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Coal mining operations below the water table of surface and underground mines are common. Therefore, a
better understanding of rock behaviour in dry and water-saturated conditions is critical in rock engi-
neering projects. In this paper, Lower Gondwana coal measure rock (sandstone and shale) samples have
been collected from 10 different mines (eight collieries) in Jharia and Raniganj coalBeld of Damodar basin,
India. The strength parameters (uniaxial compressive strength (UCS) and Brazilian tensile strength
(BTS)) primarily govern the design aspects in mining. These are the most common input parameters for
any rock mass classiBcation. Hence, changes in the strength parameters of coal measure rocks under dry
and water-saturated conditions would adversely lead to the change in the rock mass classiBcation of the
rock. Moreover, the direct determination of strength parameters is expensive, time-consuming, Beld-
inaccessible, laborious, destructive, and requires experienced labour, while an indirect method to estimate
the strength parameters from ultrasonic pulse velocity (UPV) is cheap, easy, quick, Beld-accessible, non-
destructive, and straightforward. The UPV, UCS, and BTS in dry conditions, density (q), porosity (u)
and rock type information were used as input parameters for predicting the UPV, UCS and BTS in
saturated conditions using simple regression (SR), multivariate regression (MR) and artiBcial neural
network (ANN). The change in UPV, UCS and BTS from dry to saturated conditions were observed to be
a function of the intrinsic properties (q and u) of coal measure rocks. Finally, a comparative analysis
between SR, ANN and MR was performed in a measured vs. predicted 1:1 scatter plot.

Keywords. Uniaxial compressive strength; Brazilian tensile strength; ultrasonic pulse velocity; simple
regression; multivariate regression; artiBcial neural network.

1. Introduction

The coal measure rocks are essentially encountered
during mining of coals in underground as well as
open-cast mines of Lower Gondwana basins of
India. When the mining is carried out, the rocks
encountered are sometimes moderately or com-
pletely saturated or wet due to the percolation of
water from the surface or essentially saturated with
water when the mining is carried out below the

water table. So, the strength parameters deter-
mined under dry condition tends to be misleading
for the saturated rocks encountered below the
water table during mining operations. Hence, for
safe mining and mine development, the character-
isation of encountered rocks is essential in dry as
well as saturated conditions. The direct determi-
nation of strength parameters is a very tough,
expensive, Beld-inaccessible, destructive and time-
consuming job, while estimation of strength
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parameters using UPV is a simple, cheap, Beld-
accessible, non-destructive, quick and easy
method. Therefore, empirical correlations have
been proposed between strength parameters and
UPV of coal measure rocks under dry and satu-
rated conditions so that the strength parameters
can be estimated quickly and easily in both con-
ditions. The relationship was also established with
the strength parameters and intrinsic properties
and change in UPV, UCS, and BTS (DUPV, DUCS,
and DBTS, respectively) and intrinsic properties.
Hawkins and McConnell (1992) observed the

inCuence of moisture content on the UCS and
deformability of 35 British sandstone types. They
found that the UCS and deformability of sand-
stones reduced as the moisture content increased.
Steiger and Leung (1990) stated the decrease in
UCS of three types of shale samples in a saturated
condition. Dyke and Dobereiner (1991) investi-
gated the variation in UCS with changing moisture
content and concluded that the weaker rocks are
more sensitive to changes in moisture content.
Vasarhelyi (2003) established a relationship
between dry and saturated UCS and dry and sat-
urated Young’s modulus (both sec and tan). Lin
et al. (2005) observed that inter-granular fractures
exist in all dry sandstones, and the strength and
stiAness reduce when the sandstones are wet.
Vasconcelos et al. (2007) studied the mechanical
and physical parameters of granites using indirect
UPV tests and also proposed a correlation between
dry and saturated UPV for a wide variety of
granites. Torok and Vasarhelyi (2010) analysed
Hungarian travertine rocks under air-dry and sat-
uration conditions. They proposed correlations
between UCS–UPV (dry and saturated),
UPVdry–UPVsat, UCS-density and porosity and
UCSdry–UCSsat. Karakul and Ulusay (2013) sug-
gested correlations to predict the strength param-
eters of different rock types using UPV at different
degrees of saturation.
Kahraman (2007) modelled a linear correlation

between dry and wet UPV for different rock types
with high R2 values. He also concluded that change
in UPV is greater for rocks with porosity\1% and
change in UPV is lower for rocks having porosity
[1%. He also proposed regression equations for
sedimentary, metamorphic and igneous rocks.
Mashinskii (2009) experimentally studied the
attenuation of frequency and strain amplitude of P-
and S-wave in dry and saturated sandstone sam-
ples under the load of 20 MPa. He found that strain
amplitude is inversely dependent on P-wave

attenuation in dry and S-wave attenuation in dry
and saturated conditions, and P-wave attenuation
in saturated conditions showed no dependence on
strain amplitude. Many researchers have corre-
lated the geomechanical properties of rocks in dry
conditions with the UPV (Yasar and Erdogan
2004; Chary et al. 2006; Kilic and Teymen 2008;
Sharma and Singh 2008; Altindag 2012; Azimian
2017; Rahman et al. 2020; Rahman and Sarkar
2021).
ArtiBcial neural network (ANN) has been widely

