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Reference evapotranspiration (ET0) is a crucial parameter in hydrology that is used to estimate the
amount of water lost through evaporation and transpiration from a standard reference crop under
speciBed climatic conditions. ET0 is calculated based on several meteorological variables such as tem-
perature, humidity, wind speed, and solar radiation. However, in many regions, there may be limited
availability of these meteorological data, making it difBcult to estimate ET0 using conventional methods.
This study aimed at using machine learning (ML) techniques to estimate ET0 with minimal climatic
inputs, using the Food and Agriculture Organization (FAO)-56 Penman–Monteith model as the standard
reference method. Different ML models, including Long Short-Term Memory (LSTM) neural networks,
Gradient Boosting Regressor (GBR), Random Forest (RF), and Support Vector Regression (SVR), were
developed with climatic variables as input parameters. To summarize, the study evaluated different
machine learning models to estimate ET0 with minimal climatic inputs and compared their performance
with the standard Penman–Monteith model for Hawalbagh experimental farm observatory. The results
showed that the LSTM model performed better than other ML models, followed by SVR and RF, in
estimating ET0 with minimal climate data. The study concluded that LSTM and SVR models are the
most robust ML models for estimating ET0 in such scenarios. The study found that even with limited
climatic data, such as a two-parameter combination (maximum temperature and relative humidity,
relative humidity and sunshine hours) or a three-parameter combination (minimum temperature, relative
humidity, and precipitation, minimum temperature, maximum temperature, and precipitation),
promising results in ET0 estimation can be achieved. The study’s Bndings are significant for estimating
ET0 in data-scarce regions, especially for agricultural water management in semi-arid climates.

Keywords. Evapotranspiration; gradient boosting regressor; long short-term memory; Penman–Mon-
teith; random forest; support vector regression.
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1. Introduction

The accurate estimation of crop water needs is
crucial for sustainable management of water
resources, particularly in regions aAected by cli-
mate change such as India. Crop evapotranspira-
tion (ETcrop) is an important parameter that can
help in estimating a Beld’s net irrigation require-
ment, which varies depending on the crop being
grown (Srivastava et al. 2017; Kumar et al. 2020;
Maza et al. 2020). Evapotranspiration (ET0) is the
process of water movement from soil and vegeta-
tion to the atmosphere, which occurs through the
combination of plant transpiration and soil and
atmospheric evaporation. It is a vital component in
agriculture, land management, pollution detection,
irrigation planning, hydrological balance, and
watershed hydrology (Kumari and Srivastava
2020). Accurate estimation of ET0 is crucial in
managing water resources for various purposes,
including irrigation, drinking, industrial use, and
water reserve management (Kumar et al. 2021a, b;
2023a, b). The precise calculation of ET0 can
improve irrigation eDciency, water reuse, and
seepage control, making it an essential factor in
addressing water management problems. The
quantity of water needed to irrigate crop Belds for
the entire period is called crop-water requirement.
It can be computed by multiplying crop coefBcient
with ET0 (Srivastava et al. 2018). Accurate irri-
gation scheduling is impossible with prior knowl-
edge of ET0. There are different methods developed
for the calculation of ET0 from meteorological
variables, which are temperature-based, radiation-
based, and combination-based. The estimation of
ET0 through Lysimeter is considered to be the
most accurate, but it is labour-intensive, expensive
and requires proper maintenance. The performance
of different methods varies in different agro-cli-
matic regions. The FAO-56 PM has been recom-
mended worldwide for the calculation of ET0 and
used as a reference approach (Tabari et al. 2013;
Kovoor et al. 2018; Valipour et al. 2018; Fan et al.
2019; Kumar et al. 2022). FAO-56 PM method
requires large amount of data for ET0 calculation
(Shiri et al. 2012; Caminha et al. 2017; Feng et al.
2017; Trigo et al. 2018; Kumar et al. 2021a). Due to
the paucity of weather data in developing countries
like India, limited meteorological data are available
for the calculation of ET0. In recent years, much
attention has been given towards forecasting nat-
ural events (Khosravi et al. 2018; Yaseen et al.
2018; Naganna et al. 2019; Xiao et al. 2019).

