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Kalimpong district, a part of the Darjeeling Himalaya, exhibits a variety of factors that are ideal for the
occurrence of landslides. Therefore, it is imperative to demarcate the zones that are highly susceptible to
landslide phenomena in advance, so that the risk, and hence the damage can be reduced to a significant
extent through proper land-use planning. The factors that have been considered for this study are: (1)
elevation, (2) slope, (3) aspect, (4) curvature, (5) distance to drainage, (6) soil type, (7) rainfall, (8)
distance to lineaments, (9) landuse, (10) distance to road, (11) TWI, and (12) NDVI. For landslide
susceptibility mapping of Kalimpong district, a resilient back propagation (Rprop) artiBcial neural
networks (ANN) approach was used in this study. The results of the Rprop ANN model were validated
using the AUC of the ROC Curves. The prediction rate AUC value was found to be 84.35% which showed
that this combination of factors with the Rprop ANN model gave satisfactory accuracy in agreement with
past landslide phenomena. The derived landslide susceptibility map was categorized in extremely low,
low, moderate, high, and very high susceptibility zones covering 610, 272, 83, 61, and 66.7 km2 of
Kalimpong’s area, respectively.

Keywords. Landslide susceptibility mapping; remote sensing; GIS; resilient back propagation; artiBcial
neural network; Kalimpong.

1. Introduction

A section (12.6%) of India’s land surface area (ex-
cluding regions covered by snow) is landslide-prone
(Chawla et al. 2018). This amounts to a total of
0.42 million km2 area, out of which around 43%
area lies in the North-eastern part of the Himalayas
(GSI 2014). As per data from the National Crime
Records Bureau’s (NCRB) report on accidental
deaths (2010–2019), about 304 people die of land-
slides on an average annually in India. The highest
annual death toll of 499 was recorded in 2014. A

2011 study by the National Institute of Disaster
Management (NIDM) estimated Rs. 150–200
crores of monetary loss due to landslides in India.
Kalimpong district is a part of the North-eastern
Himalayan Region (NEHR) and is highly fre-
quented by landslides, especially during the mon-
soons from July to September. Kalimpong region
exhibits a highly sloping hilly terrain and is heavily
drained by intense rainfall making it extremely
susceptible to landslides. Anthropogenic infras-
tructure projects like roads, settlements, hydro-
power projects, etc., at the expense of vegetative
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cover also loosen the slope material. This allows
the loose material to readily slide downslope with
slight lubrication by water. All of these reasons
collectively make Kalimpong a region of interest
for landslide studies. It is also imperative that the
landslide susceptible zones be demarcated so that
appropriate measures can be taken to mitigate the
threats to life and property.
Over the years, landslide studies have evolved.

Earlier, ground measurement data and landslide
records were used to prepare landslide inventory
maps. These are simple maps that contain the
location, dimensions, and area of the landslide
(Guzzetti et al. 1999). With the advancement of
aerial photography, the preparation of these maps
became easier and more convenient. The studies by
Ayalew and Yamagishi (2005), Pradhan and Lee
(2009), and others indicate the wide applications of
aerial photographs in landslide studies. Gradually,
developments in remote sensing (RS) techniques
further facilitated eAective landslide detection,
mapping, monitoring, and hazard analysis (Tofani
et al. 2013). Digital elevation models (DEM) have
become an integral part of the landslide suscepti-
bility mapping process as observed from the studies
of Dahal et al. (2008), Balsubramani and Kumar-
aswamy (2013), and many more. Many spatial
parameters contributing to landslides such as
slope, curvature, aspect, drainage, etc., can be
easily extracted from a DEM. Other RS techniques
like RADAR, LiDAR, UAVs, etc., have also been
used to study landslides and identify their risks.
However, with the improvement of RS techniques
and exploration of multiple landslide causative
factors, the handling of huge data became difBcult.
This was aided by GIS which can store, modify,
analyze, and display large amounts of spatial data
conveniently. Therefore, RS and GIS have been
used extensively as tools for mapping landslides
and predicting future hazards (Gupta and Joshi
1990; Nagarajan et al. 1998; Gupta 2003).
Through the review of literature, various

methods of landslide susceptibility mapping
(LSM) have been identiBed. Simple methods to
map landslides are landslide inventories. More
sophisticated methods involve quantitative
approaches based on statistics and probability like
(i) probabilistic likelihood (frequency ratio) anal-
ysis in which the probability that a landslide
factor will cause a landslide is calculated, it is
termed as frequency ratio (FR). The FR for all
factors is added to get the actual probability of
landslide occurrence (Pradhan and Lee 2010a;

Park et al. 2013). (ii) Information value method
(IVM) and its modiBed form are statistical
methods that also use probabilities like the FR
method (Sarkar et al. 2006; Balsubramani and
Kumaraswamy 2013; Ghildiyal et al. 2019). (iii)
Fuzzy logic method uses the fuzzy set theory.
Fuzzy memberships are used for the factors that
aid in landslide occurrence for each pixel of the
study area raster. The maximum membership is
assigned to all the pixels to make an LSM
(Pradhan 2010). (iv) Weight of evidence (WofE)
method assigns positive and negative weights to
locations having a landslide factor and not having
one respectively. These weights determine the
Bnal landslide susceptibility (Dahal et al. 2008).
(v) Logistic regression is another common statis-
tical method for LSM. It helps in Bnding a
mathematical relation between a landslide and its
factors (Ayalew and Yamagishi 2005; Chi et al.
2019). (vi) Analytical hierarchy process (AHP) is
also a method for LSM, but it has the demerit
of introducing subjectivity. An expert assigns
weights to each of the landslide factors through
pair-wise comparison and relative importance of
one factor over another (Yalcin 2008; Pour-
ghasemi et al. 2012; Haoran et al. 2019). The
latest works on LSM involve the use of machine
learning methods like support vector machines
(Bahareh et al. 2019), Na€ıve Bayes (Yaning et al.
2019), reduced error pruning Trees (Pham et al.
2019), rotation forest and decision trees (Haoyuan
et al. 2018), etc. All of these methods have their
own sets of assumptions, merits, and demerits.
However, artiBcial neural networks (ANN) has
been termed as an advantageous method for LSM
as it does not depend on how the data is statis-
tically distributed. It can work with many kinds
of data, even if it is imprecise, and also does not
violate assumptions (Ermini et al. 2005; Pradhan
and Lee 2007, 2009, 2010a, b). Therefore, a
speciBc algorithm of ANN called the resilient back
propagation (Rprop) has been used as a new
approach to LSM in this study.
The main objective of this research is to prepare

a landslide susceptibility map of Kalimpong using a
Rprop ANN model that can predict future land-
slides quickly with high accuracy. Rprop algorithm
has extremely high speeds of updating weights of
factors and can give highly accurate results in a
very short time (Navneel et al. 2013). Thus, the
Rprop ANN model used for LSM can provide a
reliable reference map for policy formulation to
mitigate landslide risks in a quick time.
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2. Study area and physiographic settings

