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The present study attempts to ascertain the sediment provenance of around 6.5-m thick palaeochannel
sediment exposed in the vicinity of the Ghaggar–Hakra river system of the alluvial plains of the Haryana
state of India. The major element geochemistry indicates that the sediments are arkosic in nature,
dominated by quartz, K-feldspar, micas, plagioclase, and clay minerals (chlorite, illite, and a very less
amount of montmorillonite). The CIA (chemical index of alteration) values ranged between 63 and 77,
indicating moderate degrees of chemical weathering. REE plots show that the Eu anomaly is negative for
average Bhor Saidan samples similar to PAAS and UCC, suggesting that they could have been deposited
in the foreland basin after being originally produced from differentiated silicic and/or recycled sedi-
mentary sources; nonetheless, a little positive Eu anomaly in the chondrite normalised plot is the result of
feldspar and arkosic nature of sediments indicating higher levels of physical over the chemical weathering.
Mostly the samples are from Siwaliks. Optically stimulated luminescence (OSL) dating suggests that the
sediments are*11 ka old. Further, the palaeochannel is being incised*3.3 ka and younger sediments are
stratigraphically deposited at lower levels. The discriminant function plots (Roser and Korsch 1988) of
sediment samples exhibited that they were deposited in a passive margin setting and came from the
interior of cratons or a quartzose sedimentary orogenic terrain. The present work done on the geo-
chemistry of the sediments of a palaeochannel present in the alluvial plains will work as a dot on the map
to connect the history of the river drainage system of the area in future studies.
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1. Introduction

The large alluvial plains (Indo-Gangetic plains)
owe their evolution to the sediment generated and
transported by the rivers originating from the
Himalayan orogen. Aravalli–Delhi Ridge, which
runs northeast to southwest, divides alluvial plains

into two drainage basins (Singh 1996): the western
alluvial plains (Punjab–Haryana) and the eastern
alluvial plain (Ganga–Brahmaputra). A wide
palaeochannel belt, the Ghaggar–Hakra channel
is present in vast Indo-Gangetic Plains. This
palaeochannel belt is deprived of the major drai-
nage system, and it is mapped between the Ganga
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and the Indus encompassing the east and west sides
of the Indo-Gangetic Plains, respectively (Yashpal
et al. 1980; Valdiya et al. 2005, 2013, 2016; Singh
and Sinha 2019; Chaudhari et al. 2021). Saraswati
is the mythological river of the Himalayas and is
also believed to have existed in this northwestern
part of vast alluvial plains and was Cowing through
the parts of Haryana, Punjab, Rajasthan, Gujrat,
and modern Pakistan. In the last couple of decades,
many types of research have been carried out in the
Indo-Gangetic alluvial plains, and their relation
with the Himalayas and our understanding of
various aspects has been enhanced significantly;
however, the existence of the Saraswati River and
its course is still unresolved, due to the paucity of
the subsurface geological data of the river’s
palaeocourse. Therefore, the workers are now tak-
ing more interest in this direction, and the work of
Sinha et al. (2013), represented resistivity data
along a buried palaeochannel of the Ghaggar River,
wherein they inferred that there was a high energy
wide braided river system which subsequently
changed to a narrow channel seasonal river system.
In a study, Singh et al. (1997) referred to two major
tectonic phases, the older *40 ka and the other at
*5–6 ka that caused the reorientation of several
river systems. Recently, Singh et al. (2016) repre-
sented data from two drill cores from the buried
palaeochannel of palaeo-Ghaggar. The study shows
high-energy channel sand body deposit overlain by
Bne-grained, low-energy channel deposit, which is
further overlain by reworked Coodplain deposits.
Based on the geochemical analysis, including the
Rb–Sr isotopic composition, they established that
sediments are derived largely from the higher
Himalayas and once a well-established large river
system existed in the region. The studied
palaeochannel may be the palaeochannel of the
Saraswati River (Chaudhari et al. 2021). In some
relatively recent studies of buried palaeochannel of
the Ghaggar River (Sinha et al. 2013; Singh et al.
2016), it has been inferred that the Cuvial system
setting changed from high energy wide network of
braiding rivers to an incised river channel system
and ultimately transformed into an ephemeral
river system with small channels due to dwindling
climatic conditions. The role of tectonics, however,
coupled with climate may also have been invoked
in some earlier studies (Singh and Sinha 2019).
The geochemical composition of siliciclastic

sediments provides credible information on geo-
logical earth processes such as weathering and
sediment transport, provenance, tectonic setting,

etc. (Bhatia 1983; McLennan and Taylor 1983;
Taylor and McLennan 1985; Wronkiewicz and
Condie 1987; Cullers 1988; Feng and Kerrich 1990;
Condie et al. 1992; McLennan et al. 1993; Garver
and Scott 1995; Fedo et al. 1996; Nesbitt et al.
1996; McCann 1998; Singh and Rajamani 2001a, b;
Tripathi et al. 2004; Singh 2009). The present
study would provide insight into the provenance,
weathering, and tectonic setting of the
palaeochannel.

2. Study area

The study area lies *13 km west of Kurukshetra
(between Pehowa and Bhor–Saidan villages,
29.965313N; 76.699775E) (Bgures 1 and 2). It is
bordered in the north by the Himalayan foothills,
in the east by the Yamuna River, in the west by the
huge Thar Desert, and in the south by degraded
Aravalli Hills. Markanda and Ghaggar rivers Cow
towards the southwest (western alluvial plain),
whereas Yamuna River Cows towards the east
(Indo-Gangetic alluvial plain) (Bgure 3). The cli-
mate is semi-arid with mean annual precipitation
of around 450 mm most of which is received during
the Indian Summer Monsoon (ISM). The study
area experiences maximum and minimum temper-
atures of 45 degrees and 2 degrees Celsius, respec-
tively. Vegetation is dominated by tropical dry
deciduous in the northeastern region; the Siwaliks
region is covered by tropical moist deciduous and
the western region has tropical thorn forests.

3. Methodology

The 6.5-m thick exposed sedimentary section of a
palaeochannel was systematically sampled. A
trench was made to collect samples, leaving the
uppermost 0.6 m to minimise anthropogenic and
surface contamination. A total of 62 samples
were collected at 10 cm for sand-dominated
horizons and 5 cm for clay-rich layers, out of
which 36 representative samples were selected
based on textural variations for geochemical
analysis.

3.1 Textural analyses

Grain size analyses were carried out using a laser
particle size analyser (Beckman-Coulter LS 13
320). For which, 10 g of sample was treated with
different chemical reagents such as sodium acetate
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(1 N), hydrogen peroxide (30%), sodium citrate
(0.3 M), and sodium dithionite combination to
remove, carbonate, organic carbon, and iron-man-
ganese coatings, respectively (Jackson 1956; Kunze
and Dixon 1986). Finally, 1–2 ml of the well-
homogenised samples were analysed in the laser
particle size analyser.