Therefore, there is a need for the calculation of
evapotranspiration using machine learning algo-
rithm. Several researchers across the globe in dif-
ferent agro-climatic regions have attempted to
compute ET0 from different meteorological vari-
ables and majority of the method need data that
are not readily available, particularly in the hilly
region of Uttarakhand (Kumar et al. 2023a). In
addition to this, some of these methods are appli-
cable to certain speciBc climatic conditions and
they cannot be used under conditions which are
different from those they were originally developed.
Simple model is basically based on the linear
relationship between different meteorological
variables. Due to rapid urbanization and industri-
alization, pollution can aAect ET in several ways.
For example, air pollution can reduce the amount
of sunlight that reaches the land surface, which can
reduce photosynthesis and therefore transpiration
(Yao 2017). Several studies on assessing the impact
of pollution on environmental conditions is con-
ducted in recent years (Ambade et al. 2021; Gau-
tam et al. 2021, 2023; Nepolian et al. 2021;
Thapliyal et al. 2022). ET is a complex phe-
nomenon and it is highly non-linear in nature.
Various researches showed that machine learning
algorithms have shown promising results in pre-
dicting ET0 (Partal 2009; Cobaner 2013; Falamarzi
et al. 2014; Adamala et al. 2019; Kelley and
Pardyjak 2019). Machine learning techniques are
eDcient in obtaining complicated relationships
between input and output variables, which makes
them robust tools for ET0 modelling (Abdullah
et al. 2015; Marti et al. 2015; Wang et al. 2018;
Ferreira et al. 2019; Nourani et al. 2019; Wu and
Fan 2019). In the last decade, various researches
have been explored to demonstrate the proBciency
of various machine learning model for predicting
ET0 (Chauhan and Shrivastava 2008; Zanetti et al.
2007; Khoob 2008; Trajkovic 2010; Feng et al.
2017). Based on review of the literature, MLP
algorithm is the best applied and most eDcient
neural network to predict ET0. Therefore the
complexity of the calculation of evapotranspiration
can be solved using machine learning (ML) algo-
rithm with limited meteorological variables. This
research evaluates different ML algorithms for the
estimation of ET0 in different agro-climatic zones
of India. Several studies have emphasized on the
estimation of accurate ET0 in different hydrologi-
cal studies work. ANN and multivariate non-linear
regression technique were applied in semi-arid
areas of Iran for the estimation of ET0. For
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data-limited conditions, ML techniques have been
extensively used as an alternative tool for the
computation of ET0. Many of the aforementioned
studies are done in same agro-climatic zone, par-
ticularly in India. Therefore, it is necessary to
evaluate different ML techniques in various agro-
climatic zones for the calculation of ET0. Numer-
ous studies have been reported in the literature to
test the applicability of ML techniques for the
estimation of reference ET0. There are various
softwares used for calculation, viz., CROPWAT,
Daily ET and ET0 calculator. These softwares
calculate ET0 based on empirical and semi-empir-
ical equation which requires numerous meteoro-
logical and geographical parameter. These
softwares do not yield any result if one parameter is
missing. In most situations, meteorological vari-
able is scarce and limited to very few numbers of
climatic variables. Therefore, present and future
estimation of ET0 is conBned. Recently there have
been many attempts to compute and predict ET0

