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The accurate prediction of tropical cyclone (TC) track, intensity, and rainfall is necessary from a disaster
management perspective. The simulations of 24 TCs that occurred from 2016 to 2020 over the North
Indian Ocean (NIO) were carried out to examine the eDcacy of 5 days forecast. The analysis reveals that
the direct position error (DPE) values over NIO for 12-, 24-, 48-, and 72-hr lead time is 68.12, 91.79, 149.8,
and 232.36 km, respectively. The forecast track is southeastward of the observed track till 72 hours and
northwestward at later lead times. The landfall position error is less over the Bay of Bengal (BoB) as
compared to the Arabian Sea (AS), and the model indicated a delayed landfall response. The intensity
error for TC forecast over NIO magniBes with forecast lead time from 4 to 12 ms�1. Quantitative veri-
Bcation of rainfall indicated overestimation of model rainfall with respect to GPM-IMERG rainfall.
VeriBcation of rainfall forecasts during the landfall of the TCs is carried out using contiguous rain area
(CRA) method. It is seen that pattern error dominates for light-moderate rains, and displacement and
volume error contribution dominate, especially for heavy rain. CRA adjustment has greatly improved
longer lead times, especially heavy rainfall thresholds.
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1. Introduction

Tropical cyclones (TCs) are extreme weather
events that cause significant damage to life and
property. This damage can be reduced by timely
and accurate prediction of TC’s location and
intensity. The North Indian Ocean comprising Bay
of Bengal (BoB) and Arabian Sea (AS) experiences
the maximum number of TCs during the post-
monsoon (October–December) season, followed by
pre-monsoon (March–May) season (Osuri et al.
2013). An increasing trend in the intensity and
frequency of TCs over the North Indian Ocean has

been observed in recent decades (Singh et al. 2001;
Balaji et al. 2018; Mani et al. 2018; Ashrit et al.
2021). It is, therefore, necessary to predict accu-
rately the track, intensity, associated winds, and
rainfall during the TC’s passage well in advance, at
least ahead of a lead time of 48–72 hrs. In recent
decades, there has been a substantial increase in
the prediction of TCs up to a lead time of 120 hrs
using Numerical Weather Models, which is attrib-
uted to advancements in resolution, data assimi-
lation techniques and physics of the models
(Mohapatra et al. 2013a, b, c; Bhate et al. 2021;
Pattanaik and Mohapatra 2021; Prasad et al.
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2021). Numerous eAorts have been carried out
globally to improve TC prediction (Cheung et al.
2018; Mehra et al. 2018; Hendricks et al. 2019).
Furthermore, the model veriBcation provides
important information on the forecast quality and
systematic errors, which are further helpful in the
model improvements. Chen et al. (2018) evaluated
the TC rainfall forecasts through the CRA method
and found that overestimation of heavy rainfall
close to the TC centre. Yu et al. (2020) investigated
the source of forecast rainfall errors through the
CRA veriBcation method and showed that errors
are mostly from rain patterns for light to moderate
rains, followed by displacement errors, particularly
for heavy rain. Their results also suggested that
improving track prediction will further improve
TC rainfall prediction. Therefore, veriBcation helps
to provide useful insights into model performance
by determining the source and quantity of forecast
errors.
There have been a number of studies carried out

on the prediction of TC track and intensity
(Mohapatra et al. 2013a, b, 2021; Osuri et al. 2013;
Mohapatra 2014; Mohanty et al. 2019; Ashrit et al.
2021). Mohapatra et al. (2013b) evaluated the TC
track forecast issued by India Meteorological
Department (IMD) during 2003–2011 by calculat-
ing direct position error (DPE) and skill in the
track forecast. They showed that type of track and
intensity of TC play an important role in deter-
mining the track errors. Their results also sug-
gested that DPE over NIO decreased yearly from
2003 to 2011. Osuri et al. (2013) found that higher
resolution predictions yielded an improvement in
track and intensity errors over the North Indian
Ocean. Though the veriBcation of TC track and
intensity is carried out routinely, there is still a
lack of sufBcient attention on the veriBcation of TC
precipitation forecasts over NIO.
VeriBcation of TC rainfall is commonly carried

out by calculating bias, absolute error, and skill
score metrics such as probability of detection
(POD), false alarm ratio (FAR), equitable threat
score (ETS) and frequency bias based on certain
thresholds (Mohapatra 2014). TC rainfall associ-
ated with the landfall poses a severe threat to life
and property. It is found that the forecast of rain-
fall at the time of landfall is tricky since there can
be rapid intensiBcation/rapid weakening over the
coast just before the time of landfall (Ray et al.
2022). Hence it is necessary to accurately deter-
mine the source of rainfall errors during the landfall
time. To better understand the source of rainfall

errors, object-based veriBcation techniques such as
contagious rain area (CRA) (Ebert and McBride
2000; Yu et al. 2020; Dube et al. 2022), method for
object-based diagnostic evaluation (MODE; Davis
et al. 2009), and structure-amplitude-location
(SAL; Wernli et al. 2008) method have been used in
many studies. For the present study, TC rainfall
veriBcation has been carried out using the CRA
method. In this object-based approach, rain objects
are treated as contiguous regions where rain rate
exceeds a user-speciBed threshold.
Chen et al. (2018) estimated the systematic

errors in the location and intensity of Australian
Community Climate and Earth Simulator
(ACCESS) TC rainfall forecasts using CRA
method and found that TC forecasts tend to pro-
duce more rainfall in the regions closer to the TC
centre. Yu et al. (2020) investigated the rainfall
forecast veriBcation for landfalling TCs over China
during 2012–2015. Their results showed that pat-
tern error was the major contributor to the rainfall
forecast error for light-moderate rainfall, followed
by displacement error, particularly for heavy
rainfall, while event veriBcation indicated that
forecast ability decreases with an increase in rain-
fall amount. A similar study by Osuri et al. (2020)
over NIO also revealed that pattern error contri-
bution to the total rainfall error is more followed by
displacement error and volume error. Their results
also suggested that the model is less skilful for
heavy rainfall, particularly when initialized at
higher intensity stages. The primary objective of
the present study is to examine the skill of the
WRF model over NIO for 5 days using 24 TCs
during 2016–2020. Section 2 presents the datasets
used and methodology, and section 3 discusses the
experimental results, while conclusions of the study
are presented in section 4.