3.2 Mineralogical and geochemical analyses

X-ray diAraction (XRD) analysis was done on well-
crushed and homogenised powdered samples. The
size and weight of the samples are\63 lm and 1–2
g, respectively. PANalytical Xpert3 instrument
was used to Bnd out the bulk mineralogical

Figure 1. Map of India showing Haryana state, with further elaboration of the study area.

Figure 2. Google Earth map showing the location of the study area, yellow lines on the map are the state highways connecting
the study area.
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distribution. A homogenised powdered sample with
a mesh size of around 200 microns was utilised for
the analysis of the major elements. To make the
palettes, a 6:4 ratio of sample to boric acid was
compacted (2500 psi) using a Kameyo Powder-
Press. Using a wavelength-dispersive X-ray Cuo-
rescence spectrometer, the pellets were examined
(WD-XRF; PANalytical AXios mAX). In this
technique, a programme for computers that uses
the matrix calibration method transformed X-ray
counts into concentrations (Franzini et al. 1972).
For major oxides, the analytical precision was 5%,
while the accuracy ranged from 2 to 10%.
ICP-MS (Agilent 7700) is used to examine trace

elements, together with rare earth elements (REE).
Milli-Q ultra-pure (18.2 MX-cm) water was used to
make a solution. All the samples were digested by
taking 30 mg (–200 mesh) sediment powder by
using supra pure acids (HF, HCLO4, HNO3). Four
solutions (10, 50, 100, 200, and 300 ppb for all
elements) were prepared by 71A and 71B multi-
element calibration standard solutions (Inorganic
Ventures make) for the external calibration of the
machine. Two USGS rock powder standards,
namely the Green River Shale (SGR-1b) and the
Cody Shale (SCo-1), were used for analyses. All the
datasets were well below from 5% error with a good
calibration curve. The geochemical analyses were
carried out at Birbal Sahani Institute of Palaeo-
sciences, Lucknow.

3.3 Optically stimulated luminescence (OSL)
dating

The date of the sedimentary succession of the
palaeochannel was established using an optically
stimulated luminescence (OSL) dating technique
since the sediments contain less organic material
(Aitken 1998; Wallinnga 2002). OSL dating is a
widely used method to determine the age of river
deposits by estimating the time since the last time
they were exposed to sunlight (Duller 1996; Jain
et al. 2004; Cordier et al. 2010; Morthekai and Ali
2014). The OSL samples were collected from the
scraped section along with the sediment samples.
Samples were opened in the OSL lab under low-
intensity red lighting. To determine the water
content and dosing rate, the pipe’s Brst 3 cm sed-
iment sample was taken out and preserved. The
sediment samples were processed with 1N HCl to
remove carbonates and 30% H2O2 to remove
organic debris to extract the quartz. The samples
were then dried in an oven at 45�C after being
cleaned with distilled water. The dried samples
were sieved to get grains that were 90–150 lm in
size. Heavy minerals and feldspar were removed
from the quartz fraction using an isodynamic sep-
arator set at 0.5 A and 1.5 A (Porat 2006). To
remove the outer alpha skin (*20 lm) and
remaining feldspar, the cleaned quartz portion was
scraped with 40% HF for 80 min. The samples were
then cleaned of Cuorides by being exposed to 12 N

Figure 3. SimpliBed geological map of NW Himalaya along with major drainage and site location BS. The map is taken from
Singh et al. (2016), based on the compilations taken from Webb et al. (2011), Yin (2006), Vannay et al. (2004), and Myrow et al.
(2015).
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HCl for 30 minutes. For measurements, an auto-
mated Risø TL-OSL reader (TL/OSL-DA-20)
(Bøtter-Jensen et al. 2010) is used. An on-plate
90Sr/90Y beta source with a dosage rate of 5.96 Gy/
min was used to irradiate the samples. To calculate
the annual dose, the conversion factor suggested by
Adamiec and Aitken (1998) was used to assess the
radioactive material concentrations. A highly pure
germanium detector (HPGe) was used to measure
the U, Th, and K concentrations. To achieve
radioactive equilibrium, the samples are stored for
21 days after being enclosed in plastic boxes.
Determination of the cosmic rays to the dosage rate
is calculated using the average water content of

5–10% and the Prescott and Hutton (1994) tech-
nique. Four samples were collected to establish the
chronology.

4. Result

4.1 Alluvial stratigraphy

The sediments are dominated by grey and mica-
ceous sand and silt facies with current bedding,
ripple marks, and planar laminations, and are
marked as Markanda Formation (Younger Allu-
vium) in the lithostratigraphic column. Further,

Root Unit

Silty Clay

Silty sand 

Sand

Figure 4. Field photograph of the Bhor Saidan Palaeochannel section showing different terraces and the litholog with details of
texture and sedimentary structure. Sample locations are represented as solid dots outside litholog (bottom to top).

Figure 5. Depth-wise distribution of the grain size data of the lithology present in the area. This Bgure shows the number of
samples and percentage of the grain size distribution (sand, silt and clay) from bottom to top of the section. Silt and clay
dominate the upper part of the section.
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silty sand layers are intercalated with sand layers
showing Cuvial cycle inCuence in the palaeoriver
channel (Thussu 1995). Based on the sediment
texture and structures, the 6.5-m thick alluvial

sequence is divided into nine units (Bgure 4).
Stratigraphically, the base is not exposed. Unit 1 of
the section is 1.6-m thick and is dominated by Bner
sand particles (96–98%) with only 2–3% of silt-size

Table 1. Textural analysis data of the sediments.

