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IdentiBcation of thin interbedded non-coal bands and coal seams with varying carbon contents within a
coal seam is of paramount interest in coal exploration due to its banded nature. The manual interpre-
tation and conventional modelling based on Fourier/Walsh transform techniques fail to derive such
information accurately from geophysical well log data due to its non-stationary nature. The present study
proposes a combined principal component analysis (PCA) and continuous wavelet transform (CWT)
algorithm for automatic lithological modelling of geophysical well log data. In the Brst step of well log
lithology modelling, a median Blter is applied on well log data to preserve the thinner beds and other
valuable geological signatures of coal seams. In the second step, the Bltered log data is subjected to PCA,
and the variance level of PC scores is determined to study the physical relationship of input parameters.
The third step is to apply CWT on the selected PC scores and determine lithological discontinuities from
the modulus maxima lines drawn on the wavelet scalogram. For Blling the lithology skeleton with the
proper interpretation, a database is also created by correlating the selected PC score values with input
parameters. We have applied the proposed algorithm to gamma ray, density, and resistivity logs of two
boreholes located in the Bisrampur and Jharia coalBelds of eastern India. The results of the proposed
PCA-CWT based modelling match well with core data and manual interpretations of the boreholes. At a
few depth ranges, the proposed algorithm also reveals some additional lithological discontinuities that
were not mapped in the core data. The study further conveys that PCA-CWT-based lithological mod-
elling of geophysical logs is helpful to pace up the exploration work in coal blocks with poor core recovery.

Keywords. Principal component analysis (PCA); continuous wavelet transform (CWT); lithology
modelling; well log; coal exploration.

1. Introduction

In coal exploration, the detection of coal seams of
varying thickness (thick/thin) as well as Bne to
prominent variations within thick coal seams is
important to obtain ash, moisture, and volatile

material percentage present in coal beds down the
earth. More significantly, due to the banded
occurrence of Indian coal seams, detailing the fossil
fuel is crucial in terms of non-coal bands and coal
seams with varying carbon contents. Coring bore-
holes can provide these details to an extent but in
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the case of structurally disturbed areas, obtaining
core samples with proper recovery is difBcult. On
the other hand, geophysical well log data possesses
immense information about these formation prop-
erties and geological interfaces (Crain 1986; Dewan
1983). However, correctly identifying the depth of
different lithological units from the well log signal
is an extremely tedious job due to its nonlinear
characteristics of varying wavelengths and
frequencies.
Traditionally, cross-plotting of different log

parameters such as gamma ray, density, sonic,
neutron, and resistivity are used for differentiating
carbonaceous beds (coal, shaly coal, and carbona-
ceous shale) and non-coal litho-units (sandstone,
shaly sand, sandy shale, and shale) (Chatterjee and
Paul 2012; Anyiam et al. 2018). The main demerits
of this technique are the precise identiBcation of
different carbonaceous and non-coal beds in an
overlapping data cloud and the necessity for more
log parameters. As an extension of this technique,
modules are incorporated into the commercial
software for obtaining litholog as the Bnal output.
However, the outcomes are subjected to the
boundaries drawn by the user based on the cut-oA
values of carbonaceous beds in different depth
ranges without showing details on the varying
carbon contents in those depth ranges.
Over the past few decades, principal component

analysis (PCA) (Elek 1988; Lim et al. 1998),
wavelet transform and its combination with Four-
ier transform (FT) and short time Fourier trans-
form (STFT) (Alvarez et al. 2003; Pan et al. 2008;
Coconi-Morales et al. 2010; Ouadfeul and Aliouane
2011; Chandrasekhar and Rao 2012; Javid and
Tokmechi 2012) were widely used in the hydro-
carbon exploration to map the lithological discon-
tinuities from geophysical logs (density, self-
potential, gamma ray, and resistivity). Besides
lithology identiBcation, wavelet transform was
applied on resistivity logs to identify reservoir Cuid
types (Yue et al. 2006). Wavelet decomposed
density log curves along with interpreted resistiv-
ity image logs is used to determine fracture zone
interval (Zhang et al. 2011). Wavelet transform is
also applied on 1D and 2D permeability data to
identify boundaries, faults, and fractures (Panda
et al. 2000). Comparatively, studies based on PCA
and CWT techniques are very limited in coal
exploration. Ren et al. (2018) applied the principal
component analysis on well logs for coal texture
identiBcation. Recently, Chen et al. (2021) used
wavelet transform and linear discrimination

