing, disequilibrium crystallisation assimilation and
cooling rate ofmagma (Thy1983; Scowen et al. 1991;
Yang et al. 2021). Dick and Bullen (1984) proposed
that C# increases with the increase of the degree of
melting. Bannister et al. (1998) demonstrated that
continued growth of magnetite on chromite and
diffusion in the spinel during cooling of the lava Cow
gave rise to magnetite, which result in Cr/Fe3+[1
inmagnetitewhile Fe3+# (Fe3+/(Cr+Al+Fe3+)[
0.3 in chromite. Takahashi (1987) recorded that Fo
content of the olivine was inversely related to the Ti
and Fe3+# (Fe3+/(Cr + Al + Fe3+) of coexisting
chromian spinel phase, while Cr# (Cr/Cr + Al) of
chromian spinel increases or decreases or is unaf-
fected with a decrease of Fo content of the olivine.
However, the composition of the chromite also
changes with the grade of metamorphism and
hydrothermal alteration (Evans and Frost 1976;
Zakrzewski 1989; Kimball 1990).
Many researchers have conducted research on the

HHC unit at the regional scale in previous decades.
However, the structure, metamorphism, and
geochronology were the key areas of attention in their
work (Pognante et al. 1990; Inger and Harris 1992;
Reddy et al. 1993; Carosi et al. 2010;Webb et al. 2011;
Th€onietal.2012;Bartolietal.2019;Carosietal.2019).
Chromite is reported from the ophiolite sequence of
Himalayan orogen like Manipur Ophiolite, Nidar
Ophiolite, Karzok Ophiolite, Spontang Ophiolite
(Nayak andMaibam 2020; Jonnalagadda et al. 2022),
while chromite chemistry fromHHC is rarely reported
in published literature along the entire length of
Himalayan orogen. Due to the petrogenetic signifi-
cance of chromite, the present study is an attempt to
explore further the importance of detailed petrogra-
phy and chromite geochemistry in understanding the
petrogenesis of ultramaBc rocks. Furthermore, we
intend to relate the petrogenetic conclusions from
investigated chromite. The chromites from the altered
ultramaBc rocksare investigated for theBrst time from
the Higher Himalayan Crystalline Unit of northwest-
ernHimalaya. The detailed petrological character and
geochemistry of chromite are utilised to understand
the tectonic setting of parent magma and its post-
crystallisation eAect.

2. Geological setting

The Himalayas is a typical example of a conti-
nent–continent collision orogenic mountain system
formed during the Cenozoic period by the collision

between Indian and Eurasian plates that began
55–50 Ma ago (Dewey and Bird 1970; Thakur
1987). The Himalayan orogen is characterised by
continuous south-directed thrusting and piling
up of tectonic units, traditionally divided into
tectonostratigraphic zones (Bgure 1a), each having
characteristic stratigraphy and bounded by major
thrust that extends the full length of the orogen
(DiPietro and Pogue 2004). Le Fort (1996) divided
it from south to north as Neogene Sub-Himalaya
(Siwalik Group), the Proterozoic Lesser Himalayan
Sequence (LHS), the Proterozoic to Ordovician
Greater (or Higher) Himalayan Crystalline Com-
plex (HHC), and the Proterozoic to Eocene Teth-
yan Himalayan Sequence (THS). But out of these
zones, the Higher Himalayan Crystalline (HHC)
zone, of which the present area of study is a part,
represents the central metamorphic belt and axis of
maximum surface uplift of the orogen (Thakur
1980). The HHC is also known as Higher Hima-
laya/Greater Himalayan Crystalline Complex/
Central Himalaya/Central Crystallines. This zone
is considered as the backbone of the Himalayan
orogen (Saxena 1971) and is characterised by the
highest topographical relief. It is commonly repre-
sented by a thick Paleoproterozoic to Ordovician
(1800–480 Ma) high-grade metamorphic belt and
root zone of the allochthonous klippen of the Lesser
Himalaya (Parrish and Hodges 1996; DeCelles
et al. 2000). These metasediments are frequently
intruded by granites of Ordovician (*500 Ma) and
Lower Miocene (*22 Ma) age.
Geologically, the study area is part of the