with higher accuracy and at different time scales.
Numerical and statistical techniques have been
applied to mimic the random nature of meteoro-
logical variables. The difBculties associated with
these methods forced scientists and researchers to
look for alternative options such as, data-driven
techniques and machine learning approach, viz.,
ANN (Kumar et al. 2011). Based on review of lit-
erature, it can be summarized that machine
learning models are suitable for the computation
and prediction of ET0 in data-limited conditions.
The study area was selected because of significant
wastage of surface and groundwater due to inef-
fective irrigation planning by local farmers. This
results in water scarcity during dry season, high-
lighting the need for eAective irrigation plans.
Accurate estimates of ET are useful for this and
important for transitioning to more integrated and
adaptive water resources management. The cur-
rent study gives a comparison of four ML-based
models to discover the best model for assessing
daily ET0 under the state using minimal input
variables in the sub-tropical atmospheres. The
objectives of the current study are as per the fol-
lowing: (1) to develop different ML models, SVR,
LSTM, RF and GBR for modelling ET0 over
Hawalbagh experimental farm weather observa-
tory, (2) to assess the performance and stability of
these models with different input combinations,
and (3) to Bnd an appropriate approach to boost
the modelling performance under the limited input
factors condition.

2. Study area and data used

To illustrate the idea presented in the paper, we
selected ICAR-VPKAS, Hawalbagh experimental
farm, observatory (29�360N; 79�400E at 1250m above
mean sea level) located in Kumaon division of
Uttarakhand, Almora, India. The geographical loca-
tion of the study area is shown in Bgure 1. Meteoro-
logical data (i.e., minimum and maximum
temperature, minimum and maximum relative
humidity, sunshinehours, and rainfall)were obtained
from the meteorological observatory for the period,
January 1985–December 2010, on amonthly basis, as
given in table 1. The annual rainfall of the site varies
from 693 to 1415mmwith an average rainfall of 1013
mm during the study period. Maximum temperature
(Tmax) ranged from24.7� to26.7�CwithaverageTmax

equal to 25.93�C and minimum temperature (Tmin)
ranged from 9.088 to 11.5�C with averageTmax equal
to 10.4�C (Bgure 2a–d).

3. Methodology

This section covers a detailed description of dif-
ferent machine learning models applied in the
present study. The complete dataset was divided
into two parts. The Brst part which is 80% of the
whole dataset is used for training the selected ML
model, while the remaining 20% second part is used
to test the developed ML model. This study com-
pared the performance of four machine learning
(ML) models for modelling the ET0 using meteo-
rological data collected from the observatory. The
ML models used were LSTM, GBR, SVR, and
RF regressor. Models were prepared in Python
using the Keras library (https://keras.io). The
Cowchart used in this study is shown in Bgure 3.

3.1 Optimal input selection of input variable

The optimal input combinationwas selected based on
seven statistical criteria: MSE, RMSE, R2, adjusted
R2, Mallows’ Cp, Akaike’s AIC, and Amemiya’s PC.
The combinationwith the smallest and closest to zero
values of MSE, Mallows’ Cp, Akaike’s AIC, and
Amemiya’s PC, and the largest values of R2 and
adjusted R2 were chosen as the optimal input com-
bination for ET0 modelling. This approach was
applied at Hawalbagh experimental farm and Bve
different input combinations were examined. The
top Bve models were selected based on combined
scores calculated from above-mentioned statistical
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parameters. The statistical analysis of these combi-
nations is presented in table 2.

3.2 Model development

In order to build a reliable predictive model,
selecting the appropriate predictors is a crucial

step. In the current study, four different machine
learning (ML) models were chosen to predict
monthly evaporation: the classiBcation and
regression tree (CART), the cascade correlation
neural network (CCNN), gene expression pro-
gramming (GEP), and support vector machine
(SVM). These models were developed using Bve
different input combinations:

Figure 1. Location of the study area.

Table 1. Monthly meteorological parameter dynamics for the period of 1985–2010.