This study is focused on Kalimpong district,
northern part of West Bengal, India, which lies
within the latitude 26�5104000–27�1104400N and
longitude 88�2301600–88�5300000E (Bgure 1a).
Kalimpong district has a total area of 1,092 km2.
Kalimpong has an average elevation of 1,603 m.
The highest and lowest elevations are 3124 and
82 m, respectively (above mean sea level). The
main town is a ridge adjacent to the Teesta
River. Kalimpong is drained by Teesta, Relli,
Leesh, Geesh, Neora, Murti, Jaldhaka rivers, and
numerous small streams. These rivers and
streams cause active denudation of the valley side
slopes through erosion causing steepening of the
slopes. The interCuvial area is sharpened, thus
making the terrain more prone to landslides. The
annual mean temperature is about 17.5�C with
mild summers at 26�C (avg. maximum) from
April to June (IMD 2020). The monsoonal rain-
fall from June to September acts as the main
triggering factor for the landslides. Kalimpong’s
average monthly rainfall in the monsoon seasons
from June to September ranges from 119 to 417
cm (https://worldclim.org). The main problem
arises due to the destruction of highways by
landslides that connect Kalimpong to the plains
of Siliguri (Bgure 2). The supply chain gets dis-
rupted causing hardships to people. Sometimes
even houses and passenger vehicles are carried

downslope with landslide debris causing loss of
life.
The Kalimpong Hills are part of the tectonically

active Eastern Himalaya. The geological units of
Kalimpong consist of Precambrian slates, schist,
phyllite, quartzite, gneisses, lower Gondwana and
Shivalik sandstones, and recent to sub-recent
alluvium. The overall rock type of the district
mainly consists of granite, gneiss, shales, and most
importantly sandstone and solidiBed but poorly
consolidated clutter of conglomerate formations.
The soil in the Kalimpong area is typically red-
dish. Dark soils are also found occasionally due to
the existence of phyllites and schists. The soil
zones of the study area have been described in
table 1. Different soils contribute differently to
landslide occurrence. Landslides show a high
probability of occurrence in moderately shallow,
well-drained, gravelly loamy soils with moderate
erodibility and rockiness (Mondal and Mandal
2019). Figure 3(a) shows the regions of the study
area where these soils are found (National Bureau
of Soil Survey and Land Use Planning – NBSS &
LUP Data). Kalimpong area mostly has coarse
loamy and gravelly loamy soils which are shallow
in depth and excessively drained. A characteristic
feature of the grain size composition of the soils in
Kalimpong is the high percentage of sandy and
coarse particles up to 50–80%. The steeper slope
segments have a high content of coarse debris. All
of these features contribute to the low cohesivity

Figure 1. (a) The study area of Kalimpong and its location with (b) 184 landslide inventory points.
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of the soil making it slip-ready. Narrow ridges
separated by closely-spaced V-shaped valleys,
where the slope varies between 15� and 40� are
found in the region (Geomorphological Field
Guide Book, IGI 2017). The extensive compres-
sion due to the inter-continental plate conver-
gence in this area has caused large-scale
deformation in the lithological units. Cracks,
joints, thrust planes, and schist planes are present
throughout the region leading to a fragile lithol-
ogy. This fragile base loses its cohesion during
rainfall causing slope instability and ultimately

failure. Rapid urbanization due to tourism in
Kalimpong since the 1950s has led to deforesta-
tion. Forest cover has been replaced by tea gar-
dens causing loss of deep-root reinforcement of
soils. The construction of communication lines,
buildings, roads, and hydro-power facilities have
further aggravated the fragility of these hills. To
add to the problem, Kalimpong falls in high
seismic intensity Zone-IV (BIS 2002) making the
zone susceptible to tremor-induced landslides also.
The study area has landslides of debris, transla-
tional, rockslide, and debris-cum-rockslide-type.

Figure 2. Landslides in Kalimpong (a) a section of the Lava Road (27�02002.500N, 88�41038.700E), (b) road near Yang Makum
Khasmahal (26�56034.100N, 88�29011.400E), (c) NH10 near the Teesta River (26�56034.100N, 88�29011.400E), (d) near Nimbong
Khasmahal (26�57042.200N, 88�34049.300E), and (e) a section of Rishi Road (27�05024.800N, 88�39001.000E).
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3. Materials and methodology

3.1 Landslide inventory

The landslide inventory as described in section 1 is
the Brst step in LSM (Yalcin et al. 2011). This map
of landslide locations was used to train the Rprop
ANN model to determine the weights of the land-
slide factors. The landslide inventory was prepared
by the digitization of landslide polygons in ESRI
ArcGIS 10.6.1. To achieve this, World Imagery
was added as a base map layer and the polygons

were drawn at a scale of 1:4,000. The map features
Maxar imagery at 0.3-m resolution for select
metropolitan areas around the world, 0.5-m reso-
lution across the United States and parts of Wes-
tern Europe, and 1-m resolution imagery across the
rest of the world. A total of 184 landslide occur-
rence sites were polygonized within the study area
(Bgure 1b). The landslide polygon locations were
validated with Google Earth Imagery in ERDAS
Imagine for inaccessible locations, and the acces-
sible locations were ground-truthed with a GPS
receiver. This step was done to ensure good quality

Table 1. Types of soil within the Kalimpong study area (NBSS and LUP data).

Symbol Description Occurrence Associated with

W001 Shallow, gravelly loamy soils that are

excessively drained and severely eroded.

Very steep side

slopes

Rock outcrops

W002 Moderately shallow, coarse-grained loamy soils

that are severely eroded and show strong

rockiness.

Steep side slopes Moderately shallow and well-drained gravelly

loamy soils with a moderately eroded loamy

surface.

W003 Deep, Bne loamy soils that are well-drained,

show moderate erosion and moderate

rockiness.

Steep side slopes Moderately shallow and excessively drained

coarse loamy soils with severely eroded loamy

surface showing moderate rockiness.