Sample no. Sand Silt Clay Mean Sorting Skewness Kurtosis Median

bs-68 18.20 70.80 11.00 6.108 2.215 0.041 0.986 6.151

bs-66 5.70 79.50 14.80 6.949 1.946 0.067 1.093 6.895

bs-64 3.70 83.80 13.20 6.813 1.809 0.191 1.092 6.636

bs-62 4.00 80.80 15.20 6.981 1.872 0.148 1.160 6.818

bs-60 7.20 81.60 11.00 6.346 1.910 0.217 1.115 6.149

bs-58 6.80 80.80 12.40 6.558 1.947 0.155 1.022 6.409

bs-56 6.90 83.30 9.80 6.256 1.820 0.237 1.153 6.051

bs-54 6.60 84.80 9.00 6.216 1.758 0.227 1.164 6.032

bs-52 6.00 83.60 10.20 6.379 1.843 0.204 1.111 6.216

bs-50 17.20 65.00 7.90 5.667 1.939 0.291 1.075 5.371

bs-48 5.60 83.80 10.70 6.490 1.823 0.192 1.196 6.326

bs-46 83.60 14.20 2.10 2.743 1.429 0.478 1.684 2.464

bs-44 77.80 19.40 2.80 3.058 1.719 0.555 1.491 2.564

bs-42 81.00 16.00 2.70 2.779 1.799 0.598 2.321 2.185

bs-40 83.90 13.00 2.10 2.711 1.380 0.479 2.213 2.448

bs-38 91.50 7.30 1.20 2.598 0.930 0.282 1.444 2.520

bs-36 96.50 2.70 0.80 2.054 0.568 0.144 1.325 2.036

bs-34 97.00 2.60 0.60 1.855 0.755 0.017 1.323 1.892

bs-32 94.40 4.70 0.90 2.230 0.832 0.098 1.106 2.296

bs-30 75.30 21.90 2.70 3.302 1.602 0.521 1.484 2.879

bs-28 97.00 2.30 0.60 2.125 0.688 �0.043 1.380 2.141

bs-26 92.10 3.00 1.10 2.568 0.848 0.222 1.570 2.499

bs-24 88.10 10.50 1.40 2.727 1.100 0.304 1.861 2.619

bs-22 90.20 8.40 1.30 2.712 0.917 0.305 1.693 2.624

bs-20 96.20 2.90 1.00 2.669 0.530 0.098 1.168 2.654

bs-18 97.70 1.60 0.70 2.327 0.514 0.016 1.122 2.369

bs-16 98.40 0.90 0.60 2.165 0.483 0.014 1.063 2.154

bs-14 95.90 3.30 0.90 2.306 0.617 0.194 1.315 2.269

bs-12 98.50 0.80 0.60 1.868 0.446 0.034 1.033 1.862

bs-10 98.50 0.80 0.60 2.102 0.416 0.015 0.011 2.100

bs-8 97.70 1.30 0.70 2.120 0.452 �0.029 1.097 2.122

bs-6 98.40 1.10 0.60 2.142 0.403 0.035 1.022 2.137

bs-4 98.50 0.80 0.60 2.140 0.424 0.008 1.035 2.140

bs-3 99.80 0.20 0.00 2.088 0.387 �0.013 0.927 2.090

bs-2 97.70 1.50 0.70 2.039 0.489 �0.034 1.127 2.047

bs-1 96.80 2.50 0.80 2.060 0.496 0.017 1.187 2.063

Table 2. OSL dating results of the sediment samples.

Sample U (ppm) Th (ppm) K (%) De (Gy) Dose rate (Gy ka�1) Age (ka)

bs-42 1.1±0.4 15.9±12.7 0.6±0.1 13.6±0.8 1.8±0.6 7.4±2.4

bs-1 2.1±0.8 11.6±0.7 1.4±0.1 8.2±0.1 2.5±0.2 3.3±0.2

bs-60 4.0±1.0 13.5±2.3 1.6±0.1 23.6±1.4 3.2±0.2 7.3±0.7

bs-37 2.4±0.6 7.5±1.8 0.9±0.0 20.9±0.8 1.9±0.1 11.2±0.9
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particles. Yellow-coloured oxidised sand layers
were also observed in unit 1. Unit 2 is around 0.4 m
in thickness and has about 18–25% of silt, 75–80%
of sand, and 1–2% of clay. Unit 3 is again 0.4 m
thick Bne sand with 95–98% of sand fraction, while
2–3% of silt is present. Unit 4 is 0.3 m thick and has
a much more fraction of silt than unit 3, which is
below it. Silt is about 18–25% in this unit. Unit 5 is
0.6 m thick, is dominated by Bner sand particles,
and is again a sandy layer. Unit 6 is 0.8 m thick and
is composed of 18–20% of silt, 4–5% of clay, and
70–80% of sand. Unit 7 is 0.2 m thick and is a silt-

dominated unit with 10–15% clay, 70–80% silt, and
10–20% of sand-sized particles. Unit 8 is 0.2 m
thick and again has more silt (60–70%) percentage
than sand (15–25%); however, the clay percentage
is lesser than in unit 7. Unit 9 is 1.65 m thick and is
dominated by clayey silt, which has 10–15% of
clay. Reddish brown silty clay of this unit is
rich in calcareous white nodules. Above unit 9
lies *0.35 m thick pottery-dominated horizon,
mixed with black to light brown scree, which
indicates human inhabitation and is considered as
the cultural layer.

Figure 6. (a and b) XRD data for sand samples and the clay samples. Graphs clearly show the presence of quartz low and its
peak is dominating another minerals peak.

J. Earth Syst. Sci.         (2023) 132:151 Page 7 of 22   151 



4.2 Texture analysis

The variation in the mean size value of the data
reveals that samples consist of very Bne sand to
medium silt sediments having 10–16% clay mixed
with medium silt samples (Bgure 5). Silt samples
present in unit 9 of the sequence are bimodal and
trimodal, poorly sorted, and mesokurtic to very
leptokurtic in nature. The sediments from units 8
and 7 of the sequence are unimodal and Bnely
skewed. Fine sand samples of units 1 and 3 of the
sequence show well-sorted grains which are near-
symmetrical and mesokurtic in nature. Sorting
in this unit is attributed to the recycling and

transportation of the sediments. The interrela-
tionship of various parameters shows the unimodal
to bimodal nature of sediments (table 1).

4.3 Chronology

OSL dating has been done on four samples. The
bottom-most sample from unit 1 has provided
an age of 3.3 ± 0.2 ka. Second sample was taken
from unit 6 of the section with silty sand
lithology, which yielded the oldest date of the
section, i.e., 11.2 ± 0.9 ka. The third sample
was taken from the sand lithology of unit 7,
which had given the age of 7.4 ± 2.4 ka. The top
sample from unit 9 has given the age of
7.3 ± 0.7 ka (table 2).