used as a supervised soft-computing tool to esti-
mate different physico-mechanical parameters in
the previous studies. Ghabousi et al. (1991) used
the backpropagation neural network to model the
behaviour of concrete under plane stress and uni-
axial cycle load conditions. Singh et al. (2001)
predicted the strength properties of different types
of schist rock from the textural properties using the
ANN. Sharma et al. (2017) used the neural network
and neuro-fuzzy approach to predict the UCS from
three geomechanical input properties, namely,
slake durability index, density and UPV.
In this paper, 14 types of sandstones and 13

types of shale samples from eight collieries of
Jharia and Raniganj coalBelds have been studied
under dry and saturated conditions. The sandstone
and shale samples have been categorised into 14
and 13 types, respectively on the basis of obtained
geomechanical (UCS, BTS), physical (u and q),
ultrasonic pulse velocity parameters and the loca-
tions from which the samples have been collected.
The geomechanical properties such as UCS and
BTS have been correlated with the UPV under
dry and saturated conditions. The relationships
between these parameters have been studied for
both rock types (sandstone and shale). The chan-
ges in the strength parameters and UPV were also
assessed, and relationships have been proposed.
ANN, which is an advanced modelling technique,
has been used to predict the strength parameters
under saturated conditions.

2. Study area

The study area is located in the energy storehouse
of India. The Jharia and Raniganj coalBelds are the
most proliBc coal-bearing regions sited in the state
of Jharkhand and West Bengal, respectively
(Bgure 1). A total number of 14 types of sandstone
and 13 types of shale samples were used in the
present study from Bve coalBeld areas (Satgram,
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Mugma, Sonepur Bazari, Bankola and Jhanjhra
area) of Raniganj coalBelds under ECL (Eastern
CoalBelds Ltd.) and two coalBeld areas of Jharia
coalBelds (Katras and Kusunda area) and CV area

of Damagoria coalBelds under BCCL (Bharat
Coking Coal Ltd.) (table 1).
The coal measure rocks range in age from Upper

Carboniferous to Lower Triassic (Vaidyanadhan

Figure 1. Geological map showing the distribution of colliery areas under study (after Fox 1930 and GSI 2003).
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and Ramakrishnan 2010). There are different river
systems in India that resulted in the deposition of
Lower Gondwana coal measure rocks: (i) Son–Nar-
mada valley system; (ii) Mahanadi valley system;
(iii) Damodar valley system, and (iv) Godavari
valley system. The samples have been collected
from the Raniganj Formation and Barakar For-
mation of Damuda Group of the Damodar River
valley system. The Damodar River, shown in
Bgure 1, Cows from west to east and is located
south of the location points.

3. Material and methods

The tests conducted in this paper are based on
standards suggested by ISRM (International Soci-
ety of Rock Mechanics) (1981a, b, c, d). In this
study, dynamic (UPV), geomechanical (UCS and

BTS), and physical (q and u) tests have been used
to analyse the behaviour of coal measure rocks
under dry and saturated conditions. For dry test-
ing, the specimens of sandstone and shale were
dried in a dry-air oven at 105�C for 24 hours and
for testing at saturation; the specimens were kept
submerged in water for 24 hours (Dyke and
Dobereiner 1991).

3.1 Ultrasonic pulse velocity (UPV) test

The UPV tests have been conducted using the
PROCEQ Pundit Lab instrument (Youash 1970;
ISRM 1981a). Well-prepared rock specimens were
used with Cat polished ends (Core specimens) for
good coupling with UPV transducers. The Pundit
Lab instrument uses two transducers in which one
is the transmitter and the other is the receiver. The
transmitter converts the electrical energy into a

Table 1. Details of coalBeld areas and coal measure rocks sample identity (ID).

State Region Mines Type of mines Sample ID

Jharkhand Jharia coalBelds Ena colliery, Kusunda area Open-cast SST-1*

SH-1*

East Basuriya colliery,

Kusunda area

Open-cast SST-2

SH-2

Katras area Open-cast SST-3

SH-3

Mugma area** Open-cast SST-4

West Bengal Raniganj coalBelds Damagoria, CV area*** Underground SST-5

SH-4

Amritnagar Satgram incline,

Satgram area

Underground SST-6

SH-5

SST-7

SH-6

SST-8

SH-7

Amkula mines, Satgram area Open-cast SST-9

SST-10

SH-8

Sonepur Bazari area Open-cast SST-11

SH-9

SST-12

SH-10

SST-13

SH-11

Bankola area Underground SH-12

Jhanjhra area Underground SST-14

SH-13

*The abbreviation SST stands for sandstone, and SH stands for shale.

**The Mugma coalBeld area lies in the state of Jharkhand, but the area is under the authority of ECL.

***The Damagoria coalBeld area lies in the state of West Bengal, but the area is under the authority of BCCL.
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mechanical pulse, which travels through the spec-
imen and reaches the receiver at the other end,
which converts the mechanical pulse into electrical
energy. When the length of the specimen is divided
by the elapsed time of the ultrasonic pulse, it gives
the velocity of the pulse (UPV).