W004 Moderately shallow, gravelly loamy soils. The

surface is gravelly loamy, moderately eroded,

and shows moderate rockiness.

Steep side slopes Moderately shallow, gravelly loamy soils that are

somewhat excessively drained, The surface is

loamy, shows moderate erosion and rockiness.

W007 Very deep and imperfectly drained, Bne loamy

soils that have a moderately eroded loamy

surface.

Very gently

sloped lower

piedmont

plains

Very deep, coarse loamy soils that are

imperfectly drained.

W008 Very deep and poorly drained, coarse loamy

soils. The surface is loamy and moderately

eroded.

Level to nearly

level lower

piedmont

plains

Very deep and poorly drained coarse loamy soils.

Figure 3. (a) Soil zonation of Kalimpong and (b) landslide and non-landslide (safe) points.
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of data for training the Rprop ANN model. The
total area of inventory landslide polygons was 5.4
9 105 m2 with a standard deviation of 5948.50 m2.
To demarcate between the safe zones and unsafe
zones, a non-landslide safe point layer was created
using a slope cut-oA value (Bgure 3b). Out of 184
landslides, it was identiBed that only three points
fell within the 10� slope range (around 1.63% of
total slides). Hence, the slope value of 10� was
chosen as the threshold to demarcate between slide
occurrence and no slide occurrence. Slopes less
than 10� were considered as safe slopes and slopes
above 10� were considered as landslide-prone. Then
this information was entered into a custom-built
model in QGIS to randomly create 184 non-slide
points in zones of \10� slopes. The unsafe slope
regions were transformed into grids of 200 m 9 200
m to simulate the areas of landslide occurrence.
Similarly, the safe slope zones were transformed
into grids of the same dimensions to simulate areas
of no landslide occurrence. The grids were ran-
domly distributed within the safe and unsafe
slopes. These grids were then used to segregate the
training and testing data into 80% (424 observa-
tions) and 20% (110 observations) of total grids
respectively. Few prominent landslides in Kalim-
pong have been illustrated in Bgure 2 with their
coordinates.

3.2 Thematic data layers of landslide factors

Various factors that contribute to landslide study
have been identiBed through an extensive literature
review (table 2). The landslide factors can be
determined through the knowledge of landslides
(Guzzetti et al. 1999). A total of 11 landslide factors
were considered to suitably contribute to landslide
phenomena in Kalimpong. These factors can be
subdivided into geomorphological (slope, elevation,
curvature, aspect), hydrological (distance to drai-
nage, topographic wetness index – TWI), geological
(distance to lineaments, soil type), anthropogenic
(distance to roads, landuse), physiographic (nor-
malized difference vegetation index – NDVI), and
the main triggering factor (rainfall). All the land-
slide factors, their data sources anddetails, and some
references have been summarized in table 2.

3.2.1 Geomorphological factors

These factors were derived using ArcGIS 10.6.1
from Cartosat-1 Digital Elevation Model

(CartoDEM) downloaded from https://bhuvan.
nrsc.gov.in. It is a DEM by ISRO and has a reso-
lution of around 30 m. The elevation range was
subdivided into 82–486.49, 486.49–844.50,
844.50–1223.76, 1223.76–1627.28, 1627.28–2124.87,
and 2124.87–3124 m using the Jenks Natural
breaks (JNB) classiBer for training the Rprop ANN
model (Bgure 4a). This classiBer identiBes break-
points between classes in a way that the difference
between each class is maximized (Federici et al.
2007; Conforti et al. 2014). Higher elevation and
landslides have direct co-relation (Umar et al.
2014). Aspect aAects the rate of weathering by
strengthening the eAects of direct sunlight expo-
sure, the impact of rainfall, and the abrasion of dry
winds (Ercanoglu and Gokceoglu 2002). Weath-
ered material on the slope takes a long time to
consolidate which leaves the loose material on the
slopes ready to slide. Data values of aspect were
also derived in ArcGIS from the CartoDEM
(Bgure 4b). The aspect range (–1� to 360�) was
subdivided into eight categories for this study, viz.,
N (north) to NE (north-east) facing (0�–45�), NE
to E (east) facing (45�–90�), E to SE (south-east)
facing (90�–135�), SE to S (south) facing
(135�–180�), S to SW (south-west) facing
(180�–225�), SW to W (west) facing (225�–270�),
W to NW (north-west) facing (270�–315�), and
NW to N facing (315�–360�). A Cat aspect of –1�
was not taken in the analysis as Cat surfaces do not
contribute to landslides. Slope plays a very crucial
role in landslide occurrence by reducing the shear
strength of slope materials. Steeper slopes increase
the tendency of landslide occurrence (Nefeslioglu
et al. 2010; Mandal and Mandal 2018). It was
observed that the slope values range from 0� (Cat)
to a little over 70� (steep-slope) in the study area.
The slope range was sub-classed using the JNB
classiBer into 0�–12.75�, 12.75�–22.51�,
22.51�–30.63�, 30.63�–39.83�, and 39.831�–71.18�
(Bgure 4c). Curvature represents how the slope
gradient varies spatially. The topography can have
convex (positive curvature), concave (negative
curvature), or straight segments (0 curvature) of
the slope (Conforti et al. 2014). Concave curva-
tures lead to the concentration of drainage which
saturates (moisture saturation) and lubricates the
slope materials, greatly reducing its shear strength.
The probability of a landslide event increases with
higher negative values of curvature which repre-
sent an increasing degree of concavity (Mondal and
Mandal 2019). Standard curvature values were
taken for this study. Standard curvature combines
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both planform and proBle curvatures. The plan
curvature aAects how the water and landslide
debris converges or diverges over the space, and
the proBle curvature inCuences the speed of the
Cow. A positive planform curvature value indicates
sideward convexity while a positive proBle curva-
ture indicates upward concavity of the surface.
They aAect the rate of erosion and deposition, and
hence the sediment yield (Das 2021). The standard
curvature values were in the range of –44 to 40.
This range was divided into curvature classes of
–44 to –20.03, –20.03 to –11.96, –11.96 to –3.97,
–3.97 to –0.02, –0.02 to 4.01, 4.01–7.96, 7.96–12,
12–40 using the JNB classiBer (Bgure 4d).