Meteorological parameter Mean ± SD Minimum Maximum CV (%)

Precipitation (mm) 84 ± 91 0 493 108.33

Maximum temperature 25.9 ± 4.53 15.5 33.9 17.49

Minimum temperature 10.43 ± 7.48 –1.7 21.8 71.71

Relative humidity 67.8 ± 9.41 40.25 87.3 21.8

Sunshine hour 7.06 ± 1.53 2.96 10.17 0.21
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Model 1 M1ð Þ: ET0 ¼ f Tmax;RHmeanð Þ ð1Þ

Model 2 M2ð Þ: ET0 ¼ f Tmin;RHmean;RFð Þ ð2Þ

Model 3 M3ð Þ: ET0 ¼ f SSh;RHmeanð Þ ð3Þ

Model 4 M4ð Þ: ET0 ¼ f Tmin;RF;SShð Þ ð4Þ

Model 5 M5ð Þ: ET0 ¼ f Tmin;Tmax;RFð Þ ð5Þ

where ET0 is the reference evapotranspiration, WS
is the wind speed, RF is the rainfall, RH is the
relative humidity, Tmin is the minimum tempera-
ture, Tmax is the maximum temperature, and SSh
is the number of sunshine hours.

3.3 Calculation of reference ET

There are different equations developed to estimate
ET0 across the globe in different agro-climatic zone

and extensively evaluated using Lysimeter data.
However, the standard and reliable method for
computing ET0 is FAO Penman–Monteith (Allen
et al. 1998). In the present study, we have used FAO
Penman–Monteith to calculate ET0. It represents
the response of weather parameters to environmen-
tal conditions. Kc is different for different crops and
represents the crop canopy development and crop
management practices through the growing season.
Daily meteorological data were collected for Bve
variables, which included maximum air tempera-
ture (Tmax �C),minimumair temperature (Tmin �C),
minimum relative humidity (RHmin, %), maximum
relative humidity (RHmax, %), wind speed (U2, m
s�1), and solar radiation (Rs, MJ m�2 d�1). Mea-
surements were taken at a height of 2 m for air
temperature and relative humidity, and at a height
of 10 m for wind speed above the soil surface. Wind
speed data at 2 m (U2) were obtained using the log-
wind proBle equation from those collected at 10 m.

Figure 2. Monthly average climatic parameters for the North Bihar (1985–2011). (a) Tmax and Tmin, (b) precipitation;
(c) relative humidity; and (d) hours of sunshine.
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Using the meteorological data available obtained
from the weather station. Crop evapotranspiration
is calculated as:

ETc ¼ Kc � ET0: ð6Þ

The FAO-56 PM method was used as a standard
method in the present research.

ET0 ¼
0:408 Rn �Gð Þ þ 900

Taþ273 u es � eað Þ
Dþ c 1þ 0:34uð Þ ð7Þ

where ET0 is the potential reference crop evapo-

transpiration (mm day�1); Rn is the net radiation

(MJ m�2 day�1); G is the soil heat Cux (MJ

Figure 3. Flow chart used in this study.

Table 2. The best top Bve models along with their input combination and statistics values.

Input combination MSE RMSE R2 Adj˙R2 Cp Amemiya’s PC AIC Score

Tmax

RHmean

107.14 10.35 0.90 0.88 120.13 90.91 107.45 0.957

Tmin

RHmean

RF

114.78 10.71 0.89 0.88 128.70 97.39 115.09 0.956

RHmean

SSh

107.06 10.34 0.90 0.88 120.04 90.84 107.37 0.956

Tmax

RF

SSh

88.22 9.39 0.93 0.92 98.91 74.85 88.52 0.955

Tmin

Tmax

RF

115.43 10.74 0.90 0.88 129.42 97.94 115.73 0.951
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m�2 day�1), which is assumed as null for daily
periods; Ta is the average daily temperature (�C);

u is the wind speed at a height of 2 m (m sec�1); es
is the saturation vapour pressure deBcit (kPa); es
is the actual vapour pressure deBcit (kPa); es � ea
is the vapour pressure deBcit (kPa); D is the slope

of the saturation vapour pressure–temperature

curve (kPa �C�1); and c is the psychometric con-

stant (kPa �C�1).