2. Data and methodology

2.1 Data for validation

The IMD’s best track data is used for the valida-
tion of forecast track and intensity. It includes
position (lat./lon.), sustained maximum wind
speed, estimated central pressure, pressure drop at
the centre, and stage of intensity. To estimate the
IMD best track data, it considers all available
surface and upper air observations from land and
ocean, satellite, and radar observations. A review
of the best-track estimates procedure for the TCs
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over NIO is explained in Mohapatra et al. (2012).
IMD/RSMC Delhi publicly shares this data. Glo-
bal precipitation measurement (GPM) mission is a
network of satellites that provides the next-gener-
ation global observations of rain and snow. The
GPM core observatory, launched in February
2014, carries two instruments, namely Ku/Ka-
band dual-frequency precipitation radar and a
multi-channel GPM Microwave Imager. The Inte-
grated Multi-Satellite Retrievals for GPM
(IMERG) provides precipitation estimates for half-
hourly interval at 0.1�90.1� resolution. The
IMERG best precipitation estimates are obtained
by calibrating it with the merged precipitation
product from the above two instruments. The
IMERG products are produced at three different
latencies – the ‘Early’ run has 6-hr latency, the
‘Late’ run has a 16-hr latency, and the ‘Final’ run
has a 3-month latency. For the present study, Bnal
run IMERG half-hourly dataset is used for the
rainfall forecast veriBcation.

2.2 Methodology

For the present study, 24 TCs over NIO during the
2016–2020 period (Bgure 1) are considered (table 1).
Out of 24 cyclones formed during the period
2016–2020, 15 cyclones were formed over BoB and 9
cyclones were formed over AS. The total forecast
sample size (for all the simulated cyclones) is 2414
forecasts. The maximum number of TCs are formed
over BoB and in the post-monsoon season. The two
highest-intensity TCs were Amphan and Kyarr,
which were generated in BoB and AS, respectively.
If we analyze the maximum intensity of the TCs,
the maximum storms (10) reached very severe
cyclonic storm (VSCS) stage, followed by cyclonic
storm (CS) (6), severe cyclonic storm (SCS) (3),
extremely severe cyclonic storm (ESCS) (3), super
cyclonic storm (SuCS) (2). This study focuses on
the evaluation of TC track, intensity errors and
rainfall by using traditional veriBcation methods
such as calculating DPE skill scores, root mean
square error (RMSE) and bias. As majority of the
TCs in this study were dissipated over land (19 out
of 24), CRA method is used to evaluate the sys-
tematic errors in the TC rainfall during landfall.

2.2.1 Model conBguration and data assimilation

The present study uses the mesoscale model
advanced weather research forecasting model

version 4.2 (ARW: Skamarock et al. 2019) to sim-
ulate the tropical cyclones over NIO. The parent
domain is South Asia, and the nested domain is
extended to the equatorial Indian Ocean and BOB.
The horizontal resolution of the outermost domain
has been set to 18 9 18 km2, and the inner domain
is 6 9 6 km2. The timestep for integration was set

Figure 1. Observed (IMD) best tracks of TCs during
2016–2020 over (a) BOB, (b) AS, and (c) model domain for
simulations.
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to 60 and 20 s for the two domains, respectively.
The model used initial and boundary conditions
from the 3-hourly GFS forecast with a horizontal
resolution of 0.5� 9 0.5� as it represents the evo-
lution of TCs better (Malakar et al. 2020). For
these simulations, the model is initialized with a 00
UTC GFS forecast from 5 days before the cyclone
formation date. The forecasts were generated for
124 hrs and saved at hourly intervals. For the
present work, the land surface scheme was repre-
sented by the UniBed NOAH land surface model,
PBL physics was represented by the MYJ TKE
scheme (Janji�c 1994), longwave radiation physics
was represented by the RRTM scheme (Mlawer
et al. 1997), and shortwave radiation scheme was
represented by Dudhia scheme (Dudhia 1989). In
addition, the model’s microphysics and cumulus
physics were represented by the Thompson
scheme (Thompson et al. 2008) and the revised
Kain–Frisch scheme (Kain 2004). The model fore-
cast of 18 km resolution has been analyzed for
forecast veriBcation.
The model initial condition (IC) has improved

by En3DVar data assimilation techniques in the

WRF data assimilation (WRFDA) framework. A
detailed description of En3DVar is provided in
Wang et al. (2008a, b). The En3DVar data assim-
ilation uses the best strategies from the variational
and ensemble Kalman Blter (EnKF) technique.
The variational assimilation technique assumes
that the background forecast-error covariances are
static and nearly homogeneous (Wang et al.
2008a, b). However, in real data cases, the error
covariances change with time. The EnKF provides
an alternative to variational data assimilation
systems. The EnKF background-error covariance
for a given initial condition (IC) is estimated from
an ensemble of short-term forecasts (Wang et al.
2008a). The ensembles are used to calculate a Cow-
dependent estimate of the background error
covariances. The En3DVar data assimilation sys-
tem uses Cow-dependent and static background
error covariances to optimize the model back-
ground error. The resultant error is used in the
variational cost function. The static background
error covariances are calculated using the National
Meteorological Centre method (Parrish and Derber
1992) and simulations of the duration of one month

Table 1. Details of the TC considered in this study.