3.2.2 Hydrological factors

The proximity of a location to drainage has a posi-
tive relationship with landslide phenomena (Yilmaz
2009). Greater proximity to streams led to a higher
probability of landslide occurrence and vice-versa
(Lee and Pradhan 2007). Streams could adversely
aAect the stability by either eroding the toe or sat-
urating the slope or both (Gokceoglu and Aksoy
1996; Pradhan et al. 2010; Yalcin et al. 2011). The
CartoDEM was used to build the drainage map.
After the vector drainagemapwas created, multiple
ring buAers were generated at intervals of 30, 70,
150, 300, and[300 m for covering the entire study
area. This buAer map was then rasterized in ArcGIS
for use in the analysis (Bgure 5a). TWI represents
the moisture saturation condition in the terrain,
which indicates the accumulation of drainage
(Beven and Kirkby 1979). The role of moisture
saturation (m.s.) towards landslide occurrence has
already been described in section 3.2.1. The TWI
map (Bgure 5b) was prepared from the slope map
and Cow accumulationmap using a raster calculator
in ArcGIS 10.6.1 by applying a modiBed form of
Beven and Kirkby’s equation for TWI (1979) as
stated in equation (1):

TWI ¼ aþ 1ð Þ � cell size

tan b� p
180

� �
þ 0:001

; ð1Þ

where a represents Cow accumulation, and b is the
slope in degrees. The TWI values range from 0.71
(low m.s.) to 19.98 (high m.s.). The TWI values
were sub-divided into 0.70–2.83, 2.83–3.75,
3.75–4.70, 4.70–5.78, 5.78–7.13, 7.13–8.81,
8.81–10.97, and 10.97–19.98 using the JNB classi-
Ber for training the Rprop ANN model.T
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3.2.3 Geological factors

Lineaments are very important geological features
that inCuence landslides (O’leary et al. 1976). They
signify faulting, shear cracks, and joints in the
underlying lithological formations. This makes the
terrain fragile which is considered to be prone to
landslides (Mondal and Mandal 2019). The chance
of landslide occurrence is inversely related to the
distance from lineaments (Choi et al. 2012). To
produce the lineament map, Bhuvan Web Map
Services (WMS) were used (https://bhuvan-app1.
nrsc.gov.in/thematic/thematic/index.php). The
WMS layer has the West Bengal lineament map of
1:50,000 scale from which the lineaments in
Kalimpong were extracted. After the vector linea-
ment map was created, multiple ring buAers were
generated at intervals of 100, 400, 1000, 2000, 3500,
5000, 6500, and 8000 m for the Kalimpong study
area (Bgure 6). The inCuence of soil types on the
occurrence of landslides has been discussed in

section 2. Hard copy NBSS & LUP soil maps at a
scale of 1:5,00,000 were scanned and geo-referenced
to the required projection system using Image-to-
Image registration in ERDAS Imagine. The vari-
ous soil types in the study area of Kalimpong are
W001, W002, W003, W004, W007, W008 as per
NBSS & LUP data, Kolkata (Bgure 3a) (table 1).

3.2.4 Anthropogenic factors

Thedistance to roads has a similar eAect on landslide
occurrence as distance to drainage (Ayalew and
Yamagishi 2005). Road construction on hilly areas
requires cutting of slopes which destabilizes the
consolidated material and makes it prone to land-
slides. The roads in the study area were digitized
manually in ArcGIS 10.6.1. For this, the World
Topographic Map was used as Base Map. It has a
scale of 1:4,000 for India (the coverage and source
details canbe found inwww.arcgis.com/home/item.
html?id=30e5fe3149c34df1ba922e6f5bbf808f). After

Figure 4. Geomorphological landslide factor rasters. (a) Elevation, (b) aspect, (c) slope, and (d) curvature.
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the vector road map was created, multiple ring
buAers were generated at intervals of 20, 50, 100, 400,
1000, 2000, 3500, 5000 6500, and 8000 m (Bgure 7a).
Landuse plays a crucial role in the modiBcation of
consolidated slope material through anthropogenic
intervention (Yalcin 2008). Infrastructure works of
roads, buildings, etc., especially in hilly areas lead to
destabilization of slopes due to overburden and
undercutting. Expansion of towns and villages also
causes deforestationwhich reduces the reinforcement
provided by roots against soil erosion. To prepare the
landuse map, LISS-IV images were subjected to
supervised image classiBcation in ERDAS Imagine.
Spectral signatures spread throughout the image
were taken for the landuse classes of agriculture,
dense forest, open forest, water body, settlement,
barren land, and sand. These signatures were used to
classify the image based on the maximum likelihood
classiBer. The signatures were then checked by com-
putingKappa fromthe contingencymatrix.Fromthe
matrix, Kappa was calculated to be 0.987. Since the
calculated Kappa value showed almost perfect
agreement (Kappa between 0.81 and 1.00) with the
reference data (Landis and Koch 1977), the signa-
tures were used for landuse classiBcation. The incor-
rectly classiBed pixels were thenmanually recoded in
ERDAS IMAGINE producing the Bnal landuse map
(Bgure 7b).

3.2.5 Physiographic factor

Soils with sparse vegetation or barren lands are
more susceptible to landslides. In contrast, vege-
tated slopes provide root reinforcement to hold the
slope material in place and also mitigate the eAect
of rain and runoA. This causes an increase in soil

strength and stability which ultimately reduces the
susceptibility to landslides (Beguer�ıa 2006). NDVI
is a representation of the vegetative cover in an
area and thus, indicates the extent of protection of
the slope against landslides. The NDVI map
(Bgure 8a) was derived from the LISS-IV image in
ArcGIS 10.6.1. The NDVI values in vegetation
deprived regions were as low as –0.27 up to 0.84
(high) in regions of dense forest cover. The NDVI
values were sub-classed into –0.27 to 0.19,
0.19–0.43, 0.43–0.57, 0.57–0.67, and 0.67–0.83 to
train the Rprop ANN model.

3.2.6 Triggering factor

The most commonly cited triggering factor for
landslides is rainfall. The probability of landslide
initiation is directly proportional to the amount of
rainfall (Pradhan and Lee 2007). Rainfall data of 10
years was downloaded from the Worldclim website
(https://worldclim.org/data/worldclim21.html).
This high-resolution rainfall data was used for the
analysis (Bgure 8b). Kalimpong’s average monthly
rainfall in the monsoon seasons from June to
September was found to be in the range of 119–417
cm. The rainfall values were categorized using the
JNB classiBer as 119.21–186.60, 186.60–237.60,
237.60–275.77, 275.77–314.83, 314.83–361.06, and
361.06–417.12 cm for training the Rprop ANN
model.