3.4 Machine learning models

3.4.1 Gradient boosting regressor

The gradient boosting regressor (GBR) is an
ensemble machine learning model that uses a col-
lection of sequentially arranged tree models to
make predictions. It is designed to improve the
accuracy of weak prediction models, typically
decision trees, by iteratively building on the errors

Figure 4. Scatter plots of the FAO-56 ET referred as ET0 and those estimated by the ML models. (a) SVR, (b) RF, (c) GBR,
and (d) LSTM with all parameters of input for during the testing period at Hawalbagh experimental farm.
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of previous models in the ensemble. This technique
is known as ‘boosting’.
As the GBR algorithm iteratively builds each

model, it focuses on improving the predictions of
the previous model by learning from the errors
it made. The result is a more robust and accu-
rate model that is capable of making better
predictions on the given dataset. Overall, the
GBR model is a powerful tool for machine
learning tasks that involve predicting numerical
values. A GBR with M number of trees can be
stated as:

f M xj
� �

¼
XM

m

cmhmðxjÞ ð8Þ

where hm is a weak learner that performs poorly
individually and cm is a scaling factor adding the
contribution of a tree to the model.
GBR model is implemented using the gradient

boosting regressor (GBR) method provided by
Scikit-learn, a widely used machine learning
library. The method is based on the algorithm
developed by Jerome H Friedman in the late

1990s, which involves iteratively improving the
performance of weak learners by adding them to
an ensemble model. The resulting model is a
more accurate and robust predictor than any of
the individual weak learners used to build it.
Overall, the GBR model is an eAective approach
to solving regression problems in machine
learning.

3.4.2 Support Vector Regression

Vapnik (1995) introduced support vector machine
algorithm, which is one of the most popular method
among machine learning techniques (Wu et al.
2008). SVM is used by several researchers across
the globe for the estimation of ET (Shrestha and
Shukla 2015; Dou and Yang 2018; Tang et al.
2019). The most important property of SVM is
inclusion of kernel, which makes it powerful to deal
with nonlinear properties of the system. SVM is a
supervised machine learning method used for both
regression and classiBcation analysis in agriculture.
It plots data into a high-dimensional feature space

Figure 4. (Continued.)
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using kernels and can classify nonlinearly separable
datasets. The accuracy of the SVR model depends
on appropriate selection of kernels and parameters,
and RBF has been shown to have favourable per-
formance in forecasting. The present study used
the LIBSVM library to develop SVR models with
the RBF kernel. The fundamental requirement of a
kernel is that it must satisfy Mercer‘s theorem. The
optimization algorithm has a global optimization
function that makes it different from other machine
learning techniques such as ANN, which consider
the local maxima. Kernels are the foundation of
SVM. The typical assembly of the SVM model is
shown in Bgure 4. The SVM (Support Vector
Machine) technique applies the SRM (structural
risk minimization) principle to minimize the risk of
overBtting and Bnd the optimal decision boundary
between different classes.

3.4.3 Random forest

RF is an ensemble machine algorithm, which is eD-
cient in both classiBcation and regression. It is gen-
erally used for predictive analysis. In predicting the
Bnal output, combination of all decision trees is con-
sidered rather than depending on individual decision
trees. The foundation of RF is based on supervised

machine learning approaches, which are constantly
used in machine learning and popularly used in
hydrology.Observed andpredictedvalues are used to
calculate the sum of square error (SSE). This process
occurs repeatedly until the whole set of data is cov-
ered. Mathematically RF can be expressed as:

u xð Þ ¼ u0 xð Þ þ u1 xð Þ þ u2 xð Þ þ u3 xð Þ þ � � � ð9Þ

where the resulting function u is the addition of
individual base model ui, where each individual
base repressor is the individual decision tree. The
fundamental principle behind RF model is to
integrate several decision trees in estimating the
Bnal result rather than individual decision trees.
Random forests or random decision forests are a

machine learning technique used for classiBcation,
regression, and other tasks. They work by creating
multiple decision trees during training and then
using them to make predictions by taking the mode
of the classes for classiBcation or the mean pre-
diction for regression. Random forests help to
reduce the overBtting of decision trees to their
training set (Smith et al. 2013; Misra and Li 2020).
Extra trees (extremely randomized trees) is an
ensemble learning method that builds on the
Random Forest algorithm (Breiman 2001). Each
decision tree in the extra trees forest is constructed