analysis to interpret the thin-layer coal texture
from well log data. Lie et al. (2020) have used
multi-scale wavelet analysis along with PCA on
density, resistivity, gamma ray, spontaneous
potential, and caliper logs for the reconstruction of
crucial well logs such as neutron and sonic for coal
bed methane (CBM) exploration in Qinshui basin,
China.
The present study attempted to model the

lithological discontinuities from geophysical logs
based on the PCA and continuous wavelet trans-
form (CWT). For this purpose, the proposed
technique was applied to gamma ray, density, and
resistivity log datasets recorded in Jharia and
Bisrampur coalBelds located in eastern India. Ini-
tially, well log datasets are Bltered and zero-cen-
tered to avoid spurious spikes not related to the
sub-surface geology and single- or double-parame-
ter dominance. Subsequently, these log datasets
are subjected to PCA and CWT to prepare the
lithology skeleton. Finally, the obtained results
from PCA-CWT are validated against core data
and manual interpretations of the boreholes.

2. Methodology

2.1 Principal component analysis (PCA)

The principal component analysis (PCA) is a
dimensionality reduction technique. It detects the
linear relationship between different variables and
replaces a group of correlated data values through
uncorrelated data values called principal
scores/components. Here, the Brst principal com-
ponent is derived along the direction of maximum
variation in the data cloud. While the second
component is derived along the next direction that
contains maximum variation in the data cloud.
These components are orthogonal to each other,
conBrming less or no redundancy in the data
derived. The above concept of PCA can be visu-
alised through the illustration using only two
parameters, as shown in Bgure 1. For a more
extensive set of log parameters, mathematics
remains unchanged, but it is challenging to visu-
alise the geometry (Lim 2003).
The method of PCA involves three steps. The

Brst step is to standardise the data sets by sub-
tracting each of the values from their respective
means and dividing by the standard deviation of
the time series to reduce the dominance of a single
parameter (Lim 2003) and to identify the
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correlation between them. The following equations
can represent this.

Var xð Þ ¼
Pn

i¼1 xi �Xð Þ xi � Xð Þ
n

; ð1Þ

Cov x; yð Þ ¼
Pn

i¼1 xi � Xð Þ yi � Yð Þ
n

: ð2Þ

X and Y are the respective mean values of the time
series. A useful way to identify covariance values
between all the variables is to put them in matrix
form.

Cn�n ¼
�
Cij ;Cij ¼ cov Dimi;Dimj

� ��
; ð3Þ

where Cn�n is a matrix of n rows and n columns,
and Dimx is the xth dimension. The matrix form
for calculating the covariance value of three
different variables is as follows:

C ¼
covðx; xÞ covðx; yÞ covðx; zÞ
covðy; xÞ covðy; yÞ covðy; zÞ
covðz; xÞ covðz:yÞ covðz; zÞ

0

@

1

A: ð4Þ

The main diagonal states the covariance of the
same variable, whereas the upper and lower
triangle of the matrix are the covariance between
different values (also covðx; yÞ ¼ covðy; xÞ).
In the second step, the eigenvalues and eigen-

vectors are calculated from the covariance matrix,
which throws light on patterns present in the data.
Once eigenvectors are found from the covariance
matrix, the next step is to arrange those values/
scores in the highest to lowest order, i.e., in the
order of significance. Typically, the Brst two com-
ponents contain maximum variances of the data of
interest needed for evaluation. In comparison, the
other components are less significant (i.e., compo-
nents generated from lesser eigenvalues), and these

can be avoided without losing much information.
As the PCA depends on the covariance matrix of
the datasets, it facilitates in identifying the com-
mon physical property orientation (Bgure 2).
Therefore, the cross-plots of PC scores against
original data sets help us to interpret the under-
lying physical properties and trends in the dimen-
sionless logs containing the maximum variance of
the input logs.