Kishtwar region, which shows a very complex
litho-tectonic setup as it is surrounded by Kashmir
Nappe in the west; where the THS directly overlies
the LHS along the MCT (Frank et al. 1995; Pogue
et al. 1999). The present investigation is conBned
to the Paddar Sapphire mine area, exposing the
high-grade metamorphic rock of the HHC unit of
Himalayan orogen. In general, the stones of HHC
rocks show thrusted contact with Lesser Himalaya
marked by the well-known Main Central Thrust
(MCT, Bgure 1b). The low-grade metamorphic
rocks of Lesser Himalayan form window structure
(Kishtwar Window) within HHC along the Kisht-
war Fault (Fuchs 1975; Stephenson et al. 2000;
Singh 2010). The Zanskar Shear Zone (ZSZ) marks
the boundary between HHC and Tethys Himalaya
along the northern edge of the HHC (Herren 1987;
Singh 2010). Precambrian HHC occurs at the
base of Tethys Himalaya, forming the basement
(Thakur 1987).
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In the present study area, HHC is composed of
migmatites, gneisses of sedimentary protolith
associated with gneisses of magmatic protolith,
pelitic schists, intruded by porphyritic granites and
leucogranites (Stephenson et al. 2000; Singh 2010).
The Tethys Himalaya of the Paleozoic–Mesozoic
age is represented by a thick marine sedimentary
sequence intruded by Permian volcanic (e.g.,
Frank et al. 1995). In the Paddar area, the Lesser
Himalayan unit is represented by quartzites,
phyllites, slate, schist, mylonitic augen gneiss,
volcanics, and gneissose granite. The western and
southern boundaries of the Kishtwar Window are
represented by the sericitic-phyllites and quartzites
and show a gentle dip towards N to NE (Fuchs
1975; Honegger 1983; Staubli 1988). Tewari (1981)
proposed gneissic rocks intercalated with marble
occur as exotic thrust mass placed over migmatitic
complex, as a klippe along Sumjum Thrust. Singh
(2007) classiBed the stones of the proterozoic rocks
of Lesser Himalaya and HHC under the Kishtwar
Group. In the Kishtwar region, the Phe Formation,
Haimanta Group, and the Lilang Group are
exposed in the north of the HHC.
TheKishtwar regionhas undergone three phases of

metamorphism represented by M1 (amphibolites
grade metamorphism with moderate pressure), M2

(development of syn-metamorphic dome in the
Higher Himalaya), and M3 (retrogressive mineral
assemblage quartz–muscovite–chlorite and the
upliftment of the Kishtwar window; Kundig 1989;
Staubli 1989; Frank et al. 1995; Stephenson et al.
2000). The M2 phase is associated with the migma-
tisation and large-scale crustal melting in the HHC
(Noble and Searle 1995). Kundig (1989) observed
several gneisses domes, such as the Chishoti dome
and the Bhazun dome, at the lower structural level
within the HHC unit just north of the Kishtwar
window. These domes are syn-metamorphic in origin
and consist of pelitic schists and gneisses folded
around granite and granitic gneiss core. Migmatisa-
tion commonly occurs along the contacts within the
granites and overlying schists and gneisses. In Bhat
Nala, folding of the main foliation into the adjacent
Chisoti and Bhazun domes creates foliation triple
junctions.These suggest regionsofhigh strainandare
characterised by isoclinal folded compositional
banding into upright-facing synforms. Stephenson
et al. (2001) interpreted it as synchronous with
thrusting on the Main Central Thrust and local
extension on the Zanskar Shear Zone. Searle et al.
(2007) also suggested that the domes were syn-
chronouswithmovementon theMainCentralThrust
and could be thrust-related culminations. Fission

Figure 1. Geological setup of the study area. (a) Tectonic subdivision of Himalaya marked by thrust system and (b) regional
geological map of the study area (after Sorkhabi et al. 1997). ITSZ: Indo-Tsangpo Suture Zone, STD: South Tibetan Detachment,
MCT: Main Central Thrust, MBT: Main Boundary Thrust, HFT: Himalayan Frontal Thrust. (c) Geological map of Paddar
sapphire mine area showing the distribution of pegmatites (after Srivastava and Singh 2022).
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track data, however, from the cores of the Chisoti
dome suggests that these structures have experienced
relatively fast exhumation (Kumar et al. 1995).

3. Sampling and analytical technique

The author carried out detailed Beldwork in the HHC
of the Paddar area along the Bhat Nala. About 30
samples of ultramaBc rock were selected for detailed
petrographic examination. Based on the petrography,
three samples were selected for the EPMA investiga-
tion to better understand the compositions of the
opaquemineral phase. At theDepartment ofGeology,
BanarasHinduUniversity, the chosen chromite grains
are examined using the Electron Probe Micro Ana-
lyzer (EPMA)CAMECASXFive. For performing the
analysis, the polished thin sections were coated with a
20 nm thin layer of carbon by using the LEICA-EM
ACE200 instrument. The instrument was operated at
a voltage of 15 kV with 40 nA and set with a focused
beam of diameter 1 lm with counting time of 120 to
300 seconds. B–K, Na–K, Mg–K, Al–K, Si–K, K–K,
Ca–K, Ti–K, Cr–K, and Fe–K X-ray lines were
employed in the analysis. For calibration, a variety of
synthetic and natural standards were used. For major
element oxides, the analysis accuracy is better than
1%. The representative compositions of chromite
grainsalongwith the calculatedmineral formulabased
on 32 oxygen atoms, are given in table 1.