3.2 Mechanical properties

UCS and BTS are the most commonly used
geomechanical properties for any rock mass
classiBcation. These mechanical tests (UCS and
BTS) were conducted based on ISRM (1981b, c,
respectively) standards. To prepare the specimen
for the test, rock samples of approximately
30 cm � 30 cm � 40 cm block size were collected
from different colliery areas (Bgure 1 and
table 1). These block samples were drilled (cored)
to obtain 52 cm diameter core samples. These
core samples were then cut and polished to give a
Cat cross-sectional surface to the cores. These
specimens with a length to diameter ratio of � 2.5
for UCS and a thickness to diameter ratio of � 0.5
for the BTS test were prepared (Bgure 2). For the
UCS test, the specimen is kept between the platens,
and load at a constant rate is applied. The maximum

load at which the rock breaks is the strength of the
rock. The UCS is calculated by the following
equation:

UCS ¼ P

A
; ð1Þ

where P is load in N (Newton), A is cross-sectional
area (mm2), and UCS is given in MPa.
BTS is an indirect method to determine the

tensile strength of a rock. This method uses
Brazilian jaws to instigate tensile stress in the rock
(Bgure 2). The BTS for disc specimens were cal-
culated by the following equation:

BTS ¼ 2P

pLD
; ð2Þ

where P is load in N (Newton), D is the diameter
(mm), L is the thickness (mm), and BTS is given in
MPa.

3.3 Density and porosity

The saturation method was used to determine the
intrinsic properties, i.e., q and u of the specimens,
in accordance with the standards of ISRM (1981d).
The following equations were used to determine
the dry density (q) and eAective porosity (u),

Figure 2. Breaking behaviour of sandstone and shale in dry and wet conditions.
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respectively:

q ¼ MS

V
; ð3Þ

u ¼ ðMsat �MSÞ=qw
V

� 100; ð4Þ

where MS is the solid mass of the specimen,
V is the bulk volume, Msat is the saturated
mass of the specimen, and qw is the density of
the water used.

4. Results

The sensitivity in the geomechanical properties
and UPV of coal measure rocks have been dis-
cussed in this study. It was observed that the
geomechanical properties of coal measure rocks
reduced drastically when tested in saturated
conditions as compared to in dry conditions.
The change in UCS and BTS (DUCS and DBTS)
(equation 5) during testing in dry and saturated
conditions has also been indicated in table 2. It
was observed that the DUCS and DBTS were
negative in all the cases indicating that the
strength of the rock reduced when tested in the
wet condition.

DX %ð Þ ¼ X sat � Xdry

Xdry

� �
� 100; ð5Þ

where X is the geomechanical property (either UCS
or BTS). The UPV measured in dry and saturated
conditions are shown in table 2. It was observed
that there is a marked increase in the UPV in the
saturated conditionas compared to thedry condition.
TheDUPV (equation 6) was observed to be positive in
all the cases.

DUPV %ð Þ ¼ UPVsat �UPVdry

UPVdry

� �
� 100: ð6Þ

5. Discussion

5.1 Simple regression analysis

In this paper, bivariate regression analysis has been
performed, considering the best Bt function to be
linear (y ¼ mx þ c), power (y ¼ mxc), or exponen-
tial (y ¼ mex). Where x is the independent variable,
y is the dependent variable, m is the slope, and c is
constant.

5.1.1 Correlation of geomechanical properties
with the UPV

In order to predict the geomechanical proper-
ties of the rocks from the UPV, bivariate
regression analysis has been used by different
researchers (Kahraman and Yeken 2008;
Khandelwal and Singh 2009; Abdi et al. 2018,
etc.). Rahman et al. (2020) correlated UCS and
BTS and dynamic elastic constants with the
UPV of sandstones and shales of Lower Gond-
wana Formations of India. Khandelwal and
Singh (2009) also proposed regressions to pre-
dict the UCS, BTS, q, shear strength, Poisson’s
ratio and Young’s modulus using the UPV.
Abdi et al. (2018) proposed empirical correla-
tions between the mechanical properties and
P-wave velocity for six different types of
sandstones in different saturation conditions. In
this study, sandstones and shales of Jharia and
Raniganj coalBelds were used to perform the
geomechanical tests under dry and saturated
conditions. Before geomechanical tests, all the
specimens were used for non-destructive UPV
tests under dry and saturated conditions. A
total of 42 UCS (14 sets) and 42 BTS (14 sets)
tests for sandstones and 39 UCS (13 sets) and
39 BTS (13 sets) tests for shale samples were
conducted in dry and saturated conditions
each. The correlations obtained between the
geomechanical properties and UPV under dry
and wet/saturated conditions for sandstones
and shales have been shown in Bgure 3(a and
b), respectively. It was observed that the
regression obtained for shale samples showed a
higher gradient than the regression of the
sandstone samples (Rahman et al. 2020; Rah-
man and Sarkar 2021). The correlation equa-
tions obtained for sandstone samples are as
follows:

UCSdry ¼ 8:7669e0:4421UPVdry R2 ¼ 0:8238
� �

; ð7Þ

UCSwet ¼ 2:7475e0:6084UPVwet R2 ¼ 0:7695
� �

; ð8Þ

BTSdry ¼ 0:5182�UPV1:8791
dry R2 ¼ 0:8315

� �
; ð9Þ

BTSwet ¼ 0:09�UPV2:7689
sat R2 ¼ 0:8309

� �
: ð10Þ

The change in geomechanical properties (DUCS

and DBTS) and DUPV from dry to saturated
conditions are greater in the case of shale samples
as compared to sandstone samples (Bgure 3b). The
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Table 2. The sensitivity of the geomechanical and UPV tests under the dry and saturated conditions for coal measure rocks.