2.2 Continuous wavelet transform (CWT)

Continuous wavelet transform is a time-frequency
localisation tool used in signal processing for ana-
lysing non-stationary signals. It can be deBned as
the convolution product of the signal with the
mother wavelet (Goupillaud et al. 1984)

Cs a; bð Þ ¼ 1p
a

Z þ1

�1
S zð Þw� z � b

a

� �

dz; ð5Þ

where S(z) is the signal considered for analysis, and
w� zð Þ is the complex conjugate of the mother
wavelet. For most practical purposes, the mother
wavelet is usually expected to have zero mean, as
deBned in the following equation (6) (Daubechies
1992).

Z þ1

�1
w tð Þdt ¼ 0: ð6Þ

Here the purpose of normalising constant 1p
a is to

keep the same energy level of wavelet coefBcients in
all scales (Daubechies 1992).

Figure 1. Principal components of two-dimensional systems
(after Kassenaar 1991).

Figure 2. Covariance matrix between gamma, density, and
resistivity parameters.
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CWT possesses high sampling on the lower scale
and coarse sampling on the larger scale. These
aspects are explained in terms of a ε R & b ε R;
which are called scale (inversely proportional to
frequency) and translation (directly proportional
to time). When the value of the scale increases, the
wavelet takes into account only the long-time
behaviour of the signal SðzÞ; and when the value of
the scale decreases, the wavelet focuses on small-

scale features of the signal (Farge 1992; Kumar and
Foufoula-Georgiou 1997). Further, the under-
standing and enhancing time-frequency localisa-
tion accuracy of CWT entirely depends on the
choice of the mother wavelet (Kumar and Fou-
foula-Georgiou 1997; Polikar 1999). This depends
on the kind of information one wants to extract
from the signal (Farge 1992). The most desirable
analysing wavelet for any signal whose frequency

Figure 3. Flowchart for automatic lithology segmentation and generating colour-coded litholog.
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Figure 4. Illustrates how the Haar wavelet scalogram meticulously demarcated all thin beds without much smearing than the
Gaus1 mother wavelet.

Figure 5. Haar wavelet scalogram of (a) slowly logged density log and (b) fast logged density log.
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varies over time (non-stationary) should be
orthogonal, local, and universal (Kumar and
Foufoula-Georgiou 1997).

2.3 Combined PCA and CWT algorithm
and procedure for automatic lithological
modelling

The steps followed for the application of combined
PCA and CWT algorithm on well log data for
automatic lithological modelling are explained
below (Bgure 3):

(1) Standardise the data sets by dividing them by
their standard deviation values.

(2) Datasets are median Bltered with Blter length
from 3 to 6 and compared with original data
for further reBnement if required.

(3) Filtered data is subjected to PCA and gener-
ates a Pareto chart to check the variance level
of PC scores.

(4) Cross-plotting PC scores with log datasets for
identifying physical properties and trends
possessed by individual PC scores. PC score
with better correlation with original log
datasets and variance level is subjected to
wavelet transform.

(5) Wavelet modulus maxima values are traced
automatically. Thereby its corresponding roof-
Coor depth and peak PC values for roof-Coor
depth are picked.

(6) Database preparation by picking PC score
ranges for different carbonaceous beds against
conventional density, gamma, and resistivity
ranges.

(7) Based on the PC scores obtained in step-6,
colour-coded litholog was generated by assign-
ing coal = 1, shalycoal = 2, carbshale = 3,
and non-coal = 4.