3.3 WorkCow

The detailed workCow of the study (Bgure 9)
consists of (i) collection of data and pre-process-
ing, (ii) preparation of thematic data layers,

Figure 5. Hydrological landslide factor rasters. (a) Distance to drainage and (b) TWI.
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(iii) generation of the datasets for the Rprop ANN
model, (iv) modelling of the Rprop ANN, (v) vali-
dation of the model using the area under the curve
(AUC) of the receiver operating characteristic
(ROC) curve, and (vi) generation of Kalimpong’s
landslide susceptibility map.

4. LSM using Rprop ANN model

The resilient back propagation (Rprop) ANN
model was originally designed to solve some
inherent problems of the traditional Backpropa-
gation (Bprop) ANN model. The latter has been
widely used for landslide susceptibility studies
(Park et al. 2009; Choi et al. 2012; Bahareh et al.
2019). This study proposes the use of the Rprop
ANN to do LSM instead of the traditional Bprop
ANN model due to its well-established advantages
in soft computing. Researchers like Navneel et al.
(2013) have already found Rprop to be way ahead
of Bprop in terms of speed and accuracy. Similar to
the Bprop, the Rprop is also a supervised learning
algorithm except for the weight update mecha-
nism. Due to this, Rprop converges the training
error extremely fast, and can also handle imprecise
input data (Widodo et al. 2017). The landslide
factors are the input nodes of the ANN model, and
the training dataset of the landslide inventory is
the output node in the training phase. Comma-
separated value (csv) Bles for training and testing
datasets were prepared. Each Ble consisted of
landslide locations and non-landslide locations.

The landslide factor raster values for the same
locations were adjoined to the csv Bles. Landslide
locations were given a value of 1 and non-landslide
locations were given a value of 0, thus transforming
each factor into binary 1s and 0s. The categorical
variables of aspect, landuse, soil type, distance to
drainage, distance to lineament, and distance to
road were converted to numeric variables of 0s and
1s by dividing each variable into its subclasses
using dummy variables. All the variables were then
normalized using Z-score standardization or
Min–Max scaling as typical neural network algo-
rithms require data that are on a 0–1 scale. The
Rprop ANN model was trained using 424 obser-
vations from the training dataset in this study. The
ANN develops the relationship between the land-
slide factor and the known landslide output in the
training stage through a successive update of
weights. Each input node of the landslide factors
gets a Bnal weight which is a measure of its con-
tribution to the occurrence of a landslide. Bprop
ANN calculates changes in landslide factor weights

(DwðtÞ
ij ) through the magnitude of the partial

derivative of the error function (E) (equation 2).
Riedmiller and Braun (1992) proposed the Rprop
algorithm and its underlying equations. These
equations have been adapted to determine land-
slide susceptibility in this study.

DwðtÞ
ij ¼ a� x

ðtÞ
i � dðtÞj ; ð2Þ

where a is the learning rate of the ANN model, x
ðtÞ
i

represents the input weights propagating back to

Figure 6. Distance to lineament map.

J. Earth Syst. Sci.         (2022) 131:130 Page 11 of 23   130 



the ith neuron at time step t, and dðtÞj is the

corresponding error gradient of the jth landslide
factor. Rprop alternatively calculates individual

DðtÞ
ij (update-value) for the weights of each landslide

factor in the following way (equation 3):

DðtÞ
ij ¼

gþ � Dðt�1Þ
ij ; if

oEðt�1Þ

owij
� oEðtÞ

owij
[ 0

g� � Dðt�1Þ
ij ; if

oEðt�1Þ

owij
� oEðtÞ

owij
\0

D t�1ð Þ
ij ; else

8
>>>>><

>>>>>:

ð3Þ

where 0\ g� \ 1\ gþ. DðtÞ
ij continuously adjusts

during the learning process based on the sign of the
partial derivative of E and not its magnitude. gþ

and g� are constants by which DðtÞ
ij of each landslide

factor is adjusted to control the speed and accuracy

of weight updates. After the DðtÞ
ij values for each

weight are calculated, the weights of the landslide
factors are updated in two ways. First, if the
current and previous partial derivatives of E retain
their signs, then the weight is updated using
equation (4):

DwðtÞ
ij ¼

�DðtÞ
ij ; if

oEðtÞ

owij
[ 0

þDðtÞ
ij ; if

oEðtÞ

owij
\0

0; else:

8
>>>><

>>>>:

ð4Þ

Second, if the signs of the current and previous
partial derivatives have changed, that means the

Figure 7. Anthropological landslide factor rasters. (a) Distance to roads and (b) landuse.

Figure 8. Physiographic and triggering factor rasters. (a) NDVI and (b) rainfall.
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local minimum was skipped, and thus, the weight is
reverted to its last stage. Its previous partial
derivative is also changed and set to 0 (equation 5).

DwðtÞ
ij ¼ �Dwðt�1Þ

ij ; if
oEðt�1Þ

owij
� oEðtÞ

owij
\0: ð5Þ

The new weight of the jth landslide factor is
calculated using equation (6):

w
ðtþ1Þ
ij ¼ w

ðtÞ
ij þ DwðtÞ

ij ; ð6Þ

where w
ðtÞ
ij is the old weight of the jth landslide

factor, and w
ðtþ1Þ
ij is the new weight of the jth

landslide factor. The new weights are computed
until a suitable threshold of error convergence is
achieved by the Rprop ANN model.
The Rprop ANN architecture was conBgured as:

(i) no. of hidden layers=5; (ii) algorithm=RPROP;
(iii) activation function = Sigmoid (default); (iv)
error function = cross entropy; (v) maximum no. of
steps = 1e+08; (vi) threshold = 0.01 (default), (vii)
start weights = null (default); (viii) learning-
rate.limit=null (default); (ix) learningrate.factor=
list (minus = 0.5, plus = 1.2) (default). The training
error or root mean square error (RMSE) of the
Rprop ANN model (Bgure 10) in this study was
found to be 0.02635, and a threshold of 0.008912 was
reached in 1,614 steps. The Bnal weight of the jth
landslide factor upon convergence is given by

Wj ¼ w
ðtþ1Þ
ij . The Bnal landslide susceptibility index

using Rprop (LSIRprop) is given by equation (7):

LSIRprop ¼
Xn

j¼1

Cj �Wj ; ð7Þ

where n is the total no. of landslide factors, and Cj

is the value of the jth landslide factor.