TC name Duration Max intensity Cyclogenesis basin Landfall location

Amphan 16–20 May 2020 SUCS BOB West Bengal–Bangladesh

Gati 21–24 Nov 2020 VSCS AS Gulf of Aden

Burevi 30 Nov–5 Dec 2020 CS BOB Pamban, Tamil Nadu

Nisarga 1–4 June 2020 SCS AS Alibag, Maharashtra

Nivar 22–26 Nov 2020 VSCS BOB Tamil Nadu–Puducherry

Bulbul 6–11 Nov 2019 VSCS BOB Sunderban, West Bengal

Fani 26 Apr–4 May 2019 ESCS BOB Puri, Odisha

Hikaa 22–25 Sep 2019 VSCS AS Oman coast

Kyarr 24 Oct–1 Nov 2019 SUCS AS Dissipated over AS

Maha 30 Oct–7 Nov 2019 ESCS BOB Dissipated over AS

Pawan 2–7 Dec 2019 CS AS Dissipated over AS

Vayu 10–17 Jun 2019 VSCS AS Dissipated over AS

Daye 19–22 Sep 2018 CS BOB Odisha–north AP

Gaja 10–19 Nov 2018 VSCS BOB Tamil Nadu–Puducherry

Luban 6–15 Oct 2018 VSCS AS Yemen–Oman coast

Mekunu 21–27 May 2018 ESCS AS Oman coast

Phethai 13–17 Dec 2018 SCS BOB Andhra Pradesh (near Yanam)

Sagar 16–20 May 2018 CS AS Somalia coast

Titli 8–12 Oct 2018 VSCS BOB North AP–Odisha coast

Maarutha 15–17 Apr 2017 CS BOB Myaanmaar coast

Mora 28–31 May 2017 SCS BOB Chittagong, Bangladesh

Ockhi 29 Nov–6 Dec 2017 VSCS BOB Weakened over AS

Vardah 6–13 Dec 2016 VSCS BOB North Tamil Nadu

Nada 29 Nov–2 Dec 2016 CS BOB Nagapattina, Tamil Nadu
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using the ARW model. Our earlier contributions
(Rajasree et al. 2016; Malakar et al. 2020; Bhate
et al. 2021, 2023; Munsi et al. 2021) have shown
that the En3DVar data assimilation technique
generates initial conditions, which provides better
skill and is more eDcient than other data assimi-
lation techniques. The assimilation window is ±3
hrs of IC. The present study carried out the hybrid
experiment by incorporating in-situ data, aircraft
observations, satellite-derived winds, and satellite
radiances provided by global data assimilation
system. In the present study, 50 ensembles of ini-
tial conditions are generated. Here, the ensemble-
generated error covariances are given a higher
weight (75%) than the static background error
covariances. The satellite radiances are from
AMSUA, MHS, Suomi-NPP, AIRS, and HIRS
sensors.

2.2.2 Error calculation of forecast parameters

DPE is the most commonly used error statistic for
the veriBcation of track of the TC forecasts. It is
deBned as the great circle distance between TC’s
forecast position and observed position at the
forecast veriBcation time. For this study, the 6-hr
interval IMD’s best track data is considered as the
observed position of TC. The TCs forecast position
is estimated from the location of the minimum sea
level pressure (MSLP). To determine the initial
TCs forecast position, MSLP was found within a
search radius of around 3� of the observed position
at the veriBcation time. In this way, for further 6-
hr intervals TC’s forecast position, a search for the
location of MSLP was made within a 3� radius
around the point of MSLP of the previous 6-hr
forecast position. The mean track error for all the
cyclones is given by

DPE ¼ ði1x1 þ i2x2 þ :::þ inxnÞ=ði1 þ i2 þ :::þ inÞ;
ð1Þ

where i1, i2, ..., in are the number of forecasts and
x1, x2,…, xn are DPE for TCs 1, 2, …, n. DPE alone
gives no information on the directional bias of the
forecast, i.e., whether the forecast is left/right,
ahead/behind the observed track. To account for
the above-mentioned characteristics, error compo-
nents across (cross track error (CTE)) and along
(along track error (ATE)) the track are also cal-
culated. Figure 2(c) gives the graphical represen-
tation of track error components. CTE is the error
component perpendicular to the observed track,

i.e., great circle distance between the forecast point
and the point of intersection of extrapolated
observed track and perpendicular line from fore-
cast point to the extrapolated line. Positive (neg-
ative) values of CTE indicate that the forecast
position is right (left) of the extrapolated observed
track. ATE is the error component along the
observed track. It is the great circle distance
between the current observed point and the point
of intersection of the extrapolated observed track
with the cross-track and the positive (negative)
values of ATE indicate that the point of intersec-
tion lies ahead (behind) of the observed track
which indicates a fast (slow) bias of the forecast
track. The detailed procedure for calculating these
errors is described in Heming (2017). While the
intensity (wind) errors of TC forecasts are obtained
by evaluating the model forecast with IMD maxi-
mum sustained winds (MSW) estimates. These
errors are calculated in terms of bias and absolute
error, where the bias gives the information about
the under/over-estimation of winds, and absolute
error gives the magnitude of errors.
The TC forecast rainfall during the TC period is

veriBed by calculating categorical scores such as
POD, FAR, ETS, and frequency bias (Fb) based
on IMD rainfall classiBcation (very light rain:
0.1–2.5 mm day�1; light rain: 2.5–7.5 mm day�1;
moderate rain: 7.5–35.5 mm day�1; rather heavy
rain: 35.5–64.5 mm day�1; heavy rain: 64.5–124.5
mm day�1; very heavy rain: [124.5 mm day�1).
Here, rainfall within a search radius of 6� around
the TC centre is considered for the calculation of
the scores.