2.3.1 Selection of mother wavelet

The main purpose of using CWT in this study is
automatic lithology demarcation of well log signals.
There are two critical factors that should be con-
sidered to arrive at an eAective solution. One factor
is the shape of well log signal against lithology and
the second factor is the logging speed. In order to
select the optimum mother wavelet, these two
factors were assessed in the present study. Most of
the earlier researchers suggested that the Gaus1
mother wavelet is suitable for Bnding lithological

discontinuity in well log signals (Singh et al. 2017;
Chandrasekhar and Rao 2012). We have also
identiBed major discontinuities with considerable
accuracy by using the Gaus1 mother wavelet
(Bgure 4). However, the maxima against inter-
bedding inside the coal packets, which is essential
in the Indian coal scenario, ended up in smearing/
mixing with other maxima. Thus, we believe that
the Gaus1 mother wavelet may not be suitable for
well log analysis of Indian coal (Bgure 4).
On the other hand, Haar, being symmetric,

mother wavelet appears to be highly suitable for
picking blocky discontinuity and possesses good
time localisation (Rongxi 2015). This feature of the
Haar mother wavelet gives an advantage over
other popular mother wavelets such as Gauss,
Morlet, Symlet, and Daubechies, etc., in delineat-
ing major discontinuity and inter-bedding within
thick coal seams without smearing/mixing with the
next maxima (Bgure 4). Typically, in coal explo-
ration, geophysical logs are recorded at 4–5 m/min
speed (slowly logged data) considering the shoulder
eAects. However, there are occasions where the
logistics and sub-surface geological conditions
(Motur clay formation, faulted boreholes, etc.)
largely limit the execution of the logging operation
with the optimum speed. In such cases, the logging
speed has to be increased to 10–15 m/min (fast
logged data). Figure 5 illustrates the eDcacy of
continuous wavelet transform with Haar as the
basis function in delineating the beds both in the
case of slowly logged and fast logged data.

3. Application to well-log data of coal basins

3.1 Median Bltering of well log datasets

Raw geophysical well log datasets are always noisy
in nature. A purpose-based Blter should be used to
enhance the signal of interest without aAecting
trends and signatures about actual geology down
the borehole. In oil and gas sectors, the low-fre-
quency signal associated with thicker lithofacies is
considered to be important, and less/no care is
shown against the inter-bedding of Bne thickness
inside them. While in coal exploration, thin beds
are also given exorbitant weightage along with
thicker beds as the carbonaceous contents occur in
outcrops as a minimum and up to the maximum
depth of 0.50–1.16 km (MECL 1987, 2019). In
order to record the response from Bner bands pre-
sent inside the coal seam, the log datasets in this
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study are acquired using slim-hole geophysical
logging tools with sampling intervals from 0.01 to
0.05 m. Such sampling rate is sufBcient enough to
detect Bner thickness bands present inside the coal
seam. Once these mild signatures occurring inside
thick coal seams are given proper attention, they

can provide a rough idea about the pureness of a
coal seam.
In conventional interpretation, a moving average

Blter is used to visualise the datasets for interpre-
tation that collapses/reshapes such mild signa-
tures. To avoid this, median Bltering developed by

Figure 6. Showing raw geophysical data and their corresponding median Bltered data.

Figure 7. (a) Showing the eDciency of wavelet-based lithology identiBcation on synthetic data and (b) lithology demarcation by
tracing modulus maxima lines in wavelet scalogram on a density log.
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Tukey (1977) is used in this study. If a signal with
plenty of non-stationary spikes over a wide band-
width, the median Blter holds good, but it fails
while the same non-stationary spikes convey cer-
tain information. To avoid such data loss, a proper
geological understanding of the study area is
mandatory before enforcing median Bltering on the
signal. Therefore, a window length of 3 can be tried
initially on the coal-based well log signals. If there
is no drastic change, then the window length can be
extended up to 6 for further reBning the datasets
(Pratt 1978).
In general, gamma ray logs are a reliable indicator