4. Field description and petrography

The ultramaBc rocks are the conspicuous rock in
the study area. The fresh rock shows an olive-green
hue, while the weathered surface of these rocks has
an oxidised brown staining. They are intruded in
the gneissic rocks in the form of small bodies of
laccolith, lenses, and bulbous (Bgure 2). They
contain olivine and pyroxenes predominately,
along with varying amounts of opaque minerals.
They are intensely altered to serpentine and talc,
giving a soapy feel while touching with a hand.
They are enclosed within the garnetiferous biotite
gneiss and shows both concordant and discordant
relationship. They show forceful emplacement by the
up arching of the strata is clearly visible in the main
sapphire mine ridge (Bgure 2).
The ultramaBc rocks are the most interesting rock

types well exposed in the Paddar sapphire mine area.
They are medium to coarse-grained, characterised
by radiating crystals of pyroxenes and amphiboles.
Mineralogical composed of olivine and pyroxene as

main mineral phases while phlogopite and opaque
minerals occur as minor mineral phases (Bgure 3).
The main mineral phases (olivine + pyroxene) show
alteration to talc, serpentine, anthophyllite, and
tremolite by the eAect hydrothermal Cuids (Bgure 3).
Fe-oxide and chromite are the opaque phases

identiBed in EPMA studies. Chromite is one of the
most important accessory phases in these rocks.
They occur as isolated subhedral to anhedral grains
and scattered Bne dust in altered parts (Bgure 4a, b).
They vary in size from\5 to 800 lm in diameter.
They occupy the intergranular space between oli-
vine, pyroxene, andaltereddomain (Bgure 4c). Some
subhedral grains have sharp boundaries with phlo-
gopite and pyroxenes. Most of the grains are unal-
tered and homogenous, except the grain boundary is
corroded (Bgure 4c, d). However, some grains show
alteration along the fractures (Bgure 4d).

5. Chromite chemistry

The chromite from the ultramaBcs of the study area
shows enrichment and a wide range of Cr2O3 and
Al2O3 ranging from 47.89 to 60.18 wt%, 5.57–13.40
wt% with an average of 56.38 wt%, 8.53 wt%,
respectively. The FeO is also higher in concentra-
tion, but it is more consistent ranging from 22.10 to
28.98 wt% with an average of 25.65 wt%. However,
the MgO is lower in concentration, varying from
2.58–5.49 wt% with an average of 4.36 wt%. The
Na2O and K2O occur in traces\0.1%. The CaO is
higher than the alkali elements ranging from0.002 to
0.21 wt% with an average of 0.06 wt%.
The TiO2 varies from 0.03 to 0.72 wt%, which is

higher in concentration, while MnO is detected in a
few analysed points ranging from 0.43 to 0.66 wt%.
The P2O5 varies from 0.01 to 0.13 wt% and chlo-
rine content ranges from 0.0010 to 0.02 wt%.
The chromites show very higher Cr# (100*Cr/

Cr + Al), ranging from 71.10 to 87.80 with an aver-
age of 81.55. However, they show wider ranges of the
Mg# (100*Mg/Mg + Fe2+) ranging between 13.95
and 28.16 with an average of 23.36, while Fe3+#
(100*Fe3+/Cr + Al) varies in a range of\0.1–2.15.

6. Discussion

6.1 ClassiBcation of chromite

Based on structure, Palache et al. (1944) divided the
spinel group into three series: the spinel series, mag-
netite series, and chromite series. According to
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guidelines of nomenclature and Commission on
New Minerals, Nomenclature and ClassiBcation
(CNMNC), Mills et al. (2009) classiBed the spinel
supergroup into three groups on the basis of the X
species given in table 2. The chromite mineral series
are classiBed under the spinel subgroup (2–3) repre-
sentedby the general formulaA2+(B3+)2O4under the
Oxyspinel group. Naturally, occurring chromites are
essentially solid solutions mainly of the Mg and Fe
members of the spinel and chromite series, viz.,
magnesiochromite and (ferro) chromite, with minor
amounts of the magnetite series. On plotting the
composition of analysedmineral grain inCr–Al–Fe3+

ternary classiBcation diagram (after Stevens 1944),
all grains occupy the Al-chromite Beld.
The spinel prism (Bgure 5a) diagram, presented

by Haggerty (1991), represents a solid solution
between spinel, hercynite, chromite, magne-
siochromite, magnesioferrite, and magnetite. Gar-
giulo et al. (2013) projected the face ‘B’ and ‘C’ of
the prism diagram into compositional variation

diagrams based on the previously published dia-
grams of Stevens (1944) and Deer et al. (1992).
On plotting the composition of analysed chromite

in ternary Y(Cr3+) =Cr/(Cr+Fe3++ Al); Y(Fe3+)
= Fe3+/(Cr +Fe3++Al); Y(Al3+) =Al/(Cr+Fe3+