5. Results and discussion

5.1 Contributions of landslide factors
to landslide

The value of Wj from table 3 using Rprop ANN
shows the contributions of each landslide factor to
landslide occurrence. The magnitude of the weights
Wj can be used to rate the significance of a land-
slide factor. The factors which have a greater
weight contribute more to a landslide phenomenon
than ones with lower weights (Dong et al. 2020).
All the landslide factors and their Rprop ANN
weights have been summarized in table 3. The
weights allotted to the elevation classes by Rprop
ANN indicate that the maximum chances of land-
slide occurrence are in the range of 844.50–1223.76
m. From the weights of slope sub-classes, it is
evident that as the slope increases and exceeds 30�,
the terrain starts to become more prone to land-
slide events. Higher slopes of the region, i.e.,
39.831�–71.18� are the most dangerous in terms of
landslide activity. The weights of the aspect classes
show that NW to N facing, SE to S facing, and S to
SW facing aspects contribute greater than other
aspect classes to landslide occurrence. The trend of
weights of curvature classes indicates that the
slopes with greater concavity (negative values) are
more susceptible to landslide phenomena. The
lower NDVI values representing lack/sparse vege-
tation have higher weights, and thus, contribute

Figure 9. WorkCow of the Rprop ANN architecture and analysis.
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greater to landslides than higher NDVI values
representing dense vegetation. There is a general
increasing trend of weights of TWI signifying that
the slopes with greater moisture saturation, i.e.,
higher TWI have a greater eAect on slope insta-
bility causing landslides. The subclasses for lan-
duse with their weights are dense forest (0.0037),
open forest (0.098), waterbody (0.049), settlement
(0.10), barren (0.12), sand (0.041), and agriculture
(0.019), from which it is evident that barren land is
highly responsible for landslide occurrences with
respect to other landuse classes, and dense forests
show minimum contribution. This is also in con-
formity with the NDVI weights as mentioned ear-
lier. As per the Rprop ANN model, the landuse
category of waterbody got a weight of 0.049. This
can be attributed to the size of landslide grids
chosen for the study. Landslides in the study area
were simulated to 200 m 9 200 m square grids to
represent the true extent of landslides. Thus, some
landslide grids near a waterbody also subsumed
some pixels of the waterbody. Therefore, the
waterbody got a contribution value despite its non-
contributory nature to landslide. However, the
contribution of waterbody as regards other landuse
categories, and other landslide factors, is low, and
it conforms to other landslide studies. Also, the low
overall weight of landuse (table 3) negates the
impact of the contribution of a waterbody to
landslide susceptibility. From all the soil types,
type W004, i.e., moderately shallow soils with a
gravelly-loamy surface, excessively drained, show-
ing moderate erosion and rockiness found on steep
side slopes show a maximum contribution to
Kalimpong’s landslide which conforms with Mon-
dal and Mandal (2019) study. The lowest contri-
bution is from soil type W002 which shows strong
rockiness (table 1). A location within a proximity
of 70–150 m to a drainage source had the highest
inCuence among the other distances as per the
Rprop ANN model. The distance to lineaments
also plays some part in landslide occurrence, as
observed from its category weights. Locations
nearer to a lineament have more chances of land-
slide: 0–100 m (0.10) than locations farther away:
6500–8000 m (0.071). A location’s proximity to a
road also inCuences its landslide susceptibility. The
categorical data indicates that a location within
20–50 m of a road may be prone to landslides.
From the subclass weights of the triggering factor,
i.e., rainfall it can be concluded that the higher
rainfall values of over 275 cm have greater chances
of triggering a landslide.

5.2 Landslide factor importance plot

A landslide factor importance graph was drawn
based on the overall weights of each factor
(Bgure 11). The overall weights for each landslide
factor are elevation (0.21), slope (0.62), aspect
(0.07), curvature (0.069), NDVI (0.51), TWI (0.28),
distance to drainage (0.053), distance to roads
(0.0698), distance to lineaments (0.0653), landuse
(0.0615), rainfall (0.17), and soil type (0.0962)
(table 3). The slope of the terrain has been observed
to have the highest contribution with an overall
weight of 0.62, and the lowest contributor was dis-
tance to drainage with an overall weight of 0.053.
Thus, it can be inferred that slope as a geomorpho-
logical factor is themost significant factor that leads
to landslides inKalimpong. Distance to drainage got
low overall weight as it may not always contribute
to landslides. For instance, a fragile cliA near a
stream, or a steep slope with unconsolidated sedi-
ments may be landslide-prone even without the
inCuence of drainage, which is the case in Kalim-
pong. The presence of coarser soil type W004 and
steep slopes (section 5.1) substantially contribute to
landslide occurrences with slight lubrication from
rainwater and is independent of nearby drainage.
Other geomorphological landslide factors, viz., ele-
vation, curvature, and aspect show contributions of
0.21, 0.069, and 0.07, respectively. It can be deduced
from this, that the elevation of the hilly terrain of
Kalimpong is another important geomorphological
contributing factor to landslides, second to the
slope. Curvature and aspect have relatively lower

Figure 10. The Rprop ANN model.
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Table 3. Contribution of landslide factors to landslides through Rprop ANN weights.