of lithological discontinuities, but the noisy clustered
spikes occur at lithological variation in the signal,
vague out the sedimentary succession shown by the
signal down the borehole, especially the thin beds in
the data. The density log, which is the paramount
parameter in coal exploration, also suffers from a
similar kind of turmoil. However, it differentiates the
carbonaceous portion from non-coal. Whereas trends
present in the non-coal region and inter-bedding
inside coal seams are not distinct, both in the density
and resistivity logs. With a good understanding of
the area geology and using a median Blter with
appropriate window length, non-stationary spikes
which are not related to sub-surface geology are

eradicated, and thereby, trends in the datasets
become distinct and preserved (Bgure 6).

3.2 PCA analysis

In the density log, only carbonaceous deposits show
a notable change in the signature. Whereas other
rocks, such as sandstone, shale, shaly sand, and
sandy shale, share some overlapping density values
and do not show much difference on the density
log. On the other hand, these lithologies can be
differentiated both on gamma ray and resistivity
logs due to their varied shale content and water
content, respectively. Therefore, the thickness of
any lithology noted in one parameter may differ
from another parameter. Moreover, manually
picking this variation is a difBcult and time-con-
suming task. PCA helps in the automatic picking of
these variations based on PC scores. Such PC
scores can be identiBed precisely by cross-plotting
PC scores with a good percentage of variance level
with input log parameters.

3.3 Stratigraphy identiBcation using CWT

IdentiBcation of very Bne dirt bands within the
thicker coal seams is of paramount interest in coal

Figure 8. Showing the location of Bisrampur CoalBeld in India and the location of the study area in Bisrampur coalBeld.
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exploration due to its banded nature. Geophysical
well logs can identify such Bne bands present inside
coal seams due to their vertical resolution. How-
ever, picking such thin bands following the

conventional interpretation techniques is very dif-
Bcult due to their varying thickness from one
parameter to another. The application of CWT
with appropriate time varying basis function on

Figure 9. (a) Cross-plot between the Brst two PC scores and well log datasets (density, gamma, and resistivity), (b) Pareto-
chart shows the variance percentage-hold by three principal components, and (c) shows the database categorising different
carbonaceous beds.
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well log can deduce different information present in
the signal in terms of different wavelet coefBcients.
Therefore, CWT is applied in this study on selected
PC score values for demarcating such Bne beds
from well log data.
The modulus maxima lines obtained using the

Haar wavelet show a pointing nature when the
signal of interest is approached with the proper
scale with respect to the frequency of interest
(Bgure 5a and b). In contrast, minute lithology
variations inside thick coal seams or isolated thin
bands are lost when approached with higher scale
values while tracing modulus maxima values.
Modulus maxima points between 3 and 4 scales are
used for lithology picking from Bne to coarser
thickness, as shown in Bgure 7(a and b). Thus,
wavelet transform is applied on selected PC score
with appropriate scale, and the generated modulus
maxima are projected on the signal. Maxima
occurrence along the sample sequence is looked at
directly from the depth and PC score along with
original datasets to get roof-Coor information.
Further, PC score peak values for a respective
lithology (roof-Coor) are picked and compared with

the database decided in comparison with the
original datasets. Values falling in the category of
coal, shalycoal, carbshale, and non-coal are given
codes as 1, 2, 3, and 4, respectively. These codes
are colour coded for generating litholog for
visualisation.

3.4 Database generation for interpretation

The main purpose of database generation is to
derive a correlation between the generated PC
score values and the input log parameter values.
For developing a database, the density log being
the important parameter for coal exploration is
considered as the base along with the other log
parameters. Here, the database is categorised as
coal, shalycoal, and carbshale based on values
exhibited by PC1 against all three carbonaceous
lithologies. In general, the most widely used stan-
dard value ranges in the coalBelds are considered
for deciding density cut-oA values. While in the
case of the virgin area, these values are chosen
either based on the available regional datasets or
scout boreholes drilled in the study area.