4.4 Mineralogy and geochemistry

4.4.1 Mineralogy

X-ray diAraction (XRD) for 23 samples was used to
scrutinise detailed mineralogy. These 23 samples
represent the textural variations of the whole
section. The bulk mineralogy of palaeochannel
sediments mainly consists of quartz, K-feldspar,
plagioclase, micas, and clay minerals (illite, chlo-
rite, and montmorillonite) (Bgure 6). K-feldspar,
with an abundance of quartz, is mostly present in
the sand samples (Bgure 6a) and clay mineral illite
is dominant in clayey-silt samples (Bgure 6b),
showing the presence of water or humid climate
after deposition (Keller 1962). The XRD pattern’s
variance in peak height may have been principally
controlled by increasing quartz content (coarser
fraction) in the samples; maybe it would have
prohibited the other constituent minerals’ peak
heights from rising (Bgure 6a, b). Heavy minerals
are significant provenance indicators and are also
sensitive to weathering, transportation, deposition,
and diagenesis (Morton 1985a, b). Heavy mineral
assemblages of the palaeochannel mainly consist of
tourmaline, zircon, garnet, staurolite, epidote,
rutile, chlorite, and biotite. Garnet comprises the
maximum percentage in the area followed by zir-
con, epidote, and tourmaline (Bgure 7). Zircon
grains are of euhedral shape. The zircon-tourma-
line-rutile index (ZTR index; Hubert 1962) was
determined using the relationship ZTR Index =
[(Z+T+R)/Non-opaque]. The ZTR index is 47%,
indicating that the sediments were moderately
weathered (Bgure 8).

Figure 7. Heavy minerals present in the paleochannel. Pic-
tures clearly show sub-angular to sub-rounded crystals.
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4.4.2 Geochemistry

IdentiBcation of provenance, weathering of the
source area, and tectonics can be done through the
chemical composition of the clastic sediments
(Pettijohn 1972; Bhatia 1983, Bhatia and Crook
1986; McLennan and Taylor 1983; Wornkiewicz
and Condie 1987; Fedo et al. 1996; Nesbitt et al.
1996; McCann 1998; Singh and Rajamani 2001a, b;
Tripathi and Rajamani 2003). The major elemental
geochemistry of the sediments is given in table 3.
The concentration of SiO2 and Al2O3 in bulk sed-
iments varies from *50 to 85 wt% and *10 to 18
wt%, respectively. Fe2O3 (*2–8 wt%) and MgO
(*0.5–2.5 wt%) show good variance. MnO
(*0.02–0.11 wt%), TiO2 (*0.2–0.7 wt%), P2O5

(*0.1–0.3 wt%), K2O (*1.8–3.5 wt%), and Na2O
(*0.2–1 wt%) are in restricted ranges, CaO
(*0.4–10.8 wt%) show large variation (table 3,
Bgure 9). Cross plots (Bgure 10) of major oxides
with Al2O3 show that there is a positive correlation
with other major oxides such as TiO2 (r = 0.89),
Fe2O3 (r = 0.97), K2O (r = 0.98), and MgO (r =
0.91), where the increasing trend of these elements
probably points towards enhancement of clay
minerals (Nagarajan et al. 2007a, b). A negative
association with SiO2 (r = 0.93) and Na2O (r =
0.53) indicates that the sediments come from well-
developed continental provenance. Enrichment of
Al and Fe points towards the formation of clay
minerals, mainly of 2:1 type (illite) (Keller
1970a, b). Depletion of Na more than K shows the
alteration of plagioclase feldspar. Compared to Na,
Ca is not depleted much; however, this may result
from secondary carbonate formation demonstrated
by the stepwise loss on ignition (LOI) values

(table 3). The concentration of TiO2 is more in
clayey silt (B0.7) as compared to sands (B0.03),
suggesting less amount of phyllosilicate minerals in
sands (Dabard 1990; Condie et al. 1992; Nagarajan
et al. 2007a). Major REE and trace elements have a
positive correlation with the grain size distribution.
The amount of trace element values is given in
table 4. Cr (r = 0.4), Co (r = –0.9), V (r = 0.9),
and Cu (r = 0.8) have lesser values in the sediment
samples compared to NASC and PAAS, but are
associated with Al2O3 positively, indicating their
association in clay-rich sediments (Wronkiewicz
and Condie l987). Charts of the rare earth elements
that have been chondrite-normalised (Bgure 11)
show that the concentration of LREE (light rare
earth elements) is much higher than HREE (heavy
rare earth elements). The negative Eu anomalies
are just like the values of UCC (McLennan
et al. 2001). Values of HREE do not form a con-
sistent or parallel pattern with the UCC, PAAS, or
NASC (Bgure 11), which can result from the grain
size eAect (Taylor and McLennan 1985). Moreover,
the concentration of HREE is less in sand-size
samples, which may be credited to the quartz
dilution eAect (G€otze and Lewis 1994).

5. Discussion

5.1 Sediment maturity and source area
weathering

Sediment suites with various chemical compositions
are often produced by the hydrological differenti-
ating processes that take place on river sediments
in combination with source rock composition and

Figure 8. Diagram showing the percentage of heavy minerals in the paleochannel. The zircon–tourmaline–rutile index comes out
to 47%.
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chemical weathering (Nesbitt and Young 1989;
Frallick and Kronberg 1997). As sediments become
more mature, quartz replaces feldspar, maBc min-
erals, and lithic fragments in the sediments. As a
result, the major elements Na, K, Ca, Al, Fe, Mg,
and certain other trace elements are reduced, and
SiO2 is increased in the bed load sediments. Some
ratios, such as SiO2/Al2O3, Na2O/K2O, Fe2O3/
K2O, and Fe2O3/SiO2, which serve as eAective
markers of sediment maturity, are impacted by this
(Pettijohn et al. 1972; Herron 1988). SiO2/Al2O3

ratios rise together with sediment maturity, whereas

Fe2O3/SiO2 and Al2O3/SiO2 ratios fall. The ratios
Na2O/K2O and Fe2O3/K2O help in predicting the
stability of feldspar and minerals bearing Fe and
K. The sediments of the study area are plotted
between log(Na2O/K2O) vs. log(SiO2/Al2O3)
(Pettijohn et al. 1972), which show that several of
the sediments are arkosic (Bgure 12). Units 9 and 7
of the section is clay enriched and falls in the arkosic
Beld, and the extremely low Na2O/K2O ratio due to
in situ chemical weathering of clay enriched units 9
and 7 may be the reason for shifting the samples
towards the arkosic Beld. Sand sediments fall in the

Table 3. Major oxide data for the sediment samples of the palaeochannel, along with the grain size data. Variation in LOI and CIA
is also presented.