+ Al) diagram the analysed points occupy the Al-
chromite to chromite Beld (Bgure 5b). Further, in
both classiBcation diagrams, the chromite displays
Cr–Al trend indicating Cr$Al substitution. On the
projected ‘C’ face of the spinel prism diagram in
binary Mg2+/Mg2+ + Fe2+ vs. Al3+/Fe3+ + Al3+

plot, most of the analysed chromites fall in the spinel
Beld while few fall in the pleonaste Beld (Bgure 5c).
From this plot, it is evident that in the X-site shows,
there was lowerMg2+–Fe2+ andAl3+–Fe3+ exchange
during the crystallisation. Further on plotting the Cr
number and Mg number of the studied chromite in
the Mg2+/Mg2+ + Fe2+ vs. Cr/Al + Cr, all the
analysed points are occupying chromite Beld, indi-
cating higher chromium and iron concentration as
compared to the magnesia (Bgure 5d).

Table 1. Representative electron microprobe analysis (in wt%), cation proportion and composition of chromite from altered
ultramaBc rocks of Paddar area.

Sample points 31 32 33 34 35 76 77 78 79 80 81 82 83

Cr2O3 59.39 60.18 59.07 58.70 54.87 59.84 59.27 58.71 58.36 57.09 47.90 49.18 50.47

Al2O3 7.83 7.92 7.32 7.90 11.48 5.57 6.68 6.58 6.17 7.92 10.33 13.40 11.87

TiO2 0.66 0.69 0.72 0.15 0.19 0.34 0.39 0.41 0.04 0.06 0.04 0.11 0.13

FeO 24.14 24.69 25.23 25.36 26.10 25.31 25.30 25.61 25.95 26.76 22.11 27.93 28.99

MgO 4.71 5.49 4.24 3.46 4.16 4.32 5.34 5.41 4.25 4.09 4.63 4.11 2.58

MnO 0.61 0.60 0.67 0.50 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 97.34 99.57 97.26 96.08 97.23 95.39 96.99 96.72 94.77 95.92 85.00 94.73 94.04

Formula units based on 32 oxygen and Fe2+/Fe3+ assuming full site occupancy

Cr 13.38 13.19 13.40 13.51 12.21 13.92 13.40 13.30 13.62 13.08 12.07 11.10 11.69

Al 2.63 2.59 2.48 2.71 3.81 1.93 2.25 2.22 2.15 2.71 3.88 4.51 4.10

Ti 0.14 0.14 0.16 0.03 0.04 0.08 0.08 0.09 0.01 0.01 0.01 0.02 0.03

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.30 0.21 0.19 0.03 0.34 0.15

Fe2+ 6.05 5.79 6.24 6.47 6.25 6.24 5.86 5.84 6.20 6.30 5.86 6.32 6.95

Mg 2.00 2.27 1.81 1.50 1.74 1.90 2.28 2.31 1.87 1.77 2.20 1.75 1.13

Mn 0.09 0.08 0.10 0.07 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00

Al2O3 in melt 9.35 9.39 9.09 9.38 10.95 8.12 8.75 8.70 8.47 9.39 10.48 11.67 11.10

Fe2+/Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 31.62 19.62 29.39 34.00 212.05 18.38 46.10

100Mg/Mg+Fe2+ 23.04 27.09 20.81 16.37 17.34 23.20 28.05 28.63 22.41 19.63 22.54 16.15 10.20

100Cr/Cr+Al 83.57 83.60 84.40 83.28 76.23 87.81 85.61 85.67 86.38 82.86 75.66 71.10 74.04

100Fe3+/Cr+Al+Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 1.17 1.88 1.32 1.16 0.17 2.16 0.95

Fe3+/Fe2+ 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.05 0.03 0.03 0.00 0.05 0.02

Cr/Cr+Al 0.84 0.84 0.84 0.83 0.76 0.88 0.86 0.86 0.86 0.83 0.76 0.71 0.74

Mg# 0.25 0.28 0.23 0.19 0.22 0.23 0.28 0.28 0.23 0.22 0.27 0.22 0.14

Fe2+# 0.75 0.72 0.77 0.81 0.78 0.77 0.72 0.72 0.77 0.78 0.73 0.78 0.86
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Figure 2. Regional view of sapphire mine ridge showing ultramaBc rock intruded into garnetiferous biotite gneiss, up arched
marble bed at the top of the ridge.