Sl. no. Landslide factor Sub-class

Rprop ANN

weight

Overall weight

(Wj) Total pixels

% of the

total area

1. Elevation 82–486.49 m 0.25 0.21 119992 23.34

486.49–844.50 m 0.34 118295 23.01

844.50–1223.76 m 0.53 103026 20.04

1223.76–1627.28 m 0.29 86215 16.77

1627.28–2124.87 m 0.17 58865 11.45

2124.87–3124 m 0.13 27659 5.38

2. Slope 0�–12.75� 0.05 0.62 81337 16.10

12.75�–22.51� 0.12 130252 25.79

22.51�–30.63� 0.27 135690 26.86

30.63�–39.83� 0.58 110910 21.96

39.831�–71.18� 0.73 46883 9.29

3. Aspect N to NE: 0�–45� 0.0037 0.07 55403 10.97

NE to E: 45�–90� 0.098 65677 13.00

E to SE: 90�–135� 0.049 78779 15.59

SE to S: 135�–180� 0.10 64826 12.83

S to SW: 180�–225� 0.12 66704 13.21

SW to W: 225�–270� 0.041 67469 13.35

W to NW: 270�–315� 0.019 52283 10.35

NW to N: 315�–360� 0.13 53931 10.68

4. Curvature �44 to �20.03 0.127 0.069 1030 0.20

�20.03 to �11.96 0.235 23807 4.63

�11.96 to �3.97 0.111 166201 32.33

�3.97 to �0.02 0.084 131831 25.64

�0.02 to 4.01 0.041 98336 19.13

4.01 to 7.96 0.019 68000 13.23

7.96 to 12 0.008 19466 3.79

12 to 40 0.015 5432 1.05

5. NDVI �0.27–0.19 0.56 0.51 8362 1.62

0.19–0.43 0.84 24874 4.84

0.43–0.57 0.48 80858 15.72

0.57–0.67 0.21 196938 38.31

0.67–0.83 0.09 203084 39.50

6. TWI 0.70–2.83 0.0029 0.28 87815 17.08

2.83–3.75 0.0014 119027 23.15

3.75–4.70 0.0046 112634 21.91

4.70–5.78 0.067 88859 17.28

5.78–7.13 0.098 57043 11.09

7.13–8.81 0.164 28820 5.61

8.81–10.97 0.249 14783 2.88

10.97–19.98 0.35 5122 1.00

7. Distance to drainage 0–30 m 0.045 0.053 1 0.00

30–70 m 0.017 104365 27.48

70–150 m 0.099 0 0.00

150–300 m 0.011 275411 72.52

[300 m 0.093 0 0.00

8. Distance to roads 0–20 m 0.0037 0.0698 1 0.00

20–50 m 0.098 0 0.00

50–100 m 0.049 56219 11.35

100–400 m 0.1 0 0.00

400–1000 m 0.12 121224 24.50

1000–2000 m 0.041 127377 25.71

2000–3500 m 0.019 82140 16.58
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impacts on landslide phenomena. Hydrological
landslide factors of distance to drainage and TWI
haveWj values of 0.053 and 0.28, respectively. This
shows that TWI, i.e., the saturation condition of the
slope also plays a very crucial role as it lubricates the
slope materials. Geological landslide factors, viz.,
distance to lineaments and soil type have contri-
butions of 0.0653 and 0.0962, anthropogenic land-
slide factors, viz., distance to roads and landuse
haveWj values of 0.0698 and 0.0615. The absence of
vegetation plays a very significant role in landslide
occurrence as evident from theWj value of NDVI at
0.51 (as discussed in section 5.1). This factor is even
more significant than elevation and TWI, and only
the overall second important landslide factor in
Kalimpong. The values of the slope, TWI, and
NDVI suggest that barren or sparsely vegetated
land on high and wet slopes would be highly sus-
ceptible to landslides. The trigger factor, i.e.,

rainfall was allotted a value of 0.17 by the Rprop
ANN model, which indicates its moderate signifi-
cance. Therefore, the landslide factors contributing
to landslides in Kalimpong can be arranged in
descending order of significance as the slope (0.62),
NDVI (0.51), TWI (0.28), elevation (0.21), rainfall
(0.17), soil type (0.0962), aspect (0.07), distance to
roads (0.0698), curvature (0.069), distance to lin-
eaments (0.0653), landuse (0.0615) and distance to
drainage (0.053).

5.3 Rprop ANN model validation and accuracy
test

The landslide susceptibilitymodel has no significance
unless the results are validated (Chung and Fabbri
2003; Beguer�ıa 2006). The model validation process
can bedivided into twophases. First, themodel is run
to predict the data of the training dataset which was

Table 3. (Continued.)

Sl. no. Landslide factor Sub-class

Rprop ANN

weight

Overall weight

(Wj) Total pixels

% of the

total area

3500–5000 m 0.13 81790 16.51

5000–6500 m 0.087 20769 4.19

6500–8000 m 0.05 5942 1.20

9. Distance to lineaments 0–100 m 0.10 0.0653 9514 1.86

100–400 m 0.046 0 0.00

400–1000 m 0.027 129088 25.22

1000–2000 m 0.10 130768 25.55

2000–3500 m 0.13 0 0.00

3500–5000 m 0.013 151369 29.56

5000–6500 m 0.035 88103 17.22

6500–8000 m 0.071 2938 0.57

10. Landuse Dense forest 0.0037 0.0615 349282 67.94

Open forest 0.098 64263 12.50

Waterbody 0.049 11002 2.14

Settlement 0.10 2776 0.54

Barren 0.12 4216 0.82

Sand 0.041 874 0.17

Agriculture 0.019 81691 15.89

11. Rainfall 119.21–186.60 cm 0.028 0.17 12206 2.37

186.60–237.60 cm 0.014 29278 5.66

237.60–275.77 cm 0.079 102288 19.90

275.77–314.83 cm 0.145 103571 20.15

314.83–361.06 cm 0.153 157125 30.56

361.06–417.12 cm 0.189 109624 21.32

12. Soil type W001 0.14 0.0962 125544 24.42

W002 0.052 15320 2.98

W003 0.098 33468 6.51

W004 0.15 258028 50.19

W007 0.058 70792 13.77

W008 0.079 10950 2.13
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used to train the model. This phase assesses the Bt-
ness of the model and its suitability for prediction.
The accuracy by which it predicts the training data-
set is called the success rate. Second, the model is run
on the testing dataset whichwas not used for training
the model. The accuracy by which it predicts the
testing dataset is called the prediction rate. This
indicates the actual prediction capability of the
model. A prediction rate of 0.5 or 50% indicates that
themodel prediction is no good than a random guess.
Higher the prediction rate, the higher the suitability
of the model for making actual predictions (Chung
and Fabbri 2003). Validation of the model in the two
phases with high success and prediction rates allows
the application of the model in any zone with similar
geo-environmental features (Conforti et al. 2014).
Therefore, the receiver operating characteristic
(ROC) curve has been developed to evaluate and
quantify the prediction capability of the model
(Beguer�ıa 2006; Carrara et al. 2008; Dong et al. 2009;
Baeza et al. 2010). The ROC curves are plotted with
false positive rate (1 – speciBcity) on the x-axis and
the true positive rate (sensitivity) on the y-axis for
varying probability thresholds.The true positive rate
indicates the proportion of actual landslide occur-
rences that were correctly predicted as landslides,
while the false positive rate indicates the proportion
of non-landslide occurrences that were incorrectly
predicted as landslides (Swets 1988). The area under
the curve (AUC) of the ROC curve, is a quantitative
indicator of the prediction accuracy of the model
(Akgun et al. 2012).TheROC is drawn for eachphase
of validation and the AUC is determined. The AUC
value for the Brst phase represents the success rate of
the model, and the AUC value for the second phase
represents the prediction rate of the model.
The Rprop ANN model in this study was vali-