2.2.3 CRA methodology

The veriBcation of rainfall forecasts during the
landfall of the TCs is carried out using CRA
method. CRA method is one of the veriBcation
methods used for the spatial veriBcation of the
forecast. It is an object-based veriBcation
approach that examines the properties of rainfall
forecasts in terms of their location, size, inten-
sity, and Bne-scale pattern. In this method, the
observed and forecast Beld has to be of same
resolution and if not, they are brought to the
same resolution using the interpolation methods.
Then the observed and forecast Belds are merged
at each grid point by taking the maximum value
of observed and forecast. The CRA is identiBed
based on the rainfall threshold (e.g., 1 mm,
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5 mm, 10 mm, ...), the search distance, and the
best-Bt criterion (minimum squared error (Ebert
and McBride 2000), maximum correlation coefB-
cient (Grams et al. 2006), or maximum overlap
(Ebert et al. 2004)). In the present study, based
on IMD rainfall classiBcation, we have deBned
the thresholds of 7.5, 24.5, 35.5, 64.5, 95.5, and
124.5 mm day�1. These thresholds correspond to
moderate rain, rather heavy rain, heavy rain,
very heavy rain and extremely heavy rain. Here
the search distance is 600 km around the TC
centre. The CRA is deBned as a region in the
merged Beld bounded with the user-speciBed
threshold value. Next, a pattern-matching tech-
nique is used to Bnd the best match between
observed and forecast entities within CRA. The
best-Bt criterion is achieved by maximizing the
spatial correlation coefBcient between forecast
and observed Belds. In the present analysis, the
best-Bt criterion is maximum spatial correlation.

The location error is then the vector displace-
ment of the forecast. Finally, the mean squared
error (MSE) of the original forecast is decom-
posed into displacement, volume, and pattern
error components

MSEtotal ¼ MSEdisplacement þMSEpattern

þMSEvolume: ð2Þ

For the maximum correlation coefBcient best-Bt
criterion, the component errors are formulated as:

MSEdisplacement ¼ 2SFSXðropt � rÞ; ð3Þ

MSEvolume ¼ ðF � XÞ2; ð4Þ

MSEpattern ¼ 2SFSXð1� roptÞ þ ðSF � SXÞ2; ð5Þ

where SF and SX are standard deviations of original
forecast and observed Belds, respectively, r is the
actual spatial correlation coefBcient between

Figure 2. (a) Mean magnitude errors (direct position error (DPE), cross track error (CTE), and along track error (ATE)).
(b) Mean bias (cross track bias (CTB) and along track bias (ATB)) over NIO in km. (c) Forecast error components.
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forecast and observed Belds, ropt is the maximum
correlation coefBcient between observed and shif-
ted forecast Beld means after shift. The displace-
ment error is sensitive to search radius and the
total error is sensitive to best Bt criterion.

3. Results and discussion

3.1 Track errors

The mean track error (magnitude and bias) and its
components at different lead times w.r.t IMD best
track is depicted in Bgure 2. From Bgure 2, it is found
that DPE increases gradually with the forecast lead
time. Similar behaviour is observed for CTE and
ATEwith forecast lead time. It is also seen thatCTE
has higher values formost of the lead times before 72
hrs and lower values at later lead times compared to
ATE. From Bgure 2(b), positive bias in CT (cross
track), i.e., the forecast track is eastward of the
observed track till 72-hr lead, time and negative bias
in CT, i.e., the forecast track is the west side of the
observed track for further lead time.While negative
bias in AT (across track) (forecast track is behind
the observed track) till 72-hr and positive bias
(forecast track is ahead of the observed track) for
further lead time is observed. The DPE values over
NIO for 12-, 24-, 48- and 72-hr lead time is 68.12,
91.79, 149.8 and 232.36 km, respectively. Corre-
spondingly, the CTE values are 38.67, 46.7, 92.97
and 143.17 km and ATE values are 36.87, 56.94,
77.76 and 131.243 km.
Osuri et al. (2013) showed that the mean forecast

DPE of the model at 18 km resolution over NIO for
12-, 24-, 48- and 72-hr lead time is 106, 129, 222
and 359 km, respectively, during 2007–2011. It can
be seen that the values of mean DPE over NIO at
different lead times are comparable and lesser than
in the study by Osuri et al. (2013). Overall it is
found that the forecast track is right and behind
the observed track till a lead time of 72 hr, which is
also observed in the studies of Mohapatra et al.
(2013b) and Osuri et al. (2013) and the left and
ahead of the observed track at later lead time.
Comparing the magnitude of CTE and ATE, CTE
dominates for most lead times before 72 hr and
ATE dominates for further lead times.

3.2 Landfall errors

Mohapatra et al. (2013c, 2015, 2021) and Mohap-
atra and Sharma (2019) analyzed the landfall of

cyclones generated over NIO. This study was based
on the period 1961–2018. It was found that, among
the cyclones formed over BoB, 48% of cyclones
strike different parts of the east coast of India,
prominently over Andhra Pradesh, Odisha and
Tamil Nadu. Twenty-six per cent cyclones strike
Bangladesh and Myanmar, and 18% of the cyclones
formed over AS, strike the Gujarat coast. The
percentage of cyclones dissipating over AS is higher
(63%) than those over BoB (21%). In the present
study, 19 out of 24 cyclones have landfall over the
coastline, where 13 cyclones are formed over BoB
and 6 cyclones over AS. The majority of cyclones
formed over NIO, strike the east coast of India and
then the other coastlines along NIO. This is in
concurrence with the earlier studies. Of the 13
cyclones which were formed over BoB, Bve were
dissipated over Tamil Nadu, two over West Ben-
gal, two over Andhra Pradesh, two over Odisha,
one over Myanmar and one over Bangladesh. The
six cyclones formed over AS have landfall over Gulf
of Aden (1), Oman coast (3), Somalia (1) and
Maharashtra (1). Thus, most of the cyclones
formed over AS had landfall over the Gulf coast.
The mean landfall position error and MSW error

for NIO, BOB and AS at different lead times are
shown in Bgure 3. It was observed that average
landfall position error over NIO for 24 hr is 127 km,
which is higher than the average landfall position
error of 67 km for 24-hr forecast during 2009–2013
(as seen in the study by Mohapatra et al. 2015).
The landfall errors are lower over BoB as compared
to AS, which is also observed in Mohapatra et al.
(2015). The average MSW error at the time of
landfall is 4 ms�1 for 24-hr forecast lead time over
NIO (Bgure 3b). The track errors for all the land-
falling cyclones at the time of landfall are listed in
table 2, and the intensity errors of the same
cyclones are listed in table 3 for 24-hr lead time. It
is seen that the average AT bias is negative, indi-
cating delayed landfall response (table 2). It is
found that, in general, the track errors for AS
cyclones are more than for BoB cyclones. Also, the
simulations for the cyclones with a life period of
less than 5 days and which intensify to cyclonic
storm stage exhibit significant errors in track and
intensity compared to higher-stage intensity
cyclones.