Figure 10. Showing geophysical parameters, PC1 score followed by PCA-based litholog, core, and manual interpretation.

Table 1. The various parameter ranges for carbonaceous beds for the borehole located in
Bishrampur CoalBeld.

Lithology

Density

(g/cc)

Gamma

(API)

Resistivity (Xm)

(expressed in logarithmic scale) PC1

Coal 1.280–1.560 0.00–50.00 C 200 C 2.00

Shalycoal 1.561–1.850 50.10–100.00 199–150 1.99–0.60

Carbshale 1.851–2.050 100.10–140.00 149–100 –0.15–0.59
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In the present study, the validity of the proposed
algorithm is also tested on two boreholes located in
Bisrampur and Jharia coalBelds of eastern India.

4. Study on Bisrampur CoalBeld

The Bisrampur CoalBeld belongs to Lower Gond-
wana and covers an area of *1036 km2 in eastern
India (Bgure 8). It comprises Talchir, Kaharbari,
Barakar, and Kamthi formations and shows a
gentle dip of 2�–3�. Coal-bearing Barakar rocks are
developed to a thickness of about 150 m. Several
coal seams have been reported from different
localities of Bisrampur coalBeld. Detailed
prospecting conducted by the Indian Bureau of
Mines in the southwestern part of the Beld has
indicated more than one coal horizon. Pasang seam
is the thickest seam on the horizon, and the coal in
this seam is of non-coking type.
PC1 is found to negatively correlate with density

log and a positive correlation with resistivity log
(Bgure 9a). Interestingly, PC1 of the gamma-ray
log shows clear discrimination between carbona-
ceous and non-coal lithologies (Bgure 9a). It is
observed that all the three geophysical logs of the
borehole show noticeable sharp variations against
the carbonaceous beds (low in case of density and
gamma; high in case of resistivity) (Bgure 10).
Whereas for the non-coal lithology, the gamma-ray
log variations are only well pronounced compared
to the other parameters (Bgure 10). PC1, which is
the combination of all three parameters and max-
imum variance holder, indicates a positive PC
score against carbonaceous beds and PC score B0

against non-coal lithologies. Therefore the cross
plot of the gamma ray log and PC1 clearly segre-
gates non-coal portions (higher API) from car-
bonaceous beds (lower API) (Bgure 9a). In
contrast, cross-plotting these variables with PC2
does not show any understandable relations
(Bgure 9a). Therefore, PC1 having a prominent
variance level possesses merits of all the three
variables, and suitable for interpretation
(Bgure 9b). Carbonaceous bed values of original log
inputs and their corresponding PC1 values are
shown in Bgure 9(c). It indicates that the PC1
values vary from –0.15 to 0.59 for carbshale,
1.99–0.60 for shalycoal, and 2.00 for coal (table 1).
Figure 10 shows the comparison of litholog

derived from the core, manual interpretation, and
PCA-CWT modelling. In the depth range from 38
to 42 m (Bgure 10), the gamma-ray log has dras-
tically changed from its maximum of 235.955 API
at 38 m depth to 100–200 API values up to a depth
of 42 m. Gamma-ray log values[200 API indicate
non-coal (pure shale in the present case), and\200
API may be the presence of carbonaceous beds
(coal, shaly coal, and carbonaceous shale)/non-coal
beds in the instant case, which could be veriBed
using density and resistivity logs. Similarly, in the
above depth range from 38 to 42 m and 50–55 m,
the variations observed in the gamma-ray log are
duly checked with density and resistivity parame-
ters for the presence of carbonaceous and non-coal
beds. PCA-CWT-based interpretation matches
well with core data and manual interpretations up
to a depth range from 37.5 to 43.0 m (Bgure 10).
The frequency of occurrence of carbonaceous