Table 3. Performance of random forest (RF), support vector regressor (SVR), gradient boosting
regressor (GBR), and long shortterm memory (LSTM).

Model ML algorithm

Calibration Validation

MSE R2 NSE RMSE MSE R2 NSE RMSE

M1 RF 0.02 0.98 0.98 0.15 0.14 0.87 0.87 0.38

SVR 0.14 0.89 0.89 0.37 0.13 0.88 0.88 0.36

GBR 0.03 0.98 0.98 0.17 0.13 0.87 0.87 0.36

LSTM 0.12 0.90 0.90 0.35 0.12 0.89 0.89 0.34

M2 RF 0.01 0.99 0.99 0.11 0.11 0.92 0.92 0.34

SVR 0.32 0.72 0.72 0.56 0.43 0.69 0.69 0.66

GBR 0.01 0.99 0.99 0.12 0.13 0.91 0.91 0.36

LSTM 0.10 0.91 0.91 0.32 0.13 0.91 0.91 0.36

M3 RF 0.11 0.90 0.90 0.34 1.19 0.14 0.14 1.09

SVR 0.91 0.18 0.18 0.95 1.24 0.10 0.10 1.11

GBR 0.17 0.85 0.85 0.41 1.14 0.18 0.18 1.07

LSTM 0.94 0.15 0.15 0.97 1.36 0.02 0.02 1.16

M4 RF 0.01 0.99 0.99 0.11 0.10 0.92 0.92 0.32

SVR 0.46 0.60 0.60 0.68 0.56 0.58 0.58 0.75

GBR 0.01 0.99 0.99 0.12 0.11 0.92 0.92 0.33

LSTM 0.07 0.94 0.94 0.26 0.11 0.92 0.92 0.33

M5 RF 0.01 0.99 0.99 0.12 0.09 0.91 0.91 0.31

SVR 0.32 0.75 0.75 0.57 0.33 0.70 0.70 0.57

GBR 0.02 0.99 0.99 0.13 0.11 0.90 0.90 0.33

LSTM 0.20 0.84 0.84 0.45 0.20 0.82 0.82 0.44
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from the original training sample. However, at each
test node, each tree is provided with a random
sample of features from the feature set, and each
decision tree must select the best feature to split
the data based on some mathematical criteria,
typically the Gini Index. This process of using a
random subset of features at each test node results
in the creation of multiple de-correlated decision
trees, which can improve the accuracy and reduce
overBtting.

3.4.4 Long short-term memory

Long short-term memory (LSTM) is a type of
recurrent neural network (RNN) that is designed
to address the vanishing gradient problem and the
inability of traditional RNNs to handle long-term
dependencies in sequential data.
LSTM networks are comprised of memory cells

that can selectively remember or forget information
based on inputs from different gates. These gates are

Figure 5. Comparison of observed and estimated ET referred as ET0 by different models (GBR, LSTM, RF, and SVR) with
varying parameters of input for the validation period at Hawalbagh experimental farm.
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made up of different layers, including the input gate,
forget gate, output gate, and cell state layer. The
interactions between these layers allow the LSTM
network to selectively retain or discard information
from previous time steps, making it more eAective
for modelling long-term dependencies. The struc-
ture of an LSTMmodel is composed of an input gate,
an output gate and a forget gate. The gate’s value in
LSTM is calculated using the previous cell value
Ct�1, previously hidden values ht�1 and input xt.