3.3 Intensity errors

Mean error and bias in the intensity forecast (10 m
MSW) based on IMD maximum sustainable wind
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is shown in Bgure 4(a). It is seen that the error
increases gradually with the increase of forecast
length for all the basins. The maximum intensity
error over NIO increases from 4 to 12 ms�1. The
mean error for the TCs over BOB is less than over
AS during the short forecast time (before 48-hr
forecast time), which ranges from 4 to 9 ms�1 and
for later lead times, error over BOB basin is pre-
dominantly higher than over AS. The mean error
for BoB after 48 hrs is in the interval 9–12 ms�1.
The maximum intensity absolute error is 6.2,
9.1, 10.1 ms�1 for 24-, 48- and 72-hr forecast lead
time over NIO, which is consistent with the study
by Mohapatra et al. (2013a, b, c), where it was
observed as 5.5, 7, 10 ms�1 for 24-, 48- and 72-hr
lead time, respectively. The mean bias (Bgure 4b)
tends to be positive with the increase of forecast
length for NIO as a whole and BOB basin, i.e.,
overestimation of 10 m MSW for higher lead times.
While for the AS basin, the bias is positive during
intermediate lead times and negative for remaining
lead times. The bias in maximum intensity over
NIO is between 0 and 5 ms�1. The bias in maxi-
mum intensity over BoB is between 0 and 8 ms�1,

while the bias over AS is in the range of 0 to –3
ms�1.
To understand the percentage of forecasts that

were predicted to be in the correct category based

Figure 3. (a) Mean landfall position error (km) and (b) mean
absolute maximum sustained windspeed error (ms�1)
(MSWE) during landfall time over NIO, BOB, and AS.

Table 2. Track errors with respect to IMD best track data for
all the landfalling cyclones at the time of landfall.

24-hr FC error (km)

DPE CTE ATE

Amphan 205.86 –44.2 –201.06

Burevi 74.18 –74.18 0

Gati 156.6 –28.26 –154.03

Nisarga 101.01 –3.4 100.95

Nivar 48.63 –29.38 38.76

Bulbul 117.22 –111.37 –36.58

Fani 78.26 –24.55 –74.31

Hikka 289.43 83.1 –277.24

Daye 89.65 77.17 45.63

Gaja 40.49 2.61 40.41

Luban 137.11 90.37 –103.12

Mekunu 153.16 –125.42 –87.89

Phethai 360.54 70.95 353.49

Sagar 216.62 49.84 –210.81

Titli 88.63 82.45 –32.51

Maarutha 131.53 –50.29 121.53

Mora 84.61 –39.02 –75.08

Nada 18.41 –18.41 0

Vardah 23.62 –22.36 –7.59

Table 3. Absolute maximum sustained wind
error with respect to IMD best track data at
the landfall time.

24 hr FC error (ms�1)

Amphan 1.47

Burevi 2.94

Gati 4.29

Nisarga 2.13

Nivar 4.31

Bulbul 1.99

Fani 3.8

Hikka 13.85

Daye 3.02

Gaja 0.92

Luban 10.16

Mekunu 1.84

Phethai 3.82

Sagar 4.44

Titli 1.58

Maarutha 3.91

Mora 7.39

Nada 0.83

Vardah 4.28
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on IMD best track dataset, multi-categorical veri-
Bcation of TC’s intensity has been carried out.
Figure 4(c) indicates the percentage correct fore-
cast within the same category (red bars) and
within ±1 category (green bars), which also include
the same category. The correct forecast percentage
decreases with an increase in lead time. The per-
centage correct values for 24–120 hrs lead time are
36, 28, 32, 26 and 22. While the percentage correct
within the same and ±1 category for 24–120 hours
lead time are 76, 60, 64, 56 and 60%, respectively.
Furthermore, to understand whether the model
overforecasts or underforecasts the intensity at
different TC stages is analyzed for all the cyclones
(Bgure 5). It is seen that model correctly forecasts
the intensity of the TC about 25–35%,
5–20%, 12–30%, 10–30%, 35–85%, 10–25% range
for the forecast lead times at depression (D:
8.7–13.9 ms�1), deep depression (DD: 15–18 ms�1),
cyclonic storm (CS: 18–25 ms�1 ), severe cyclonic
storm (SCS: 25–32 ms�1), very severe cyclonic
storm (VSCS: 32–46 ms�1), extremely severe
cyclonic storm (ESCS: 46–62 ms�1) stages. Also,
the model tends to predict the VSCS stage well

compared to other stages except for 120-hr forecast
lead time. The model underestimates (overesti-
mates) the intensity prediction in the range of 0%
(55–75%), 10–30% (55–80%), 15–25% (40–65%),
35–45% (25–35%), 15–60% (0), 60–80% (0) and
100% (0) for the forecast lead times at D, DD, CS,
SCS, VSCS, ESCS, and SUCS stages. An increase
in the percentage of underestimation of intensity
prediction with an increase in TC stage is observed
at all forecast lead times, which is also observed in
the study by Routray et al. (2019). Overall it is
seen that model forecasts mostly tend to overesti-
mate the intensity prediction at D, DD, and CS
stages and underestimate the same at ESCS and
SUCS stages, while well predicted the intensity at
VSCS stage.