beds in litholog derived from core data, manual

Figure 11. Showing the frequency of occurrence of demarcated lithologies.
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interpretation, and the PCA-CWT proposed tech-
nique is given in Bgure 11. The occurrence of coal,
shalycoal, carbshale, and non-coal beds match up
to 43.5 m in both interpretations. Beyond 43.5 m
depth, the interpretations derived from all three
methods differ either in terms of lithology or
thickness (Bgure 11). This could be due to less
parting between the carbonaceous beds, lack of
resolution in geological information in the core, and
cut-oA Bxing in the carbonaceous packets for
manual interpretation (Bgure 11). Around 44 m, it
is evident from the geophysical log that a car-
bonaceous shale bed of thickness 0.8 m is present,
and similar results were also found in the proposed
PCA-CWT algorithm. However, the carbonaceous
bed was not identiBed in core lithology at *44 m
due to poor core recovery. In the depth range from
46 to 49.5 m, the core data indicate only a series of
shalycoal beds. In contrast to this, the proposed
PCA-CWT algorithm and manual interpretation
register different carbonaceous beds such as coal,
shalycoal, and carbshale. In the taken depth range,
due to less parting between the carbonaceous beds
and lack of resolution in geological information in
core data, the discrete coal beds are marked as one
in core litholog. These discrete coal beds with less
parting in between them are explained well in PC1
(maximum variance holder) with merits of all
geophysical parameters and good resolution of thin
bands inside the coal packets. Further, around

44 m depth manually interpreted litholog shows a
slightly higher thickness of carbonaceous beds.
This could be due to the difference in density cut-
oA values chosen by the interpreter for identifying
coal to shalycoal, shalycoal to carbshale sequences
during manual interpretation.

5. Study on Jharia CoalBeld

Jharia CoalBeld is situated about 260 km north-
west of Calcutta, mainly in the heart of Damodar
valley. The coalBeld is roughly sickle in shape and
covers an area of *456 km2 with an extension of
*18 km in the north–south direction and a maxi-
mum of *38 km in an east–west direction
(Bgure 12). The general stratigraphic succession of
the area is that the basement metamorphic rocks
are overlain by the Talchir, Barakar, and Raniganj
formations. Barakar Formation contains a major
coal-bearing horizon of Jharia CoalBeld, and coals
of this formation can be divided into: (i) low
volatile coals containing up to 26% volatiles, (ii)
medium volatile coals containing 26–28% volatiles,
and (iii) high volatile coals containing over 28%
volatiles. The coal sequences of the overlying
Raniganj Formation have slightly higher moisture
content than the Barkar Formation.
PC1 against density and resistivity parameters

show a good correlation for coal-bearing sequences

Figure 12. Showing the location of Jharia CoalBeld in India and the location of the study area in Jharia CoalBeld.
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Figure 13. (a) Cross-plot between the Brst two PC scores and well log datasets (density, gamma, and resistivity), (b) Pareto-
chart shows the variance percentage-hold by three principal components, and (c) shows the database categorising different
carbonaceous beds.
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(Bgure 13a). The carbonaceous and non-coal beds
are resolved in the cross plot of PC1 and gamma
ray due to the strong response of all three input
parameters against the carbonaceous beds and
silence in signatures of density and resistivity
parameters except gamma ray log. All the coal
seams in the borehole from 500 m belong to the
Barakar Formation, which is the main reason that
density and resistivity values share some overlap-
ping ranges, whereas the gamma-ray log Cuctuates
strictly as per the shale content in the formation. It
is also noticed that cross-plotting of PC2 with
original datasets also shows a strong positive cor-
relation with gamma-ray log, and its correlation
with density and resistivity logs does not show
much change (Bgure 13a). Therefore, it is sug-
gested that PC1 can alone be used to interpret
different carbonaceous beds instead of using all
three PC scores (Bgure 13b). Carbonaceous bed

values of original log inputs and their correspond-
ing PC1 values are shown in Bgure 13(c). It indi-
cates that PC1 values vary from –3.99 to –2.00 for
shalycoal, –1.99 to –0.50 for carbshale, and B–4.00
for coal (table 2).
At depth ranges from 460 to 500 m, one coal and