Sample

ID

UPVdry

(m/s)

UPVsat

(m/s)

DUPV

(%)

BTSdry
(MPa)

BTSsat
(MPa)

DBTS

(%)

UCSdry
(MPa)

UCSsat
(MPa)

DUCS

(%)

u
(%)

q
(g/cm3)

SST-1 4.72 4.86 3.01 10.24 9.31 –9.08 79.18 55.32 –30.13 3.85 2.69

4.60 4.72 2.72 9.23 7.33 –20.59 76.99 56.21 –26.99 2.88 2.66

4.69 4.77 1.70 12.32 11.32 –8.12 77.28 51.23 –33.71 3.30 2.67

SST-2 3.48 3.76 7.98 7.25 5.68 –21.66 44.62 20.33 –54.44 3.39 2.55

3.22 3.47 7.57 5.26 4.18 –20.53 36.55 19.63 –46.29 4.37 2.53

3.40 3.65 7.50 6.80 4.12 –39.41 34.76 21.36 –38.55 3.38 2.53

SST-3 4.06 4.25 4.83 5.88 3.96 –32.65 48.78 33.54 –31.24 5.56 2.62

3.85 4.17 8.15 5.18 3.66 –29.34 45.41 30.58 –32.66 5.54 2.62

3.97 4.19 5.50 5.36 3.25 –39.37 46.39 28.36 –38.86 5.54 2.61

SST-4 2.67 3.04 13.84 3.54 1.88 –46.89 29.77 19.15 –35.67 9.77 2.29

2.52 2.89 14.83 3.27 2.12 –35.17 25.98 18.62 –28.33 10.12 2.32

2.54 2.74 7.80 3.38 2.12 –37.19 28.15 21.08 –25.10 9.89 2.31

SST-5 3.17 3.41 7.80 3.88 1.52 –60.82 25.31 16.92 –33.15 11.10 2.42

2.96 3.35 13.20 4.78 2.38 –50.21 28.14 17.22 –38.81 10.55 2.40

3.09 3.49 13.01 4.22 1.88 –55.45 27.97 15.20 –45.65 10.29 2.40

SST-6 4.32 4.52 4.60 5.68 4.12 –27.46 68.14 51.22 –24.83 3.66 2.61

4.19 4.36 4.01 7.14 5.11 –28.43 64.68 55.64 –13.98 2.39 2.57

4.27 4.49 5.32 6.65 4.23 –36.39 67.45 49.74 –26.26 3.38 2.59

SST-7 2.29 2.62 14.30 1.58 1.20 –24.05 14.31 8.41 –41.23 13.13 2.20

2.06 2.41 17.41 1.98 1.10 –44.44 16.73 8.75 –47.70 13.98 2.14

2.13 2.39 11.90 1.55 0.72 –53.43 15.92 8.39 –47.31 13.22 2.18

SST-8 3.32 3.66 10.11 7.44 4.21 –43.41 48.78 20.14 –58.71 7.88 2.38

3.06 3.33 8.80 7.41 4.62 –37.65 46.51 19.78 –57.47 8.44 2.36

3.19 3.52 10.22 7.08 3.37 –52.40 37.49 24.99 –33.36 8.51 2.39

SST-9 3.58 3.79 5.72 4.88 1.88 –61.48 31.44 22.58 –28.18 7.86 2.61

3.22 3.66 13.57 5.76 2.12 –63.19 34.82 21.31 –38.80 9.66 2.55

3.30 3.59 8.77 5.22 1.82 –65.07 33.09 24.61 –25.63 8.57 2.59

SST-10 3.96 4.15 5.01 7.22 6.41 –11.22 43.11 34.89 –19.07 6.19 2.61

3.72 4.05 8.62 8.36 6.11 –26.91 48.84 33.27 –31.88 7.14 2.58

3.80 4.05 6.42 8.36 6.90 –17.46 42.62 33.21 –22.08 6.23 2.62

SST-11 1.95 2.21 13.73 1.88 0.88 –53.19 24.72 14.15 –42.76 12.66 2.25

1.75 2.04 16.93 1.29 0.65 –49.61 19.61 12.11 –38.25 14.12 2.22

1.83 2.11 15.01 1.34 0.47 –65.10 22.82 11.76 –48.45 13.71 2.21

SST-12 3.94 4.05 2.79 3.84 3.34 –13.02 50.21 38.52 –23.28 2.55 2.51

3.77 3.96 5.20 5.18 4.55 –12.16 44.55 36.12 –18.92 3.12 2.51

3.81 4.03 5.82 4.13 3.74 –9.25 46.54 40.95 –12.03 2.97 2.49

SST-13 2.02 2.33 15.32 2.10 1.12 –46.67 22.52 14.22 –36.86 13.66 2.22

1.71 2.02 18.22 1.88 0.88 –53.19 25.41 12.58 –50.49 14.55 2.20

1.89 2.15 13.82 1.40 0.50 –64.26 23.44 3.78 –83.87 13.19 2.24

SST-14 2.25 2.56 13.35 1.88 1.25 –33.51 25.47 18.65 –26.78 10.98 2.18

2.07 2.38 14.93 2.41 1.32 –45.23 27.54 17.88 –35.08 11.22 2.17

2.20 2.48 13.19 2.19 1.20 –45.15 27.48 18.24 –33.64 12.92 2.19

SH-1 3.52 3.95 12.18 13.31 11.21 –15.78 78.64 58.46 –25.66 2.11 2.49

3.38 3.99 18.12 14.42 10.55 –26.84 75.32 65.44 –13.12 2.87 2.51

3.44 4.01 16.54 13.15 10.65 –19.01 73.24 71.32 –2.62 3.06 2.53

SH-2 3.02 3.38 11.85 9.48 4.81 –49.26 55.68 48.75 –12.45 4.41 2.46

2.86 3.31 15.65 8.78 4.77 –45.67 58.12 42.38 –27.08 4.11 2.43

2.98 3.34 12.08 8.56 4.28 –50.00 60.63 52.47 –13.46 4.94 2.43

SH-3 3.34 3.73 11.48 9.69 3.89 –59.86 65.32 42.81 –34.46 4.08 2.49

3.19 3.58 12.13 7.61 3.22 –57.69 68.49 41.52 –39.38 4.47 2.44

3.22 3.59 11.39 9.67 3.65 –62.30 62.64 44.58 –28.83 4.16 2.45
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correlation equations obtained for shale samples
are as follows:

UCSdry ¼ 10:329e0:5622UPVdry R2 ¼ 0:6764
� �

; ð11Þ

UCSwet ¼ 0:8354e1:0758UPVwet R2 ¼ 0:6849
� �

; ð12Þ

BTSdry ¼ 0:8426�UPV2:0933
dry R2 ¼ 0:6631

� �
;

ð13Þ

BTSwet ¼ 0:052e1:2459UPVwet R2 ¼ 0:6371
� �

: ð14Þ

In Bgure 3(c), a comparison has beenmade between
regressions obtained for shale and sandstoneunder dry
andwet conditions and the previous study’s database.
Torok andVasarhelyi (2010) suggested a regression to
predict UCS from the UPV under the dry and wet
conditions for Hungarian travertine rocks. The
regression was observed to predict lower values of
UCS for the correspondingUPV than the regression of

present study sandstones. Karakul and Ulusay (2013)
proposed a general regression for multiple rock types,
which agrees with the regression of the present study
sandstonesunderdryandwetconditions.Rahmanand
Sarkar (2021) suggested a characteristic regression
equation for particular lithology for 12 rock types,
including shale and sandstone, which has also been
compared in Bgure 3(c).

5.1.2 Correlation of UCS with the porosity
and density

The eAect of density and porosity on the relation-
ship between the strength parameters of the rocks
and UPV has been studied by different researchers
(Kahraman and Yeken 2008; Vasconcelos et al.
2007, etc.). In the present study, 14 sets of tests for
sandstone and 13 sets of tests for shale samples
were performed, where, in each set three tests were
conducted. The UCS has been correlated with the

Table 2. (Continued.)

Sample

ID

UPVdry

(m/s)

UPVsat

(m/s)

DUPV

(%)

BTSdry
(MPa)

BTSsat
(MPa)

DBTS

(%)

UCSdry
(MPa)

UCSsat
(MPa)

DUCS

(%)

u
(%)

q
(g/cm3)