3.4 Rainfall veriBcation

3.4.1 Error statistics of rainfall forecast

Figure 6(a–c) depicts the scatter plots of IMERG
rainfall vs. model estimated rainfall for the lead
time 24, 48 and 72 hrs. The bias, RMSE and

Figure 4. (a) Mean absolute error, (b) mean bias of 10-m maximum sustainable wind for the TCs over North Indian Ocean
(NIO), Bay of Bengal (BOB), and Arabian Sea (AS), and (c) percentage correct (overall accuracy) of forecast events within the
same, within same and out by one category at different lead times.
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correlation coefBcient (CC) also are computed for
daily accumulated rainfall forecast. The bias for
24-, 48-, and 72-hr forecasts is 2.64, 3.18 and 3.35
mm, respectively. The rainfall is averaged over a
region of 6� around TC centre for all the TCs
during the study period at different forecast lead
times. The RMSE and correlation coefBcient of 24-,
48- and 72-hr are 46.5, 53.8 and 59.9 mm, and 0.43,
0.304, 0.207, respectively. The results indicated
that the model rainfall errors are lower for 24-hr
forecast time as compared to higher forecast times
(48–72 hrs). Furthermore, the model bias is posi-
tive for all the forecast lead times, indicating
overestimation of the rainfall.
The forecast skill based on dichotomous rainfall

forecast(yes/no) is carried out by measuring skill
scores such as POD, FAR, ETS and Fb at different
thresholds for 24-, 48- and 72-hr lead times
(Bgure 6d). The formulae for the skill scores are
listed in Appendix. It is seen that the POD is above
90% and FAR is below 10% for the occurrence of
rain event. Equitable threat score (ETS) measures
the fraction of observed and/or forecast events that
were correctly predicted and adjusted for hits
associated with random chance. The ideal score for
ETS is one. The ETS for the forecasts under study
is in the range of 0.6 and 0.7, with the highest ETS

for 24 hr followed by 48 and 72 hr FC. The fre-
quency bias is the fraction of frequencies of fore-
casted ‘yes’ events with those of observed ‘yes’
events. Fb less than one indicates the frequency of
forecasted yes events is less than the observed yes
events and vice versa. The frequency bias of the
present study is close to one indicating all the rain
events are forecasted by the model.
The dichotomous forecast does not provide in-

depth understanding of forecast failure. Hence the
skill scores are calculated for various rainfall cate-
gories (Bgure 7). The categories for rainfall are
considered for moderate rainfall (7.6–35.5 mm),
rather heavy (35.6–64.4 mm), heavy (64.5–124.4
mm) and very heavy rainfall (C124.5 mm) based
on IMD criteria. These are the criteria for daily
accumulated rainfall. Figure 7(a) shows the POD
for the categories 7.5–24.4, 24.5–35.4, 35.5–55.4,
55.5–64.4, 64.5–95.4, 95.5–124.4 and [124.5 mm.
The POD for all these rainfall thresholds for the
lead times 24, 48 and 72 hrs (Bgure 7a) shows that
POD is maximum for very heavy rainfall cate-
gories, followed by 7.5–24.4 mm (moderate rain-
fall) and POD is least for 55.5–64.5 mm, i.e., rather
heavy rainfall. The POD for very heavy rainfall is
*40% and that for other categories is in the range
10–40%. The POD for 24-hr is always higher,

Figure 5. Percentage of forecast events at TC intensity stages for 24–120 hrs days lead times: (a) 24 hours, (b) 48 hours, (c) 72
hours, (d) 96 hours, and (e) 120 hours forecast.
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followed by 48- and 72-hr forecasts. This is in
concurrence with the earlier POD for dichotomous
rainfall forecast. Figure 7(b) shows the FAR for the
multi-categorical forecast. The FAR for all the
categories is above 60%; however, the lowest FAR

is 70% for very heavy rainfall events (C124.5 mm)
and for moderate rainfall category is 70–75%. The
ETS for all the rainfall categories is shown in
Bgure 7(c). Here also, the very heavy rainfall cat-
egory shows the maximum ETS, i.e., 0.08–0.2. The
ETS for other categories of rainfall is in the range
of 0.01–0.05. The Fb for multi-categorial forecast is
exhibited in Bgure 7(d). The Fb is greater than for
all categories above 55.5 mm rainfall. Thus, the
frequency of rainfall forecast for rainfall 55.5 mm
and above is higher than the observed frequency.
The model is overestimating the rainfall for these
rainfall thresholds. For all the categories below
55.5 mm, the frequency of rainfall forecast is
almost matching with the observed frequency.
Thus, the model shows better skill for very heavy
rainfall (C124.5 mm) and moderate rainfall
(7.5–24.4 mm). In other words, the model well
captures moderate and very heavy rainfall com-
pared to other categories. The forecast error of
each of these categories is further analyzed using
CRA method.

3.4.2 CRA veriBcation

There are several techniques to evaluate the rain-
fall forecast. In the past few years, object-based
techniques have been developed which compare the
location, size, shape, intensity, and other attributes
of the forecast and observation objects (Ebert and
McBride 2000; Ebert and Gallus 2009). CRA
(Ebert and McBride 2000; Sharma et al.
2015, 2019, 2020; Dube et al. 2022) and Method for
Object-based Diagnostic Evaluation (MODE)
(Davis et al. 2006) are two object-based veriBcation
methods.
CRA is a feature-based method. Firstly, an

entity associated with observed and forecast Belds
is identiBed. Here, the rainfall associated with TC
during the landfall day, located within 600 km of
TC centre, is the entity to be evaluated. As
described in the methodology section, in CRA
method, observations and forecasts are brought to
the same spatial resolution. Here, the resolution of
observations, i.e., IMERG data is 0.1� and that of
the forecast is 18 km. Hence the forecast is brought
to 0.1� spatial resolution. Then the observations
and forecast are merged to get the combined Beld.
The maximum value from the observed and fore-
cast rainfall is assigned at each grid point. The
CRA is deBned as all the regions comprised of all
grid points with a value greater than 64.5 mm in
the merged Beld. The best-Bt criterion used is the