Sample no. Sand % Silt % Clay % SiO2 Al2O3 TiO2 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI CIA

bs-68 18.2 70.8 11.0 64.5 15.9 0.7 6.2 0.1 2.0 0.9 0.0 3.4 0.3 6.6 74.9

bs-66 5.7 79.5 14.8 59.9 16.7 0.7 6.7 0.1 2.0 0.9 0.0 3.5 0.3 7.4 75.5

bs-64 3.7 83.8 13.2 60.0 16.5 0.7 6.1 0.1 2.1 2.0 0.0 3.2 0.1 7.5 69.9

bs-62 4.0 80.8 15.2 59.5 16.9 0.7 6.2 0.1 2.2 3.1 0.0 3.3 0.1 8.7 64.7

bs-60 7.2 81.6 11.0 61.4 16.7 0.7 6.4 0.1 2.3 1.8 0.0 3.3 0.1 7.5 70.9

bs-58 6.8 80.8 12.4 58.2 17.2 0.7 6.6 0.1 2.4 3.2 0.0 3.3 0.1 9.2 64.7

bs-56 6.9 83.3 9.8 59.8 16.7 0.7 6.5 0.1 2.4 2.3 0.0 3.3 0.1 7.6 68.3

bs-54 6.6 84.8 9.0 50.7 15.6 0.6 4.9 0.1 2.4 10.8 0.0 3.1 0.1 13.4 40.4

bs-52 6.0 83.6 10.2 54.8 16.8 0.6 6.0 0.1 2.4 6.2 0.0 3.3 0.1 10.8 53.1

bs-50 17.2 65.0 7.9 61.3 16.7 0.7 6.2 0.1 2.3 2.4 0.0 3.3 0.1 7.3 67.8

bs-48 5.6 83.8 10.7 59.4 17.3 0.7 7.4 0.1 2.2 1.8 0.0 3.4 0.1 7.9 71.3

bs-46 83.6 14.2 2.1 63.2 13.9 0.6 5.0 0.1 1.4 0.6 0.1 2.7 0.1 12.4 76.9

bs-44 77.8 19.4 2.8 70.8 14.0 0.6 5.2 0.1 1.4 0.6 0.0 2.8 0.1 5.3 77.3

bs-42 81.0 16.0 2.7 72.2 12.9 0.6 4.7 0.1 1.3 0.6 0.2 2.6 0.1 4.8 75.3

bs-40 83.9 13.0 2.1 75.8 12.0 0.5 3.9 0.0 1.2 0.6 0.3 2.4 0.1 4.1 74.2

bs-38 91.5 7.3 1.2 80.3 10.3 0.4 2.5 0.0 1.0 0.5 0.7 2.1 0.1 2.2 70.4

bs-36 96.5 2.7 0.8 82.2 9.8 0.3 2.0 0.0 0.9 0.4 0.8 2.1 0.1 1.6 69.4

bs-34 97.0 2.6 0.6 81.0 10.1 0.3 2.4 0.1 1.0 0.5 0.7 2.2 0.1 1.8 69.5

bs-32 94.4 4.7 0.9 81.4 10.1 0.3 2.4 0.0 1.0 0.4 0.7 2.1 0.1 1.7 70.9

bs-30 75.3 21.9 2.7 80.9 10.0 0.4 2.5 0.0 1.0 0.5 0.7 2.1 0.1 1.9 69.8

bs-28 97.0 2.3 0.6 81.0 10.0 0.3 2.5 0.0 1.1 0.4 0.7 2.2 0.1 1.7 70.1

bs-26 92.1 3.0 1.1 78.9 10.9 0.5 3.2 0.0 1.1 0.5 0.6 2.2 0.1 2.8 71.8

bs-24 88.1 10.5 1.4 78.0 11.4 0.5 3.3 0.0 1.2 0.5 0.5 2.3 0.1 3.0 73.0

bs-22 90.2 8.4 1.3 79.2 10.6 0.4 2.9 0.0 1.0 0.5 0.6 2.2 0.1 2.5 71.2

bs-20 96.2 2.9 1.0 83.5 9.6 0.3 1.8 0.0 0.8 0.4 0.8 1.9 0.1 1.4 70.1

bs-18 97.7 1.6 0.7 82.5 9.4 0.3 1.8 0.1 0.7 0.4 0.9 1.9 0.1 2.1 68.8

bs-16 98.4 0.9 0.6 83.7 9.4 0.2 1.5 0.1 0.7 0.4 1.0 1.9 0.0 1.2 68.0

bs-14 95.9 3.3 0.9 82.1 9.9 0.4 2.2 0.0 0.9 0.5 0.7 2.0 0.1 1.7 70.1

bs-12 98.5 0.8 0.6 84.8 9.2 0.2 1.4 0.0 0.6 0.4 0.9 1.8 0.1 1.2 68.9

bs-10 98.5 0.8 0.6 83.8 9.3 0.2 1.5 0.0 0.8 0.4 0.9 1.9 0.1 1.3 68.6

bs-8 97.7 1.3 0.7 82.1 9.8 0.3 1.9 0.0 1.1 0.5 0.7 2.1 0.1 1.4 69.3

bs-6 98.4 1.1 0.6 84.7 9.3 0.2 1.4 0.0 0.8 0.4 0.9 1.9 0.1 1.0 68.6

bs-4 98.5 0.8 0.6 84.2 9.4 0.3 1.5 0.0 0.9 0.4 0.8 1.9 0.1 1.1 69.6

bs-3 99.8 0.2 0.0 84.6 9.5 0.2 1.3 0.0 0.9 0.4 0.9 2.0 0.1 1.0 68.5

bs-2 97.7 1.5 0.7 83.2 9.8 0.2 1.7 0.0 0.9 0.4 0.8 2.0 0.1 1.1 70.0

bs-1 96.8 2.5 0.8 83.1 9.8 0.2 1.6 0.0 0.9 0.4 0.9 2.0 0.1 1.1 69.1
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litharenite segment inferring more physical weath-
ering or less alteration of feldspar (Singh 2010).
Graph Fe2O3/K2O (Heron 1988) shows that arkosic
arenites are grading into shale with wackes in
transition (Bgure 12) units of the section with high
silt and clay percentage are having high Fe2O3/K2O
ratio and the negative relation of SiO2 with Fe,
Mn, and Ti point towards the weathering of the

sediments. This can be attributed to the mature
and recycled nature of the sand grains (Bhatia
1983) as well as the formation of illite clay
minerals.
The value of Pb corresponds to the grain size

eAect (Vital et al. 1999a, b) and, therefore, is found
higher in the clay-rich sediments than the value of
PAAS and the value is less in the sand-rich

Figure 9. Grain size (sand, silt ± clay) distributions in the palaeochannel proBle along with the litholog. Note that SiO2 and felsic
components are more in the coarser mode (sand), whereas maBc components are enriched in the Bner sediments.