it ¼ F Wxixt þWhiht�1 þWciCt�1 þ biasið Þ ð10Þ

Ot ¼ F Wxoxt þWhoht�1 þWcoCt�1 þ biasoð Þ
ð11Þ

ft ¼ F Wxf xt þWhf ht�1 þWcfCt�1 þ biasf
� �

: ð12Þ

And the cell value is calculated using

Ct ¼ f tCt�1 þ itF Wxcxt þWhcht�1 þ biascð Þ;
ð13Þ

ht ¼ Ot tan
�1 Ctð Þ: ð14Þ

3.5 Model assessment

To examine the accuracy of ET0 predicted by dif-
ferent algorithms with observed values, different
statistical indicators coefBcient of determination
(R2), root mean squared error (RMSE), mean
square error (MSE) and Nash–SutcliAe EDciency
(NSE) were used. The mathematical expressions
are as follows:

R2 ¼ 1�
P

ETPre � ETObsð Þ2
P

ETObs � ETMeanð Þ2
ð15Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ETPre � ETObsð Þ2

n

s

ð16Þ

MSE ¼ 1

n

Xn

i¼1

ETPre � ETObsð Þ2 ð17Þ

NSE ¼ 1�
Pn

i¼1 ETObs � ETPreð Þ2
Pn

i¼1 ETPre � ETMeanð Þ2

" #

ð18Þ

Figure 5. (Continued.)
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where ETPre (mm/day) is predicted ET0 using
different machine learning algorithm at instant i,
ETObs (mm/day) is observed ET0 at instant i,
ETMean (mm/day) is the average ET0 at instant i,
and n is the number of total observations.

4. Results and discussion

The study analysed the performance of LSTM,
SVR, GBR, and RF models in estimating daily
ET0 using four pre-processing data methods:
Pearson correlation, PCA, Lasso model, and ran-
dom forest. The climate variables considered were
daily maximum temperature, minimum tempera-
ture, relative humidity, and solar radiation. The
optimal input combinations and each model’s per-
formance in terms of R2, RMSE, NSE, and MSE
were presented for Hawalbagh experimental farm
observatory. The Grid Search CV python library
module was used to optimize SVR parameters. The
performance of different machine learning algo-
rithms in terms of statistical parameters MSE,
RMSE, MSE, and R2 were summarized in table 3.

4.1 ML models performance with various input
combinations

The study evaluated the performance of LSTM,
SVR,GBR, andRFmodels for estimating dailyET0

using different pre-processing methods to select the
best set of input variables. The four pre-processing
methods evaluated were Pearson correlation, prin-
cipal component analysis (PCA), Lasso model, and
random forest. The optimal input combinations and
the performance of each model in terms of R2,
RMSE, NSE, and MSE were listed in table 3 for
Hawalbagh experimental farm observatory. Table 3

showed the summary of the LSTM, SVR, GBR, and
RF model performances for Hawalbagh experimen-
tal farm observatory. Taking everything into
account, the RF and GBR models are the most
robust among the four ML models regardless of
under which input combination, trailed by LSTM
and SVR models, which could generally accomplish
agreeable accuracy. Figure 4 showed the compar-
isons between observed ET0 and model-estimated
values in the formof scatter plots of the FAO-56ET0