Figure 6. VeriBcation of forecast rainfall for (a) 24 hr, (b) 48
hr, (c) 72 hr lead times against IMERG rainfall, and (d) skill
scores for the occurrence of the rain event.
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spatial correlation coefBcient. The area with the
maximum correlation is searched iteratively by
shifting the forecast grid points within the search
radius. The location error (Dx, Dy) is then the
vector displacement of the forecast. The displace-
ment, volume and pattern errors are calculated
using equations (3, 4 and 5). Figure 8 demonstrates
the CRA veriBcation results of model forecast and
IMERG 24-hr accumulated rainfall during the
landfall day of TC Amphan. Figure 8(a and b)
represents IMERG and model forecast (shifted)
rainfall and the black contour indicates the region
of IMERG and model forecast merged rainfall Belds
exceeding the CRA threshold of 64.5 mm. The
mean and maximum rainfall is higher for the model
compared to IMERG rainfall data. The above
overestimation of rainfall can also be seen in the
scatter plot (Bgure 8c). The displacement error is
196 km (Dx) and 126 km (Dy), indicating that the
longitudinal error is more than the latitudinal
error. So, the model rainfall bias needs to be cor-
rected to better match the IMERG data. The
correlation coefBcient and RMSE values are
improved from –0.05 to 0.43 and 106.2 to 89.19 mm

through CRA adjustment. The error decomposi-
tion indicates that pattern error contribution is
larger than the total error, followed by displace-
ment and volume error.
The CRA methodology is applied to all the land-

falling TCs during the study period to quantify the
error components of rainfall forecast on the landfall
day only. Figure 9 shows the Whisker plot of error
decomposition components for different CRA
thresholds at 24-, 48- and 72-hr forecast lead times.
It is seen that for lower CRA thresholds, viz., 7.5
and 35.5 mm, pattern error is larger, followed by
displacement and volume errors, which could be
due to improper prediction of TC structure (Yu
et al. 2020). As the CRA threshold increases, i.e.,
for 64.5 and 124.5 mm, the error contribution from
pattern error decreases gradually, while the dis-
placement and volume error contribution to the
total rainfall error increases. Similar behaviour is
observed for 48-hr lead time and 72-hr lead time.
For the mean errors in the extremely heavy rainfall
CRA threshold case, volume error contribution is
larger for 24-hr lead time and displacement error
contribution is slightly larger for 48- and 72-hr lead

Figure 7. Skill scores at different thresholds for 24-, 48-, and 72-hr lead times, (a) POD, (b) FAR, (c) ETS, and (d) Fbias.
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Figure 8. CRA veriBcation for 24-hr accumulated rainfall of TC Amphan (24-hr lead time). CRA: contiguous rain area, CC:
correlation coefBcient and RMSE: Root mean square error. The black contour indicates the region of rainfall exceeding the CRA
threshold in the merged Beld.

Figure 9. Error decomposition for 24-, 48-, and 72-hr forecast lead time at different CRA thresholds, (a) 7.5 mm, (b) 35.5 mm,
(c) 64.5 mm, and (d) 124.5 mm. D: Displacement error, V: volume error, P: pattern error. The dot represents the mean error.

J. Earth Syst. Sci.         (2023) 132:114 Page 13 of 20   114 



time, as the track errors are larger for longer lead
times. Overall, pattern error dominates for low
CRA threshold and with the increase of CRA
threshold, displacement and volume error contri-
bution increases gradually, which was also
observed in the study (Chen et al. 2018). Therefore,
pattern, displacement, and volume error can all
have significant contributions to the total rainfall
error, depending on the CRA threshold and fore-
cast lead time.
The CC for 24-hr forecast rainfall is more

compared to 48- and 72-hr lead times (Bgure 10a).
It is seen that after CRA adjustment also, the
24-hr forecast still performed better (higher CC,
which is the sum of CC before the shift and CC
difference) (Bgure 10) as compared to 48- and
72-hr forecasts. However, 48- and 72-hr forecasts
have been most improved through CRA adjust-
ment, especially for extremely heavy rainfall
thresholds, i.e., having larger CC differences
(Bgure 10b). Furthermore, to understand the rea-
son behind the same, rainfall forecast from inner
core (0–100 km from TC centre) region to TC
environment region (200–400 km from TC centre)
is analyzed (Bgure 10c, d), since TC track errors
directly aAect the location of rain area (Chen et al.
2018; Yu et al. 2020).

It was observed that the model tends to produce
high frequency of heavy rain events than low-
moderate rain events within inner core region (not
shown) and with an average rain amount of 77 mm
(IMERG), 114 mm (24 hr FC), 107 mm (48 hr FC),
and 96 mm (72 hr FC) (Bgure 10c). Even though
the model captured the decreasing trend as seen in
IMERG rainfall from the inner core to the TC
environment region, it produced excessive rainfall
within the inner core (higher positive rainfall error)
as compared to the TC environment (Bgure 10d).
As the locations of heavy rain are near to TC inner
core (0–100 km), errors in the rain may be related
to track errors. Hence, longer lead times, especially
heavy rainfall thresholds, have greatly improved
through CRA adjustment. Therefore, TC structure
(associated with rain pattern) and TC track (as-
sociated with rain area location) need to be
improved for better rainfall predictions (Yu et al.
2020). Further, the landfall of SUCS Amphan is
discussed better to understand the error statistics
for the model rainfall.