Figure 10. Cross plots of major oxides with Al2O3 show that there is a positive correlation of major oxides like TiO2 (r = 0.89),
Fe2O3 (r = 0.97), K2O (r = 0.98), MgO (r = 0.91), whereas SiO2 (r = –0.93) and Na2O (r = –0.53) show negative correlation.
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sediments. A similar pattern is observed with V,
Cr, U, Sc, Y, and Th, clearly showing the quartz
dilution eAect (G€otze and Lewis 1994) in the sand-
rich samples, aAecting the absolute values of all
other elements. LREE are positively correlated to
the Al2O3, specifying that these are dominantly
related to the clay minerals (Taylor and McLennan
1985). UCC and PAAS normalised plots of sedi-
ments show variation in the Eu anomaly values.
Coarser grain size sediments have positive Eu
anomalies, while clay size sediments show negative
Eu anomalies; it might happen if the source

location experiences less chemical weathering
(Middelburg et al. 1988) as well as retention of
feldspar in the sediments responsible for positive
Eu anomaly. Moreover, the sand samples have not
undergone much mineralogical sorting could also
be the reason for the positive Eu anomaly (Bhatia
1985; Singh and Rajamani 2001a, b).
During weathering, smaller cations like Sr, Ca,

and Na, deplete in the initial stage; however, the
larger cations (Al and Rb) remain immobile, rather
enriched in due course of time (Nesbitt and Young
1982, 1984; McLennan et al. 1993; Fedo et al.

Table 4. Trace and rare earth element (REE) data (ppm) for the palaeochannel sediments.