Figure 3. (a) Relict olivine grain associated with opaque mineral and surrounded by talc alteration. (b) Serpentinised olivine
grain sharing grain boundary with clinopyroxene, phlogopite, opaque minerals are also present. (c) Clinopyroxene altered to
anthophyllite. (d) Pyroxene and olivine altered to tremolite and anthophyllite.
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6.2 Substitution mechanism

The spinel group is represented by the general
formula AB2X4, here A and B represent the con-
stituents instead of the crystallographic site. The
octahedral site in the chromite is occupied by Cr,
which is substituted by trivalent and tetravalent
cations such as Al3+, Fe3+, Ga3+, Sc3+, V3+, and
Ti4+. The tetrahedral site is mainly occupied by
Mg and Fe2+ that may be substituted by divalent

cations Zn, Co, Mn, and Ni. The correlation matrix
of the major and minor elements is presented in
table 3. The binary variation diagram of the
cations per unit formula shows significant positive
(+ve R-value) and negative relation (–ve R-value)
between the elements. The Cr shows a strong
negative relationship with the Al with a very high
R-value of –0.98, while it shows significant positive
relation with Ti (R = 0.46). However, the Al shows
negative relation with the Ti with a –0.46 R-value.

Figure 4. (a) Chromite grain sharing boundary with phlogopite and pyroxene, grain boundary of chromite is corroded due to
alteration, (b) chromite showing variation in the grain size, (c) chromite grains associated with serpentinised olivine grain, and
(d) subhedral chromite grain altered along the fracture and grain boundary.

Table 2. The classiBcation of the spinel supergroup into group-subgroup hierarchy and general formulae of the spinels (Mills et al.
2009).

Supergroup Group Subgroup General formula

Spinel supergroup Oxyspinel group Spinel subgroup (2-3)

Ulvospinel subgroup (4-2)

A2+ (B3+)2O4

A4+ (B2+)2O4

Thiospinel group Carrollite subgroup (1-3-5)

Linnaeite subgroup (2-3)

A1+ (B3.5+)2S4
A2+ (B3+)2S4

Selenospinel group Tyrrellite subgroup (1-3-5)

Bornhardtite subgroup (2-3)

Mg# (Mg+Fe/Mg)

Fe2+# (Fe+Mg/Fe)
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The Fe3+ shows negative relation with the Cr
(R = –0.34) and Ti (R = –0.39; Bgure 6). Based on
these relations, it is suggested that Ti + Cr $ Al

and Cr $ Fe substitution mechanism operated in
the octahedral site. The binary variation diagram
(Bgure 7) shows a strong negative relation between

Figure 5. Chemical classiBcation diagrams for the chromite from Paddar area. (a) Spinel prism for the multi-component system:
spinel–hercynite–chromite–magnesiochromite–magnesioferrite–magnetite (after Deer et al. 1992); (b) Triangular classiBcation
diagram (Cr3+–Fe3+–Al3+): Y(Cr3+) = Cr/(Cr + Fe3+ + Al); Y(Fe3+) = Fe3+/(Cr + Fe3+ + Al); Y(Al3+) = Al/
(Cr + Fe3+ + Al). Spinel gap Beld from Barnes and Roeder (2001). (c) Binary classiBcation diagram considering the
Mg2+–Fe2+ exchange in the structural site ‘X’: Fe2+/(Mg2+ + Fe2+). (d) ClassiBcation diagram for chromites in terms of Mg
number [Mg2+/(Mg2+ + Fe2+)] vs. Cr-number [Cr/(Cr + Al)]. Fields are after Kapsiotis (2009).

Table 3. Pearson correlation matrix of major and minor elements for investigated chromite.

Cr Al Ti Fe3+ Fe2+ Mg Mn Fet

Cr 1

Al –0.98 1

Ti 0.44 –0.46 1

Fe3+ –0.34 0.17 –0.39 1

Fe2+ –0.35 0.41 –0.41 0.04 1

Mg 0.36 –0.44 0.41 0.04 –0.99 1

Mn 0.28 –0.16 0.72 –0.67 –0.11 0.014 1

Fet –0.45 0.44 –0.52 0.40 0.93 –0.891 –0.35 1

  142 Page 8 of 17 J. Earth Syst. Sci.         (2023) 132:142 



the Fe2+ and Mg (R = –0.99) while positive rela-
tion of Mg with Ti (R = 0.41). However, Al shows
negative relation with both Fe2+ and Mg. Thus it is
evident that Fe $ Mg and Al substitute both Fe
and Mg in the tetrahedral site.