SH-4 3.17 3.63 14.32 8.99 3.23 –64.07 71.28 28.66 –59.79 5.22 2.44

2.91 3.29 12.91 7.63 3.42 –55.18 66.08 22.08 –66.59 5.84 2.43

3.00 3.59 19.36 8.77 2.81 –67.99 67.94 24.56 –63.85 6.39 2.39

SH-5 2.76 3.16 14.70 8.52 4.53 –46.83 58.52 34.75 –40.62 2.66 2.45

2.46 2.75 11.88 6.77 4.11 –39.29 56.06 34.22 –38.96 3.05 2.41

2.59 2.82 8.78 7.27 3.56 –51.03 55.23 32.15 –41.79 2.06 2.47

SH-6 2.25 2.65 18.04 3.48 1.24 –64.37 34.68 7.80 –77.51 8.55 2.22

1.96 2.27 15.93 2.39 0.88 –63.18 32.88 7.61 –76.86 7.14 2.26

2.00 2.33 16.50 2.57 0.70 –72.76 31.79 6.90 –78.30 8.29 2.27

SH-7 2.49 2.96 18.94 7.53 1.25 –83.40 36.85 15.45 –58.07 9.65 2.34

2.25 2.65 18.04 6.24 1.31 –79.01 41.22 18.53 –55.05 11.21 2.25

2.39 2.79 16.33 6.80 0.89 –86.91 38.95 12.36 –68.27 9.55 2.32

SH-8 2.28 2.65 16.23 5.28 2.12 –59.85 33.54 15.41 –54.05 12.32 2.29

2.19 2.61 19.18 6.88 1.98 –71.22 31.67 14.55 –54.06 11.85 2.28

2.38 2.69 13.03 5.69 1.67 –70.65 32.18 16.38 –49.10 10.92 2.31

SH-9 2.76 3.10 12.33 6.11 3.25 –46.81 56.38 28.60 –49.27 8.79 2.38

2.49 2.82 13.30 6.86 2.41 –64.87 51.25 26.33 –48.62 8.04 2.37

2.61 3.07 17.29 6.56 1.16 –82.27 53.65 21.36 –60.19 8.20 2.35

SH-10 2.88 3.19 10.55 5.37 1.89 –64.80 36.10 18.88 –47.70 7.59 2.34

2.64 3.01 13.99 4.52 1.47 –67.48 37.85 19.52 –48.43 6.81 2.33

2.72 3.02 10.91 4.78 1.09 –77.23 38.00 18.28 –51.89 7.83 2.38

SH-11 2.98 3.44 15.59 6.62 2.14 –67.67 46.52 21.52 –53.74 10.76 2.31

2.72 3.31 21.89 5.88 2.65 –54.93 45.21 23.12 –48.86 11.84 2.32

2.81 3.31 17.99 5.75 2.23 –61.23 44.36 16.84 –62.04 10.35 2.32

SH-12 3.05 3.49 14.48 7.36 3.54 –51.90 46.85 34.58 –26.19 5.68 2.28

2.86 3.26 13.81 9.21 2.87 –68.84 44.32 33.98 –23.33 5.88 2.31

2.90 3.21 10.56 8.62 3.87 –55.10 46.32 28.61 –38.23 4.87 2.33

SH-13 3.23 3.65 13.02 8.22 5.22 –36.50 54.82 41.25 –24.75 6.55 2.41

2.92 3.47 18.85 9.31 6.34 –31.90 55.36 39.56 –28.54 5.49 2.43

3.14 3.68 17.38 8.41 6.39 –23.93 56.35 45.25 –19.70 6.75 2.40
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Figure 3. Relationship between UPV and (a) UCS, (b) BTS, and (c) comparative analysis with the previous studies for shale and
sandstone samples.

Figure 4. Relationship between (a) UCS and u and (b) UCS and q for sandstone and shale samples under dry and wet
conditions.
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u and q of both the rock types under study
(Bgure 4a and b, respectively). It was observed
that UCS has a negative correlation with the u of
the rock, meaning that the UCS decreases with an
increase in the u of the rock. The obtained
regression equations are as follows:
For sandstone samples,

UCSdry ¼ 78:005e�0:096u R2 ¼ 0:7793
� �

; ð15Þ

UCSwet ¼ 61:687e�0:125u R2 ¼ 0:7228
� �

: ð16Þ

For shale samples,

UCSdry ¼ 78:212e�0:067u R2 ¼ 0:5359
� �

; ð17Þ

UCSwet ¼ �3:9377uþ 56:864 R2 ¼ 0:537
� �

: ð18Þ

Conversely, the UCS showed a positive corre-
lation with the q of the rock, meaning that the
strength of the rock increases with the increase in q.
The observed regressions are as follows:
For sandstone samples,

UCSdry ¼ 0:2303e2:0735qðR2 ¼ 0:7043Þ; ð19Þ

UCSwet ¼ 0:0317e2:6944q R2 ¼ 0:6496
� �

: ð20Þ

For shale samples,

UCSdry ¼ 149:44q� 303:57 R2 ¼ 0:7613
� �

; ð21Þ

UCSwet ¼ 166:94q� 366:25 R2 ¼ 0:6972
� �

: ð22Þ

The obtained regressions have been compared with
the previous study database. The regression proposed
for travertine rocks by Torok and Vasarhelyi (2010)
was observed to predict higher values of UCS than
the regression proposed for sandstones in the present
study. Torok and Vasarhelyi (2010) regressions for
UCS and q coincide with the regressions obtained for
shale samples (Bgure 4b).

5.1.3 Change in UPV, UCS and BTS with the q
and u under dry and saturated conditions

Ultrasonic waves can travel in solids, liquids and
gases. The typical velocity of the ultrasonic wave in
air is 330 and 1450 m/s in water. Hence, the DUPV

from dry to saturated conditions for sandstones
and shales were observed to be positive in all the
cases. This trend of increase in UPV under satu-
rated conditions can be regarded as a function of

water absorbed by the rock, which in turn depends
on the intrinsic properties of the rocks. The rela-
tionship between the DUPV with u and q for
sandstone and shale samples has been shown in
Bgure 5(a and b), respectively, where it was
observed that the DUPV has a positive and negative
relationship with the u and q, respectively. The
relationships have also been obtained between
DUCS with u and q (Bgure 5c and d, respectively)
for sandstone and shale samples. The correlation
between DUCS and u shows a negative gradient,
whereas the correlation between DUCS and q shows
a positive gradient. The slope for shale has a stee-
per gradient indicating a greater DUCS with minor
variation in intrinsic properties. Similarly, the
relationship between DBTS and u and q have been
shown in Bgure 5(e and f), respectively.

5.1.4 Correlation between dry and saturated
geomechanical properties

The sensitivity of rock is deBned as the per cent
(%) change in the strength of the geomechanical
properties from dry to wet conditions. The sensi-
tivity of the geomechanical properties of weaker
rocks is higher than the sensitivity of strong rocks
(Dyke and Dobereiner 1991). Similarly, the plotted
data between UCSdry and UCSwet shows that the
sensitivity of sandstone and shale samples is high
for weak rocks, with weak shale samples showing
greater sensitivity. On the other hand, Vasarhelyi
(2003) database showed the sensitivity of all rock
types (strong or weak) to be constant, as indicated
in Bgure 6(a). Torok and Vasarhelyi (2010) also
proposed a correlation between UCSdry and UCSwet
for travertine rocks which shows the lowest sensi-
tivity relatively. The regressions obtained between
the UCSdry and UCSwet are as follows:
For sandstone samples,

UCSwet ¼ 0:7783UCSdry � 4:4659 R2 ¼ 0:8857
� �

:

ð23Þ

For shale samples,

UCSwet ¼ 0:9488UCSdry � 18:489 R2 ¼ 0:6606
� �

:

ð24Þ

The regression for BTSdry vs. BTSsat (Bgure 6b)
has also been proposed as follows:
For sandstone samples,
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BTSwet ¼ 0:8585BTSdry � 0:9204 R2 ¼ 0:8812
� �

:

ð25Þ

For shale samples,

BTSsat ¼ 0:8736BTSdry � 3:0455 R2 ¼ 0:7571
� �

:

ð26Þ

5.1.5 Correlation between dry and saturated
UPV

Kahraman (2007) proposed a strong correlation
between dry and wet UPV for sedimentary, meta-
morphic and igneous rocks. The equation for sedi-
mentary rocks has been used in Bgure 7. In the present

Figure 5. Relationship between change in UPV with (a) u and (b) q, change in UCS with (c) u and (d) q, and change in BTS
with (e) u and (f) q for sandstone and shale samples.
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study, the relationship betweenUPVdry andUPVsat of
coalmeasure rocks (sandstone and shale) was found to
have a strong correlation with an excellent R2 value
(Bgure 7). The correlation equations obtained are as
follows:
For sandstone samples,

UPVwet ¼ 0:9476UPVdry þ 0:4306 R2 ¼ 0:9943
� �

:

ð27Þ

For shale samples,

UPVwet ¼ 1:0972UPVdry þ 0:1387 R2 ¼ 0:9643
� �

:

ð28Þ

Torok and Vasarhelyi (2010) regression for traver-
tine rocks crosscut the regression of Kahraman (2007)
for sedimentary rocks. Vasconcelos et al. (2007) sug-
gested a similar correlation for granite rocks which
predicts much higher values than other regressions
shown. The present study linear regression lies
closer to the 1:1 line than any other previous study
regressions.

5.2 Multivariate regression analysis

Multivariate regression (MR) analysis was Brst
used by Pearson in 1908. It is a robust tool to

analyse multiple independent variables to achieve
a single dependent variable. The general MR
equation is of the form; y ¼ c þ a1x1 þ a2x2þ
� � � þ anxn, where c is the constant, a1; a2; . . .; an
are regression coefBcients, x1; x2; . . .; xn are inde-
pendent variables, and y is the dependent vari-
able. In nature, any phenomenon is a function
of the interaction between multiple elements.
Similarly, in geoscience and rock mechanics, the
mechanical index property of a rock, such as
UCS, is related to numerous other rock proper-
ties, such as the UPV, u and q, as we have
observed in the simple regression analysis
section.
In this paper, our aim is to estimate the change

in the strength parameters and dynamic beha-
viour of sandstone and shale rocks which are
associated with the mining operations of coal in
the Jharia and Raniganj coalBelds of Jharkhand
and West Bengal, respectively. Here, we have
used the multivariate regression analysis to
estimate the UCS, BTS and UPV in wet condi-
tions using their corresponding values in dry
conditions, intrinsic properties (u and q) and the
rock type information (table 3). The rock type
information was indexed as 1 for sandstone and 2
for shale.

Figure 6. Relationship between (a) UCSdry and UCSwet and (b) BTSdry and BTSwet.
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5.3 ArtiBcial neural network

ArtiBcial neural network (ANN) is an artiBcial
modelling technique that mimics the function of
a biological brain. The biological brain consists
of numerous connections of neurons that gener-
ate (an output) speciBc information with certain
association of neurons. Similarly, ANN consists
of nodes and connections of weights that are
analogous to neurons and connections of neurons
of the brain. The main components of a network
are a set of the input layer, a set of hidden
layers (one or more) and a set of the output
layer. The processing of the information takes
place in the hidden layers. Each input parame-
ter (x) interact with the hidden layers by an

appropriate weight (W) and bias (b) based on
the output parameter (y). The weighted signal
(Wx) at each node is collected and added as the
weighted sum. The mathematical representation
of the interaction between the input and output
layers is as follows:

y ¼ W0 þ
Xm
j¼1

Wjg W0j þ
Xn
i¼1

Wijxi

 !
þ bi; ð29Þ

where i = 1, 2, 3, …, n and j = 1, 2, 3, …, m, n is
the number of input nodes and m is the number of
hidden nodes, g is the activation function which is a
sigmoidal function.
In the present study, the multi-layer perceptron

method was employed, which is considered one of

Figure 7. Relationship between UPVdry and UPVwet.

Table 3. CoefBcients obtained for different parameters in saturated conditions using multivariate
regression analysis.

Input parameters (x)

CoefBcients

UCSdry (MPa) UPVdry (km/s) BTSdry (MPa)

Intercept 10.53557 –0.05461 8.62477

X1* 0.66828 1.02236 0.81371

u (%) –0.91389 0.01208 –0.15714

q (g/cm3) 0.80867 –0.00820 –2.38226

Rock type –5.18123 0.16980 –2.24898

*X1 = Corresponding input parameter in dry conditions, respectively.
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the best ANN methods. The method consists of a
three-layer system of nodes (Input–Hidden–Out-
put). The network was trained using a Bayesian
Regularisation training algorithm (‘trainbr’

function) in MATLAB using the Neural Fitting
app. Six sets of input parameters (UPVdry, BTSdry,
UCSdry, q, u and rock type) and three sets of
output parameters (UCSwet, UPVwet and BTSwet)
were fed to the network for training purposes. It
means when the network is trained, it will generate
three output parameters by providing six input
parameters –y = net(x)˝ (Bgure 8). When the
number of hidden layer is one, it is called shallow
neural network (SNN), and when it is more than
one, then the network is called a deep neural net-
work (DNN). In the hidden and output layer, the
network comprises the logarithmic sigmoidal
function and the sigmoidal tangent function,
respectively.
In this paper, a total of 81 datasets (42

sandstones and 39 shales) were used to develop
an ANN model such that 69 datasets (85%)
were used to train the network, and 12 datasets
(15%) were used for testing of the developed
ANN model. The ANN validation curve shows
that the best training performance of 2.8875
occurred at epoch 201 (Bgure 9a). The regres-
sion plot for training, testing and overall
dataset for the developed model has been
shown in Bgure 9(b).