3.4.3 SUCS Amphan (16–21 May 2020)

Super cyclonic storm ‘Amphan’ formed over the
Bay of Bengal (BoB), which concentrated into

Figure 10. Correlation coefBcient (CC) for different rainfall thresholds at 24-, 48- and 72-hr lead times (a) before shift,
(b) difference (after shifting CC – before shift CC), (c) rainfall and (d) rainfall error variation w.r.t to distance from tropical
cyclone center for IMERG and 24-, 48- and 72-hr lead times.
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depression on 16th May 00 UTC, underwent
rapid intensiBcation from 17th noon to 19th early
morning and made landfall over the West
Bengal–Bangladesh coast as VSCS during 20th
1000–1200 UTC. After landfall, the system
exhibited rapid weakening from the 20th noon to
the 21st morning. The track and errors in track
central pressure and MSW during the Amphan
life cycle are shown in Bgure 11. It is seen that
the track error is larger during the day the sys-
tem made landfall (20th May 2020) (Bgure 11b).
During the initial stage of TC, the model central
pressure drop is more than that observed pres-
sure. Moreover, the bias in central pressure and
MSW is more during the initial TC stage as
compared to later stages (Bgure 11c, d). Also, a
sudden increase in central pressure and MSW
bias is observed just after the landfall. From the
CRA veriBcation analysis, the average forecast
rainfall (104 mm) is higher than that of observed
rainfall (68.2 mm), and the maximum forecast
rainfall (423.1 mm) is much higher than observed
maximum rainfall (182.8 mm) (Bgure 8). Also,
pattern error (59%) contribution is larger than
the total rain error, which might be due to
improper representation of TC during the initial
stages, followed by displacement (29%), which
could be due to significant track error during

20th May 2020 and volume (11%) errors
(Bgure 8). Figure 12 shows day accumulated
GPM-IMERG and model forecast rainfall during
the cyclone period. During the initial stages of
TC, spatial pattern difference is seen clearly in
observed (Bgure 12a, c, e, g, i) and forecasted
rainfall (Bgure 12b, d, f, h, j), while at later
stages, significant shift in rainfall location and
pattern difference is observed. Hence, TC Inten-
sity and track predictions need to be further
improved for better rainfall prediction.

4. Conclusions

The track, intensity, and rainfall prediction are
crucial factors in TCprediction. It is important from
disaster management as well as a socio-economic
point of view. Therefore, the forecast veriBcation of
these factors is required to improve the model pre-
diction. Hence, the present study is carried out to
examine the skill of the model by analyzing track,
intensity, and rainfall forecast for 24 TCs over the
North Indian Ocean during the 2016–2020 period.
The study summarizes in following conclusions.

• The track errors are evaluated in terms of DPE,
ATE, and CTE errors. The DPE of TCs over NIO
rises with the increase in lead time and ranges from

Figure 11. (a) Amphan track, (b) direct position error (DPE), (c) maximum sustained wind speed bias, and (d) minimum sea
level pressure bias during the Amphan cyclone period.
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Figure 12. GPM accumulated rain and 24-hr forecast accumulated rain (a, b) 16th May, (c, d) 17th May, (e, f) 18th May,
(g, h) 19th May, and (i, j) 20th May.
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68 to 232 km for 12–72 hr forecast lead time. The
ATE and CTE evaluation shows that the forecast
track is southeastward of the observed track till 72
hrs and northwestward at later lead times.

• The landfall DPE for NIO TCs is 120 km for 24 hr
forecast and it increases with the lead time. The
landfall errors are more for AS-originated
cyclones compared to BoB-originated cyclones.
The BoB has the least landfall error of around
100 km and cyclones formed over AS shows
landfall DPE of the order of 180 km for 24-hr lead
time.

• The intensity error for TC forecast over NIO
magniBes with forecast lead time from 4 to 12
ms�1. The intensity is overestimated for BoB
cyclones and is undermined for AS cyclones. The
VSCS stage of TC is correctly captured by the
model forecast, followed by SCS stage in all the
forecast lead times.

• The dichotomous (yes/no) rainfall forecast ver-
iBcation indicates the POD 90% and FAR less
than 10%. The multicategory forecast veriBca-
tion exhibits the highest POD for very heavy
rainfall events (C124.5 mm) and moderate rain-
fall (7.5–15.4 mm) categories.

• CRA method classiBes the spatial forecast error
into pattern, displacement and volume error.
For the moderate rainfall thresholds, viz., 75 and
35.5 mm, the pattern error is prominent com-
pared to displacement and volume error.

• For heavy rainfall threshold, viz., 64.5 mm, the
displacement error is larger than volume and
pattern error. For very heavy rainfall thresh-
old, viz., 124.5 mm, pattern error is least
compared to volume and displacement error.
TC structure (associated with rain pattern)
and TC track (associated with rain area
location) need to be improved for better
rainfall predictions.

Data assimilation, dynamical core and model
physics are the three major components of
numerical weather prediction. Hence, to improve
the prediction of the TC parameters, viz., track,
intensity and rainfall, we need to look into these
three major components. The future scope of this
analysis is to explore methods like the vortex
relocation method to improve the vortex initial-
ization in the model (Hsiao et al. 2010; Gao et al.
2014; Nadimpalli et al. 2021), incorporate more
observations over oceanic regions, use artiBcial
intelligence (AI)/machine learning (ML) tech-
niques to reduce the model forecast biases. This

will lead to more accurate predictions for tropical
cyclones.
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Appendix

A1 Skill scores for forecast veriBcation

A1.1 Formulation of skill score metrics

• Probability of detection (POD): Fraction of
observed rain events that were correctly
forecasted.

POD ¼ a=ða þ bÞ:

• False alarm ratio (FAR): Fraction of
forecasted rain events that were incorrectly
forecasted.

Table A1. Contingency table.

Observed (Yes) Observed (No)

Forecast Yes a b

Forecast No c d
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FAR ¼ b=ða þ bÞ:

• Frequency bias (Fb): Ratio of the frequency of
forecast events to the frequency of observed
events.

Fbias ¼ ða þ bÞ=ða þ cÞ:

• Equitable threat score (ETS): Fraction of
observed and/or forecast events that were
correctly predicted, adjusted for hits due to
random chance.

ETS ¼ ða � hitsrandomÞ=ða þ bþ c � hitsrandomÞ;

hitsrandom ¼ ða þ cÞða þ bÞ=n;

where n = a+b+c+d.
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