a few thin carbshale beds are noted in the core data
(Bgure 14). Whereas PCA indicates all the thin
beds as carbshale (Bgure 14). In the core log, depth
ranges such as 758–766, 816–822, 837–841,
973–979, and 1064–1116 m are marked as coal in
most places, but in PCA-based interpretation, few
shalycoal/carbshale sequences along with coal were
identiBed at these depths (Bgure 14). These dis-
crepancies between the core log and PCA-CWT
interpretation indicate the inCuence of character-
istic gamma, density, and resistivity logs on PC
score. Thus PCA-CWT-based lithology modelling
more accurately deduced the roof-Coor of minute

Table 2. The various parameter ranges for carbonaceous beds for the borehole located in Jharia
CoalBeld.

Lithology

Density

(g/cc)

Gamma

(API)

Resistivity (Xm)

(expressed in

logarithmic scale) PC1

Coal 1.280–1.560 0.00–40.00 [3.75 B–4.00

Shalycoal 1.561–1.85 40.10–100.00 3.74–3.50 –3.99 to –2.00

Carbshale 1.851–1.99 100.10–140.00 3.49–2.20 –1.99 to –0.50

Figure 14. Showing geophysical parameters, PC1 score followed by PCA-based litholog, core, and manual interpretation.
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variations in the well logs rather than core log. It is
also observed that core lithology matches quite
well with the manual interpretation of geophysical
logs except in 758–766, 816–822, 837–841, 973–979,
and 1064–1116 m depth ranges. These variations
are attributed to using an averaging Blter that
collapses thin bed variations, boundary conditions
between different carbonaceous beds, and inter-
preter value ranges. Further, the frequency of
occurrence of carbonaceous beds derived from core
data, manual interpretation, and the proposed
PCA-CWT technique is shown in Bgure 15. All
three interpretations show varying counts between
coal and shalycoal compared with the rest as
indicated in depth ranges 758–766, 816–822,
837–841, 973–979, and 1064–1116 m.
As discussed in the earlier sections, the applica-

bility of the PCA-CWT technique was tested only on
a few wells from Jharia and Bisrampur coal Belds,
which come under coking and non-coking categories,
respectively. Although the study showed convincing
results in detecting thin carbonaceous beds of thick-
ness C 0.4 m, the applicability of the technique needs
to be tested on more wells from other coalBelds
holding banded power grade coal seams, e.g., Talcher
and IB valley coalBelds, Odisha.

6. Conclusions

In this study, a combined principal component
analysis (PCA) and continuous wavelet transform
(CWT) algorithm is developed for lithological
modelling of well log signals in coal exploration.
This proposed algorithm was successfully imple-
mented on gamma ray, density, and resistivity logs
of two boreholes located in Bisrampur and Jharia

coalBelds of eastern India. The major Bndings of
this study are summarised below:

• CWT based on Haar mother wavelet is found to be
more useful in delineating major to minor strati-
graphic changes irrespective of logging speed.

• PCA reveals that PC1 accentuates major litholog-
ical discontinuities within the coal seams compared
to PC2. The cross-plot of PC1 with original log
(gamma ray, density, and resistivity) datasets
differentiates the non-coal portions from carbona-
ceous beds (shalycoal, carbshale, and coal).

• The study demonstrates that the PCA-CWT is
suitable for detecting thin carbonaceous beds
(shalycoal, carbshale, and coal) of thickness
C0.4 m.

• The predicted lithology from PCA-CWT mod-
elling match well with core data and manual
interpretations of the boreholes. At few depth
ranges, the proposed algorithm is able to reveal
additional lithological discontinuities that were
not identiBed in the core data.

• In coal blocks having limited coring boreholes or
structurally disturbed areas especially faulted
boreholes, PCA-CWT modelling of geophysical
logs can be an alternative for deriving litholog.
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