5.4 Comparative analysis

The ANN model was developed to predict strength

parameters in wet conditions using UCS, UPV,Figure 8. The neural structure of the developed ANN model.

Figure 9. Showing the best training performance of the ANN model (a), and the obtained regression of the ANN model (b).
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BTS in a dry condition, q, u, and rock type infor-
mation. Since the trends of the regressions to
predict UCS from UPV for shale and sandstone
are different, the coefBcient of correlation
(R = 0.99327) values obtained during the training
of the network are exceptional. A comparative

analysis between the measured and predicted val-
ues using SR, MR and ANN models is shown in
Bgures 10 and 11 for sandstone and shale, respec-
tively. In the 1:1 (x:y) scatter plot, it was observed
that the predicted values from SR, MR and ANN
model lie close to each other and the 1:1 line.

Figure 10. Measured vs. estimated plots for (a) UCS, (b) UPV
and (c) BTS in wet/saturated condition for sandstone samples.

Figure 11. Measured vs. estimated plots for (a) UCS, (b) UPV
and (c) BTS in wet/saturated condition for shale samples.
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Hence, the predicted values using the SR, MR and
ANN models are statistically acceptable. The ANN
model can predict multiple output parameters,
while MR and SR models can only predict a single
output parameter. Moreover, MR can incorporate
multiple input (independent variable) parameters
for better generalisation of the dataset, while SR
uses only one independent variable for the predic-
tion of the dependent variable.
Statistical parameters such as coefBcient of

determination (R2), root mean square error
(RMSE) and mean absolute percentage error
(MAPE) have been used to evaluate the statistical
performance of the proposed models. The closer the
value of R2 to 1.0, the better the model, while the
smaller the values of MAPE and RMSE, the better
the model (table 4).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Mi � Pið Þ2
s

; ð30Þ

MAPE ¼ 1

n

Xn
i¼1

Mi � Pij j
Mi

� 100

� �
; ð31Þ

where Mi is the measured ith value, Pi is the ith
predicted value, and n is the total number of
iterations.

6. Summary and conclusions

This paper was aimed to study the changes in
strength behaviour under dry and water-saturated
conditions of Lower Gondwana coal measure rocks
of India. It was observed that the strength
parameters reduced while the UPV increased when
tested in a saturated condition relative to dry
conditions. Empirical correlations were proposed
between strength parameters and UPV for shales

and sandstones under dry and saturated condi-
tions. The obtained positive regression trends for
shales have a steeper gradient than the regressions
obtained for sandstones.
Positive correlations have been established

between dry and saturated UCS and q, while neg-
ative correlations were established between dry
and saturated UCS and u for sandstone and shale
rocks. The correlation between DUPV–q and
DUPV–u showed a negative and positive trend,
respectively, for coal measure rocks. Similarly,
changes in UCS and BTS have been observed to
have a negative correlation with the u, while it
shows a positive correlation with the q of sandstone
and shale samples.
Regressions to predict the strength parameters

in saturated conditions from strength parameters
in dry conditions have also been established. The
correlation suggests that the change in strength
parameters from dry to saturated condition is
greater in weak samples than in strong samples.
Similarly, relationship between UPVdry–UPVwet

has also been proposed for coal measure rocks.
Finally, ANN, SR and MR models were used to

predict strength parameters and UPV under satu-
rated condition for coal measure rocks. The pre-
dicted values using ANN, SR and MR models were
plotted in a 1:1 scatter plot against corresponding
measured values and compared. ANN model was
considered best, as it has the highest generalisation
capacity of the dataset and predicts multiple out-
put parameters.
The study presents empirical equations to pre-

dict the UCS, BTS and UPV in saturated condi-
tions using the geomechanical, physical and
dynamic properties in the dry conditions for
sandstone and shale rocks of Lower Gondwana.
The obtained regressions were compared with the
regressions obtained in the previous studies, and a

Table 4. Statistical performance of the used MR, ANN, and SR models.

Predicted

parameters

Statistical

parameters

MR ANN SR

Sandstone Shale Sandstone Shale Sandstone Shale

UCSwet RMSE 4.8136 8.7979 2.9500 3.4595 4.7495 9.0889

MAPE 2.8008 1.9197 3.2136 2.2673 3.0044 2.2800

R2 0.89 0.70 0.96 0.95 0.8857 0.6606

UPVwet RMSE 0.0662 0.0908 0.3166 0.3364 0.0641 0.0823

MAPE 1.7582 18.4169 16.5437 13.8654 20.0542 16.1652

R2 0.99 0.97 0.92 0.58 0.9942 0.9646

BTSwet RMSE 0.7784 1.2211 0.8911 1.2679 0.8379 1.2571

MAPE 26.7868 17.5363 21.3305 24.7902 18.5207 23.2702

R2 0.90 0.77 0.87 0.76 0.8812 0.7572
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clear lithological control in the regressions was
observed. The lithological control can also be seen
between the regressions of sandstone and shale
samples used in the present study. Therefore, it can
be suggested that the regressions proposed for a
particular rock type can only be used for that rock
type only.
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