Sample

no. V Cr Co Cu U Sc Y Th
P

LREE
P

HREE La

La/

Th

P
LREE/

P
HREE

Th/

U

bs-68 117.1 75.3 50.3 37.3 3.3 13.3 17.2 14.2 77.6 6.3 41.5 2.9 10.8 4.3

bs-66 120.1 144.2 35.0 39.0 3.5 14.7 21.0 15.9 80.1 6.9 41.6 2.6 12.5 4.5

bs-64 113.5 126.3 33.0 31.1 3.6 12.7 19.2 15.3 66.8 5.5 42.9 2.8 10.5 4.3

bs-62 122.5 70.2 34.3 32.0 3.7 14.3 20.9 17.9 77.2 6.5 48.2 2.7 10.0 4.8

bs-60 125.7 134.7 38.4 34.8 4.6 15.0 22.5 17.9 208.9 17.9 47.9 2.7 11.3 3.9

bs-58 127.6 145.6 31.4 35.4 5.3 14.5 24.7 17.0 188.8 16.5 48.4 2.9 11.6 3.2

bs-56 102.0 162.8 33.9 35.2 5.0 14.0 22.1 16.3 179.4 16.5 46.4 2.8 11.2 3.3

bs-54 105.6 135.3 40.7 31.0 5.2 12.8 24.4 15.3 180.1 15.1 45.4 3.0 10.6 2.9

bs-52 113.1 139.7 31.2 34.0 5.6 13.1 21.2 15.8 207.6 19.1 45.8 2.9 10.8 2.8

bs-50 86.6 110.3 40.9 40.0 4.0 13.6 20.3 21.9 212.5 17.0 48.9 2.2 11.8 5.4

bs-48 90.1 50.3 61.1 25.6 3.2 8.8 14.8 12.5 200.6 19.1 40.9 3.3 10.8 3.9

bs-46 86.0 54.5 71.7 23.2 3.2 10.3 18.1 15.2 195.4 19.6 41.3 2.7 11.3 4.7

bs-44 63.1 53.8 107.8 19.0 2.8 8.4 19.7 14.4 200.9 18.8 35.4 2.5 11.7 5.1

bs-42 45.8 84.2 155.6 13.0 2.2 4.9 13.3 9.7 208.3 19.7 29.0 3.0 11.0 4.3

bs-40 33.1 24.1 214.6 7.0 1.4 4.0 10.2 7.7 209.7 18.6 20.1 2.6 9.9 5.5

bs-38 31.2 46.3 202.4 6.9 1.4 3.1 8.8 6.3 201.3 17.4 19.1 3.0 11.3 4.6

bs-36 36.5 26.1 205.6 6.3 1.3 3.7 8.4 5.6 208.9 18.7 17.6 3.2 11.6 4.2

bs-34 42.0 24.4 190.4 8.0 1.5 4.0 7.8 6.0 109.9 10.4 19.6 3.3 11.2 4.0

bs-32 42.1 75.0 174.6 9.3 1.6 3.9 9.4 6.5 94.9 8.8 21.6 3.3 12.1 4.1

bs-30 41.7 64.3 195.7 10.0 1.7 4.5 12.8 8.8 86.2 7.3 25.0 2.8 12.4 5.2

bs-28 141.1 144.9 38.6 37.8 5.2 16.1 22.5 17.3 77.1 7.2 47.7 2.8 11.8 3.4

bs-26 40.0 19.3 150.0 48.1 1.6 4.4 9.9 7.0 81.9 7.3 20.4 2.9 12.3 4.3

bs-24 53.6 31.7 144.9 13.1 2.6 6.4 15.6 12.6 87.8 7.5 31.8 2.5 11.6 4.8

bs-22 49.0 28.0 122.5 11.3 2.0 5.5 13.5 10.2 124.6 11.3 29.2 2.9 12.2 5.1

bs-20 49.1 32.6 127.5 11.4 2.5 5.4 14.1 11.0 154.6 15.6 32.3 2.9 11.8 4.4

bs-18 32.3 19.6 167.4 6.8 1.4 3.5 9.8 8.3 179.9 16.0 23.7 2.8 11.1 6.0

bs-16 26.8 12.7 203.0 4.6 1.0 2.7 7.3 5.5 176.0 15.2 16.8 3.0 10.8 5.4

bs-14 31.0 18.4 184.6 5.2 1.5 3.0 9.2 6.6 95.8 8.6 23.9 3.6 11.7 4.5

bs-12 35.3 428.3 214.7 16.3 1.6 3.9 11.3 9.3 110.1 9.1 25.1 2.7 11.4 5.7

bs-10 27.7 15.2 231.2 4.1 1.3 3.6 12.5 8.7 104.6 8.5 22.1 2.5 10.8 6.6

bs-8 44.2 63.1 192.2 8.3 1.6 3.3 7.5 5.4 72.0 6.9 17.5 3.3 10.5 3.4

bs-6 34.5 23.4 154.4 6.9 1.3 2.3 6.1 4.4 103.7 8.8 18.1 4.1 11.8 3.5

bs-4 25.8 81.0 178.6 7.2 1.0 3.1 9.3 6.8 139.2 12.0 15.6 2.3 11.6 6.6

bs-3 27.1 21.6 181.9 5.1 1.3 2.8 7.2 5.8 126.1 12.9 18.7 3.2 9.8 4.5

bs-2 27.4 22.6 123.9 4.9 1.1 3.1 8.6 6.1 138.7 12.7 18.3 3.0 10.9 5.8

bs-1 25.5 17.5 111.0 4.7 1.0 2.5 7.0 4.5 89.5 8.5 17.2 3.8 10.6 4.5
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1995). To determine the degree of weathering, CIA
is commonly used (Nesbitt and Young 1982), where
CIA = –Al2O3/(Al2O3 + CaO* + Na2O + K2O)˝
9 100 (*CaO in silicate fraction only). In the cur-
rent study, CIA values range from 63 to 77. Al2O3,
Na2O, and CaO* are displayed in the A–CN–K
ternary diagram to assess the migration of the
elements throughout the development of chemical
weathering. It has been observed that the sediment
samples plot over the plagioclase–K-feldspar line.
The A–CN–K plot shows that most of the fall at
the A–K edge as they approach the illite compo-
sition denotes moderate weathering (Bgure 13).
When analysing the constitution of the source rock,
the A–CN–K ternary plot excels because it may be
projected backward and parallel to the A–CN line
of weathered samples up to a position on the feld-
spar connect (Fedo et al. 1995; Tang et al. 2012).
Siliciclastic sediments of the current research are
found to be derived from granite as a probable source

and to extend up to the illite stability zone beside a
trend line parallel to the A–CN axis. Thus, the dia-
gram implies that samples originated from granitic
rocks as the source is inCuenced by weak chemical
weathering (Madhavaraju et al. 2016). Moreover,
Bgure 13 also shows that the major Himalayan rivers’
sediments plot in the zone of weak weathering
(CIA = 55–65), whereas the Ghaggar sediments
show an intermediate degree of weathering (CIA =
69). Overall, the intermediate CIA values (63–77) for
the palaeochannel sediments indicate semi-arid,
water-starved granitic sources. Further, the textural
attributes support physical weathering with a tec-
tonic control.

5.2 Provenance of sediments

In the current study, the LREE values are much
higher than HREE and do not form a consistent or
parallel pattern with the PAAS or NASC (Taylor

Figure 11. (a) Chondrite normalised samples are plotted to compare with UCC, PAAS and NASC. The pattern shows negative
Eu anomaly. (b and c) PAAS and UCC normalised samples showing a similar pattern with positive Eu anomaly for one or two
samples. Sources: chondrite (McDonough and Sun 1995), UCC (Rudnick and Gao 2003) and PAAS (Taylor and McLennan
1985).
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and McLennan 1981), which may result from the
grain size eAect (Taylor and McLennan 1985). In
our samples, LREE are more positively correlated
to Al2O3, indicating that these are dominantly
connected to the clay minerals. It is intriguing to

observe that coarser sediments normalised with
PAAS and NASC show positive Eu anomaly with
lower HREE abundance, probably indicating the
dominance of physical weathering over chemical
weathering in the source region. As opposed to

Figure 12. Plot of sediments on the geochemical classiBcation diagrams after Herron (1988) (a) log(Fe2O3/K2O) vs. log(SiO2/
Al2O3) and (b) log(Na2O/K2O) vs. log(SiO2/Al2O3) (Pettijohn et al. 1972). Diagrams are clearly showing that the sediments
which are dominated by sand lies in arkose Beld, silt dominated part lies in wacke Beld and clay dominated part lies in shale Beld.

Figure 13. A–CN–K ternary plot (Nesbitt and Young 1982) showing chemical maturity of paleochannel sediments. Also shown
for comparison are modern river sediments from Himalaya, average values for world river sediments (Li and Yang 2010), UCC,
and PAAS.
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that, the samples of the sandy silt and clayey silt
texture show negative Eu anomaly, which could
result from plagioclase weathering at the deposi-
tion site. There is a positive association between
LREE and Th, indicating felsic lithologies may
have contributed (McLennan et al. 1980). The La/
Th value ranges between 2.30 and 4.01, usually
similar to UCC and PAAS, respectively, clearly
indicating the grain size bias where coarser sedi-
ments are associated with granitoid and relatively
Bner sediments are of intermediate composition. A
positive correlation is shown by REEs (table 5) to
some extent with the other major oxides like
MgO2, TiO2, and Fe2O3, however, they show a
negative correlation with trace elements like Cu,
Co, Cr, and U, showing the contribution of REEs
from mica biotite and chlorite minerals (Taylor
and McLennan 1985; Bauluz et al. 2000).
La–Th–Sc ternary plot (Singh 2010) has been
drawn to infer the provenance (Bgure 14). All the
sediments fall in between the composition of
granite and granodiorite.
We have also applied the discriminant function

scheme (Bgure 15) of provenance estimation pro-
posed by Roscher and Korsch (1988). In the cur-
rent study, sediments fall in the P4 part with a
little shift towards the P1 part; this could be the
result of the grain size eAect (Whitmore et al.
2004). The shifting of results seen in this study is
relatable to the study carried out by Roscher and
Korch (1988) on sedimentary rocks of the Ordovi-
cian and the Silurian greywacke having SiO2 [
70%, where coarser sediments fall in P4 and Bner
sediments fall in P1 and P2 Belds. The greywackes
used in Roscher and Korch’s (1988) study may be
produced by the successive recycling of older sed-
iments (Wyborn and Chappel 1983) and the com-
position of quartzose sedimentary sources can most
probably be derived from varied sedimentary litho
units and detrital components of different crys-
talline rocks. Similar results have been obtained in
our study, as the sediments we have taken are also
reworked having SiO2 [ 70% and probably pro-
duced by successive recycling of older sediments.
Heavy-mineral assemblages of terrigenous sedi-

ments also help in establishing the source of sedi-
ments (Carroll 1953; Crook 1968; Cleary and
Conolly 1972; Colin et al. 1993; Oliva et al. 1999;
Thomas et al. 1999; Horbe et al. 2004; Van Loon
and Mange 2007). In the present study, the ZTR
index is 46%, indicating that the sediments are
moderately weathered and additionally corrobo-
rated by the CIA readings. The presence of garnet

and epidote also shows the unweathered nature of
the sediments (Hester 1974). Zircon grains present
are of a euhedral shape and are derived from acidic
igneous rocks (Basu 1985). All the grains are
mostly sub-rounded to rounded showing their
involvement in cyclic transportation (Pettijohn
et al. 1973). The mixing of results led us to plot
sediment bivariant plots (Bgure 16a, b, c, and d)

Figure 14. La–Th–Sc ternary plot after Singh (2010) showing
the composition of the source rock lies in between the granite
and granodiorite.