6.3 Metamorphism and alteration eAect

Chromite re-equilibration, hydrothermal alter-
ation, and metamorphic modiBcation have all been
extensively covered in previous research (Onyea-
gocha 1974; Ulmer 1974; Evans and Frost 1976;
HoAman and Walker 1978; Loferski and Lipin
1983; Kimball 1990; Burkhard 1993). These

investigations show that chromite alteration
results in the overgrowth of magnetite rim and is
gradually replaced by chromian magnetite, also
known as ‘ferritchromite’. By exchanging compo-
nents with nearby silicate minerals, the prograde
metamorphism (green-schist to amphibolte facies)
modiBes the core-to-rim compositional zoning
(Evans and Frost 1976; Abzalov 1998; Barnes
2000; Gonzalez Jimenez et al. 2009; Waterton et al.
2020). Previous investigations of chromite chem-
istry suggest that alteration and post-crystallisa-
tion re-equilibration leads to the complexity of the
interpretation (Evans and Frost 1976; Burkhard
1993).

Figure 6. Binary variation diagram of major and minor elements to understand the substitution mechanism in the chromite
during its crystallisation: (a) Al vs. Cr; (b) Ti vs. Cr; (c) Fe3+ vs. Cr; (d) Fe2+ vs. Cr; (e) Al vs. Ti; (f) Al vs. Fe2+. Note: Al,
Fe3+ and Fe2+ show antipathic relationship with Cr, while Ti shows sympathetic relationship (a–d). Further, antipathic
relationship is observed between Al and Ti, while Al shows sympathetic relationship with Fe2+. Scattering of the elements is due
to the hydrothermal alteration.
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The metamorphic transformation is well recov-
ered as optical and compositional zoning of chro-
mite. However, some authors believe that optical
zoning is completely eradicated during the pro-
grade metamorphism at a higher grade of meta-
morphism that gives rise to ferrian chromite or Cr-
magnetite and/or with a homogenous chemistry
(Ulmer 1974; Barnes 2000; Gonz�alez Jim�enez et al.
2009).
The petrographic study of the chromite from the

study area reveals that chromites are homogenous
and do not show any optical zoning. However, the
alteration of these chromites is conBrmed by the
alteration observed along the fractures and corroded
grain boundary. This is well reCected in the BSE
images (Bgure 4). To observe the eAect of metamor-
phism/alteration on chromite, different plots are
used. On plotting the chromite chemistry in Fe# vs.
Mg# diagram (Bgure 8a), the investigation chromite
falls near the partly altered chromite Beld. From this
plot, it is revealed that these chromite grains have
depleted Fe3+ and Mg content. On plotting the
chemistry of the chromite in Mg# vs. Cr# diagram
(Bgure 8b), they are showing Cr#within range of the

partly altered chromite while depleted Mg content.
Further on plotting the chromite chemistry in the
ternary Cr–Al–Fe3+ diagram (Bgure 8c), it is con-
Brmed that chromite from the Paddar area has
undergone the eAect of metamorphism/alteration.
Most of the investigated chromite falls near the spinel
core Beld, and some occupy the spinel core Beld in
Cr# vs. Fe3+# diagram (Bgure 8d), which does not
follow the typical alteration trend of Fe3+ enrich-
ment. From the above discussion, it is inferred that
chromite grains are suitable for petrogenetic investi-
gation. Liipo et al. (1994) observed low XMg

(0.0–0.37) and revealed that Mg and Al are more
mobile than Cr during the hydrothermal alteration.
Similar results were recorded byKimball (1990). The
depletion of Mg and Al content of the chromite from
the present study area can be related to the
hydrothermal alteration.

6.4 Composition and environment of the parent
magma

Primary chromite phases’ composition is closely
related to the composition of the parental melt, the

Figure 7. Binary variation diagram of major and minor elements to understand the substitution mechanism in the chromite
during its crystallisation: (a) Fe2+ vs. Mg; (b) Ti vs. Mg; (c) Al vs. Mg and (d) Al vs. Fe2+. Note: Fe2+ and Al show antipathic
relationship with Mg, while Ti shows sympathetic relationship and a sympathetic relationship is observed between Ti and Mg.
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extent of partial melting, and the fractional crys-
tallisation, thus eAectively used by many workers
to measure parental melt composition (Irvine 1977;
Barnes and Roeder 2001). The aluminum concen-
tration in chromite is fruitful for the study of the
tectonic environment and the melt composition
(Zhou et al. 1996; Rollinson 2008; Zaccarini et al.
2011). In 1982, Maurel and Maurel proposed the
equation [Al2O3,spinel = 0.0359 (Al2O3,melt)

2.42] for
the estimation of the alumina in the parent magma
by considering the equilibrium between melt and
chromite at 1 Kb. According to the equation, the
calculated Al2O3 of the parent melt in which the
chromite of the study area varies from 8.11 to 11.67
wt% (table 1).
In order to interpret the crystallisation pressure

of ultramaBc rocks, Basu and McGregor (1976)
observed significant variation in the Mg# and Cr#
in the chromite from alkali-basalt and kimberlite
xenoliths. As a result, he proposed that this

relationship between the Mg# and Cr# in the
chromite is appropriate. Using these parameters by
plotting the studied chromites in the Mg# (Mg2+/
Mg2+ + Fe2+) vs. Cr# (Cr/Al + Cr) plot, the
chromites from the study area show higher Cr#
while lower Mg# thus fall near the Beld of chro-
mites from the Kimberlite xenoliths suggesting
that these chromites crystallised at high pressure
(Bgure 9a). The Fe3+/Fe2+ ratio is \0.05, sug-
gesting chromite crystallisation at low oxygen
fugacity.