and those estimated by theMLmodels with all input
parameters during the testing periods. All scatter
plots of different ML models showed various distri-
butions. The study compared the performance of
LSTM, SVR, GBR, and RF models in estimating
daily ET0 using different input combinations and
pre-processing methods. The RF and GBR models
showed closer agreement with observedET0 and the
RF model performed marginally better than the
GBR model, with an estimated R2 value of 0.99 for
all model input combinations. The RF model
achieved the best performance among the evaluated
models with all input combinations at the Hawal-
bagh experimental station, followed by GBR. The
RF model achieved excellent performance, with an
RMSE of 0.11 mm/day, MSE of 0.01 mm/day, and
R2 of 0.99, followed by GBR with an RMSE of 0.17
mm/day, MSE of 0.03 mm/day, and R2 of 0.98 at
the Hawalbagh experimental farm observatory
(Bgure 4). Figure 5 shows the comparisons between
observed ET0 and model-estimated values in the
form of a line plot. The model results were also
compared with ET0 calculated using the Pen-
man–Monteith equation, and the results were found
to be very similar to the FAO-56 ET0 based com-
parison, indicating that the model results were not
overstated. In summary, the RF model is the most
robust among the four ML models, followed by the
GBR and SVR models. The comparison of RMSE
values for Hawalbagh experimental farm for differ-
ent input combinations is shown in Bgure 6. The RF
and GBR models achieved acceptable accuracy
across different input combinations of meteorologi-
cal variables, which makes themmore cost-effective
and practical for development and application.
These models can simulate ET0 where meteorologi-
cal information is limited.

4.2 Comparison with similar studies

The paper investigated the performance of four
ML models in estimating daily reference

Figure 6. Comparison of RMSE values for Hawalbagh exper-
imental farm for different input combinations.
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evapotranspiration, including LSTM, GBR, RF,
and SVR, and found that RF performed the best,
with GBR, SVR, and LSTM also producing accu-
rate results. This is consistent with previous stud-
ies that have found ANN, LSTM, and SVR to be
eAective for ET0 estimation. It has also shown that
this study resembles the assessment of reference
evapotranspiration found by Raza et al. (2020) and
Heramb et al. (2023), where SVR was found to be
used as an alternative ET0 estimation model to the
subsistence of conventional methods. Based on
table 3, the RF and GBR models performed well in
terms of accuracy and computational demand,
with the RF model being particularly eDcient and
achieving low test RMSE values regardless of input
combination. The study also found that the two
input combinations of maximum temperature and
mean relative humidity worked comparatively well
with the RF model, followed by the GBR model.
The RF and GBR model performed well in esti-
mating ET0 with limited inputs, and therefore, it
can be suggested for ET0 estimation in situations
with limited meteorological parameter availability.

5. Conclusions

This study aimed to compare the performance of
four machine learning models, namely LSTM, SVR,
GBR, and RF, in estimating ET0 using four differ-
ent input combinations at two different stations.
The study concluded that using all input vari-

ables provided the best performance, but also
found that using a combination of three variables
(temperature, wind speed, and relative humidity)
or two variables (temperature and relative
humidity, temperature and wind speed) can pro-
vide nearly identical results to using all variables.
Therefore, the study suggests that using all vari-
ables should be the Brst priority, followed by three
and two variable combinations.
The study found that the RF and GBR model

had the best performance among the four tested
models, regardless of station or input combination.
The LSTM and SVR models were able to achieve
good performance using only temperature, relative
humidity, and wind speed data, making them more
practical and useful for application. The input
combination of temperature and wind speed fol-
lowed by temperature and relative humidity also
showed good results, while other models did not
perform as well as the LSTM and SVR models with
the mentioned input combinations.

The study concluded that using a combination of
three or two meteorological parameters, such as
temperature, wind speed, and relative humidity,
can still provide accurate estimation of reference
ET0, even if not all parameter information is
available. The LSTM and SVR models were found
to be highly relevant for modelling ET0 at spa-
tiotemporal scales, even when meteorological
parameter information is limited or fragmented,
and are strongly recommended for such cases.
The Bndings of this study can be applied to model

ETcrop for various crops grown in the region,
including rice, wheat, and pulses. Additionally, this
study provides a useful reference for researchers to
develop similar models for other study areas. Since
machine learning techniques are data-driven tech-
niques, performance of these ML techniques would
deteriorate in case of limited meteorological data.
Further, the application of different optimizers in
conjunction with machine learning and deep learn-
ing models with cross-station data in different agro-
climatic zone can be employed in ET0 modelling.
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