Figure 15. Discriminant function 1 against discriminant
function 2 variation diagram. Fields after Roser and Korsch
(1988), wherein F1 = �1.733TiO2 + 0.607Al2O3 + 0.76Fe2O3

� 1.5MgO + 0.616CaO + 0.509Na2O � 1.224K2O � 9.09, and
F2 = 0.445TiO2 + 0.07Al2O3 � 0.25Fe2O. Provenance Belds:
(P1) maBc igneous provenance, (P2) intermediate igneous
provenance, (P3) felsic igneous provenance, and (P4) quart-
zose sedimentary provenance.
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(Singh 2010). Values of the Tethyan Sedimentary
Series (TSS), High Himalayan Series (HHS), and
Lesser Himalayan Series have been taken from
Richards et al. (2005) and Siwaliks have been taken
from Sinha et al. (2007). The above plots indicate
the sediments mostly deviated towards Siwaliks.
Siwaliks are formed from LHS and HHS (Sinha
et al. 2007); therefore in the current study, the
samples are also showing mixed geochemistry of
the Himalayan ranges.

5.3 Tectonic setting

Any sedimentary basin’s tectonic context can be
distinguished based on geochemistry (Bhatia
1983, 1984, 1985a; Roser and Krosch 1986;
McLennan and Taylor 1991; Graver and Scott
1995). To ascertain the tectonic setting, discrimi-
nation diagrams (Bgure 17) suggested by Roser and
Korsch (1986) and K2O/Na2O–SiO2/Al2O3 rela-
tionship diagrams (after Maynard et al. 1982) were

Figure 16. Sediment bivarent plots after Singh (2010). Values of Tethyan Sedimentary Series (TSS), High Himalayan Series
(HHS) and Lesser Himlayan Series have been taken from Richards et al. (2005) and Siwaliks has been taken from Sinha et al.
(2007). The above plots indicate the sediments are mostly deviated towards Siwaliks.
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applied. These illustrations imply that the samples
were laid in a passive margin environment typiBed
by mineralogically mature (quartz-rich) sediments
probably brought by rivers to the deposition site.
The northern Indian passive margin consists of the
Higher and Lower Himalayas and a small part of
the Indian craton and their sedimentary cover
(Baud et al. 1996). The examined samples are
located in the P4 Beld in the diagram showing a
reworked orogenic landscape (quartzose sedimen-
tary or granite-gneisses origin source region like
PM) that was settled under the passive margin
regime. The heavy mineral assemblages (discussed
earlier also) clearly show that the sediments come
from all parts of the Himalayas, including the
Siwaliks, the lower Himalayas, and the upper
Himalayas.

5.4 Depositional environment and climatic
changes

Depositional environment of the sediments is well
correlated with the climate change of the area. Unit
1 has current beddings and ripple marks, indicating
a palaeochannel of a Cowing river. The lower part
of the section, i.e., units 1, 2, 3, and 5 containing
sand-size grain particles are arkosic and are sub-
jected to less chemical weathering as compared to
the upper part of the section, i.e., units 6, 7, 8, and
9, comprising silt and clay, showing a much more

matured part of the section. Units 7 and 8 have
poorly sorted nature of the sediments with a high
kurtosis value denoting that the depositional
environment has less energy. Poorly sorted nature
of sediments can be attributed to the in-situ
chemical weathering condition of the depositional
area. Overall textural characteristics show Bning
upward sequence and also point towards decreas-
ing depositional energy conditions. Negative Eu
anomaly similar to PAAS and UCC of the average
sediments indicates some cratonic source of sedi-
ments. The positive correlation of REEs and major
oxides like Al2O3, TiO2, K2O, MgO, and Fe2O3

shows that REEs are indicating towards the
granitic source rock. The value of CIA is interme-
diate (63–77), inferring intermediate weathering of
the sediments at the source area because of a higher
rate of physical weathering over chemical weath-
ering. The above data and OSL results reveal that
the lower part comprising unit 1 is the youngest
dating back to 3.3 ± 0.2 ka, which can result from
an incision by some sudden Cow of water resulting
from some instant weather change. The upper part
comprising unit 6 is the oldest (11.2 ± 0.9 ka) and
units 7 (7.4 ± 2.4 ka) and 9 (7.3 ± 0.2 ka) are
relatively mature in nature.
The texture, mineralogy, and geochemistry of

sediments invoke that they are mature (miner-
alogical constraints), recycled (sub-rounded to
rounded grains), and physically weathered

Figure 17. Tectonic discrimination diagram (a) Roser and Korsch (1986) and (b) Maynard et al. (1982) samples plot in passive
margin Beld (PM). ACM = active continental margin Beld, ARC = continental arc sediments plot in (PM) Beld. A1 = arc
basaltic and andesitic detritus; A2 = evolved arc setting felsitic plutonic detritus.
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(arkosic). The sediment terrain is felsic in nature,
having high-grade metamorphic rocks (heavy
mineral assemblages), most probably granite or
granitoid. Besides, the sediments are derived from
a high altitude and arid climatic area. The climate
change can be attributed to the chemically
matured unit 6 dating back to 11.2 ± 0.9 ka with
CIA values ranging from *69 to 70.5, with less
percentage of Al2O3 and more of SiO2 percentage,
which can be due to low depositional energy with
dry climatic conditions, whereas units 7 (7.4 ± 2.4
ka) and 9 (7.3 ± 0.2 ka) have CIA values of
*75–77, more percentage of Al2O3 and less of SiO2

percentage showing warm and humid climate.
These phases correspond well with the records of
lake proxies of the Ganga plain, where 14–12.5 ka
and 11.5–10.5 ka are marked by cool and dry cli-
mate (Sharma et al. 2004; Chauhan et al. 2015) and
period of 8.5–6.4 ka (Trivedi et al. 2013; Saxena
et al. 2015) has a warm and moderately humid
climate. The incision at 3.3 ± 0.2 ka in the present
study is matched with the palaeoCood events in the
Ghaggar–Hakra plain of Punjab around 3.9 ka
(Singh et al. 2021). Our geochemical data of the
exposed section is very much similar to the one of
the drill core data from Singh et al. (2016) and
conBrms the existence of a large river.

6. Conclusions

This palaeochannel implies that the river which
brought the sediments is reworked and mostly from
Siwaliks. It can be correlated as the sediments are
reworked and matured, derived from the recycled
orogenic terrain like granite-gneisses or quartz
sedimentary provenance. Hence, the sediments
that this river has brought may have faced cycles of
transportation. The alternate occurrence of silty
clay beds with sand beds indicates a change in the
climatic condition. Tectonic setting, provenance,
and source area weathering of these sediments
clearly show that sediments are from Higher
Himalayas and Siwaliks, and are inCuenced by the
change in the climatic conditions.
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