6.5 Petrogenetic implications

Due to chromite’s sensitivity to the parent
magma/melt composition and its early crystalli-
sation from maBc–ultramaBc magma, it has been
employed extensively to study the petrogenesis of
its host rocks (Irvine 1965; Cameron 1975; Barnes

Figure 8. (a) Fe# vs. Mg# diagram, (b) Mg# vs. Cr# diagram, (c) ternary Cr–Al–Fe3+ diagram, and (d) the Cr# [Cr/
(Cr + Al)] vs. Fe3+# [Fe3+/(Cr + Al + Fe3+)] plot deBning the unaltered nature chromites from the study area (modiBed after
Ahmed et al. 2009).
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Figure 9. Discriminationdiagrams (a)Cr# vs.Mg#diagramshowing thediscriminationbetweenalkali-basalt andkimberlite xenoliths
(after Basu andMcGregor 1975). The chromites from the Paddar area falls near the kimberlite xenolith Beld, suggesting a high-pressure
origin; (b)Plot basedon the estimated composition of parentalmagma,Al2O3 inmelts vs.Al2O3 in spinel (afterRollinson2008), based on
melt calculations of Maurel and Maurel (1982); (c) Cr# vs. Mg# plot showing discrimination between chromites from Komatiites and
layered intrusion (Belds after Barnes andRoeder 2001), studied chromites shows aDnity towards komatiite; (d)Tectonic discrimination
diagram based on TiO2 vs. Al2O3 for chromite from Paddar area (Belds after Kamenetsky et al. 2001) indicating arc to supra-subdution
tectonic setting; (e) Plot of Mg# against Cr# showing compositions of chromite from Paddar ultramaBcs in comparison to various
ophiolite rocks. Cr-spinel compositional Belds of Zildat and Nidar peridotites are from Guillot et al. (2001), Shergol and Suru valley
peridotites are fromBhat et al. (2019), abyssal peridotite is fromDickandBullen (1984) and supra-subduction zoneperidotite is fromIshii
(1992); (f) Ternary Cr–Al–Fe3+ + 2Ti plot, the investigated chromite occupy Beld of alpine peridotite complex (Beld after Jan and
Windley 1990; Zhou and Kerrich 1992).
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and Hill 1995; Zhou et al. 2014; Ishwar-Kumar
et al. 2016). In podiform chromitites, a wide variety
of compositions were noted by Saleh (2006). They
are characterised by high Cr (0.62–0.88) to high Al
varieties. The chromites from ophiolites are high-
Cr and high-Al. High-Al chromitites evolve from
basaltic melts in a back-arc basin or MORB envi-
ronment, whereas high-Cr chromitites develop
from andesitic or boninitic melts that are Mg-rich
(e.g., Zhou and Robinson 1994; Arai 1997; Zhou
et al. 1998; Akmaz et al. 2014; Moghadam et al.
2015). Alaskan-type complexes are distinguished
from ophiolitic or stratiform complexes by their
higher Fe3+ and Ti contents and lower Al contents
(Bird and Clark 1976). Arc environments are
characterised by Cr-rich spinels (Cr# [ 0.7),
whereas MOR settings are characterised by Cr-
poor spinels (Cr# 0.6; e.g., Zhou et al. 1998;
Kamenetsky et al. 2001). In order to understand
the petrogenesis of the ultramaBc of Paddar area,
different discrimination plots have been discussed
below.

According to Zhou et al. (2005), the higher-Al,
lower-Cr spinels found in peridotites are produced
in a MORB setting by low degrees of partial
melting of the fertile upper mantle, whereas the
higher-Cr, lower Al-Cr spinel are distinctive to a
subduction zone tectonic setting and are produced
by higher degrees of partial melting of a depleted
mantle. The investigated chromite’s Cr#
(0.71–0.87) is similar to that of the layered igneous
intrusions from Bushveld and Stillwater (Irvine
1967), higher than that of the mid-ocean ridge
tholeiitic source magma (Allen et al. 1988), and
lower than that of the boninites (Cr# = 0.80–0.90;
Roeder and Reynolds 1991). On plotting the cal-
culated alumina percentage of parent melt and
chromite in binary Al2O3 in melt vs. Al2O3 spinel
plot (Kamenetsky et al. 2001; Rollinson 2008), the
analysed chromites plot very close to the evolu-
tionary trend of an arc system (Bgure 9b). They
exhibit aDnity towards the komatiites with higher
Cr number, while lower Mg number in the Cr# vs.
Mg# plot (Bgure 9c). Dick and Bullen (1984) noted

Figure 10. Schematic tectonomagmatic model for the formation of chromites in ultramaBcs of Higher Himayan Crystalline Unit
(HHC) in the NW Hiamalyan orogen belt and alteration of chromite by hydrothermal Cuids generated along the shear zones.
Abbreviation: MCT: Main Central Thrust, DSZ: Darlang Shear Zone, ZSZ: Zanskar Shear Zone, SP: Spotang Ophiolite, ITSZ:
Indus-Tsangpo Suture Zone, DV: Dras Volcanics (Kishtwar-Western Zanskar cross-section after Searle et al. 2007).
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that spinels with high Cr# have parent magmas of
the boninitic type that are richer in magnesium.
According to Kostopoulos (1991), spinels with
Cr# [ 0.70 are thought to be the product of
partial melting at high temperatures that produce
dunites free of pyroxene. Similar considerations
have been made by other authors (Arai 1992;
Zhou et al. 1994). The higher Cr# (0.71–0.87)
from investigated chromite indicates that parent
magma was Mg enriched and generated at higher
temperatures.
On plotting the chromite composition in TiO2

vs. Al2O3 tectonic discrimination diagram
(Kamenetsky et al. 2001), the studied chromite
occupies the high-Ti arc to supra-subduction
Beld with wide TiO2 and less Al2O3 variation
(Bgure 9d). Dick and Bullen (1984) claimed that
spinels with a greater Cr# ([60%) are typical of
volcanic arcs, stratiform complexes, and oceanic
plateau basalts, whereas spinels with a lower
Cr# (60%) are indicative of oceanic crust.
Therefore the arc-related tectonic environment is
suggested for the studied ultramaBc rocks. On
plotting the chromite in Cr# against Mg#
(Bgure 9e), studied chromites plot in and near the
supra-subduction peridotites Beld showing the
geochemical characteristics more similar to
the spinel-chromites from Zildat peridotites.
According to Singh’s (2009) research, the
Manipur Ophiolite Complex’s peridotites contain
chromian spinels (Cr-spinels) that have low Cr#
(10.75–26.37) values and high Al# (72.71–88.36)
and Mg# (70.00–73.43) values. They exhibit
aDnities with MORB at low partial melt rates,
which are tholeiitic melt-derived abyssal and
alpine-type peridotites. In ternary Cr–Al–Fe3+ +
2Ti, chromite from Paddar area occupy the
Alpine peridotite Beld towards the Cr-rich end
away from the Manipur Ophiolite Complex
(Bgure 9f).
The geochemical characteristics of the chromite

suggest a supra-subduction zone (SSZ) ophiolite
geodynamic setting for the chromite origin
(Bgure 10). UltramaBc magma was generated from
the upper mantle and intruded into HHC unit
along the deep-seated shear zone (Darlang Shear
Zone). During the exhumation, deep seated ultra-
maBc were brought near the surface while partial
melting of HHC resulted in the migmatisation and
due to movement along the MCT and DSZ,
hydrothermal Cuid was generated, which inter-
acted with the chromite resulting in chromite
alteration.

7. Conclusion

The ultramaBc rocks of the study area are hosted by
the gneissic rocks of HHC, occurring in the form of
laccolith, lenses, and bulbous bodies. They are min-
eralogically characterised by olivine, pyroxene (major
phase), phlogopite, chromite, and Fe-oxide (minor
phase).Thepresenceof serpentine, talc, anthophyllite,
and tremolite indicates the interaction with
hydrothermal Cuids. Chromite undergoes alteration
along fracture and grain boundaries, which is also
supported by chromite geochemistry. It is geochemi-
cally characterised by higher Cr/Cr + Al and Fe2+/
Fe2+ + Mg, while Mg/Mg + Fe2+ and Fe3+/
Cr + Al ratios are lower. Calculated Al2O3 of the
parent melt ranges between 8.11 and 11.67 wt%. The
Ti + Cr $ Al, Cr $ Fe, Fe $ Mg, Fe + Mg $ Al
substitution mechanism operated during the crys-
tallisation of chromite. It crystallised under high
temperature, pressure conditions, and lower oxygen
fugacity.Thegeochemistryof chromite suggestsanarc
to supra-subduction tectonic for the chromite genesis.
Moreover, the proposed model is the Brst attempt to
elucidate the crystallisation of chromite from ultra-
maBc rock of HHC.
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