dated using the above methodology. The training
and testing datasets derived from the ground/
Google-Earth validated landslide inventory were
used. Firstly, the Rprop ANN model prediction
was checked on the training data itself to see if the
model could predict its training data accurately. It
was seen that the model classiBed all 278 obser-
vations of 0s and 146 observations of 1s of its
training data (424 observations) correctly, where
0s represent no landslide occurrence and 1s repre-
sent landslides. When the Rprop ANN model was
used to classify the testing data (110 observations),
it was seen that 55 0s were classiBed as 0s and 19 0s
were classiBed as 1s. Also, 28 1s were classiBed as
1s, and 8 1s were classiBed as 0s. The ROC curves
were plotted with false positive rate on the x-axis

and the true positive rate on the y-axis for varying
landslide susceptibility thresholds in R Studio. The
ROC curves for success rate as well as the predic-
tion rate of the Rprop ANN Model are illustrated
in Bgure 12(a and b), respectively. From the ROC
curves, the AUC for success rate was calculated to
be 1 or 100%, and for the prediction rate, it was
0.8435 or 84.35%. This indicates that the Rprop
ANN model in this study is a good-Bt model and
has a high predictive capability to forecast future
landslides.

5.4 Landslide susceptibility map by Rprop ANN

The Rprop ANN model was used to compute the
prediction of landslide occurrence using the pixel
values of the rasters of all landslide factor layers
taken for this study. The Bnal landslide suscep-
tibility map of Kalimpong was produced in R
Studio using equation (8) (the extended form of
equation (7) using overall weight ‘Wj’ values
from table 3):

LSIRprop ¼ RpropSlope � 0:62þ RpropElevation � 0:21

þ RpropTWI � 0:28þ RpropRainfall � 0:17

þ RpropNDVI � 0:51þ RpropCurvature

� 0:069þ RpropSoil type � 0:0962

þ Rpropdistance to drainage � 0:053

þ Rpropdistance to lineament � 0:0653

þ Rpropdistance to road � 0:0698

þ RpropAspect � 0:07þ Rproplanduse

� 0:0615: ð8Þ

The landslide susceptibility map of the
Kalimpong district was annotated in ArcGIS

Figure 11. Landslide factor importance graph.
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10.6.1 (Bgure 13). The susceptibility values in
the map range from 0.01 (extremely low) to 1
(very high). The map classiBes the entire study
area into Bve landslide susceptibility zones
(LSZ) of very high (0.81–1), high (0.60–0.81),
moderate (0.40–0.60), low (0.15–0.40), and
extremely low (0.01–0.15) susceptibility to
landslides using JNB classiBer. From the
study, the percentage area-wise distribution of
landslide susceptibility zones in the study area
was found (Bgure 14).

5.5 Comparison with earlier studies

A study by Chawla et al. (2018) for LSM in Dar-
jeeling Himalaya using particle swarm optimiza-
tion (PSO)-SVM assigned various weights to their
parameters. These weights were based on litera-
ture and past knowledge of landslides. Their
selected landslide factors and weights were as
drainage buAer (10), lineament buAer (9), slope
(8), rainfall (7), earthquake (7), lithology (6),
landuse (5), fault buAer (5), valley buAer (4), soil
(3), relief (3), and aspect (1). The Rprop ANN
weights allotted to the slope (high contribution)
and aspect (low contribution) in this study (sec-
tion 5.2) conform to Chawla et al. (2018) study.
Another study by Mondal and Mandal (2019) of
LSM in Darjeeling Himalaya using the Index of
Entropy (IOE) model yielded a prediction accu-
racy of 78.2% of the model. In comparison, the
Rprop ANN model in this study gave an accuracy
of 84.35% for the same Darjeeling Himalayan
Region (including Kalimpong). This signiBes that

the Rprop ANN model can give better accuracy
with the landslide factors taken in this study.
Mondal and Mandal (2019) landslide factors and
their IOEweights were as elevation (0.070), aspect
(0.086), slope (0.051), curvature (0.051), geology
(0.109), soil (0.185), lineament density (0.025),
distance from lineament (0.081), drainage density
(0.041), distance to drainage (0.105), SPI (0.022),
TWI/CTI (0.107), rainfall (0.053), NDVI (0.022),
and LULC (0.070). Their study determined soil
type as the most important contributing factor to
landslides, whereas slope was the highest con-
tributor in this study with more accuracy. They
also classiBed the LSZ map into Bve zones with %
of total pixels as very low (5.17%), low (24.08%),
moderate (35.55%), high (25.48%), and very high
(9.72%). The present study has LSZwith their% of
total pixels as extremely low (55.8%), low (24.9%),
moderate (7.6%), high (5.6%), and very high
(6.1%). There is a similar amount of area in the
very high and low susceptibility zones, whereas
there is a difference in the results in the other
categories (Bgure 14). A recent study for LSM of
Sweden using Bprop ANN gave a prediction rate
accuracy of 80.1% (Abbas et al. 2019). This indi-
cates the superiority of the Rprop ANN model for
LSM over the Bprop ANN model in terms of pre-
diction rate accuracy (as described in section 4).

5.6 Important locations in landslide susceptible
zones

The derived landslide susceptibility map was cat-
egorized in extremely low, low, moderate, high,

Figure 12. AUC of ROC curves for (a) success rate and (b) prediction rate.
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and very high susceptibility zones covering 610,
272, 83, 61, and 66.7 km2 of Kalimpong’s area,
respectively (Bgure 14). The important locations in
the study area falling in different susceptibility
zones have been categorized in table 4. The loca-
tions were identiBed by overlaying the suscepti-
bility map on a Google Map base layer in ArcGIS
10.6.1. Some locations have been illustrated in
Bgure 2. Figure 2(a) shows a section of the lava
road aAected by a landslide. The section lies in
27�02002.500N, 88�41038.700E and falls in the mod-
erate susceptibility category as per the landslide
susceptibility map (Bgure 13). Figure 2(b) illus-
trates a landslide-damaged road near Yang Makum
Khasmahal. This region falls in the high

susceptibility category and has coordinates
26�56034.100N, 88�29011.400E. Figure 2(c) was also
taken from a high landslide susceptibility region
famous for landslide damaged roads, viz., the
NH10 near the Teesta River at 26�56034.100N,
88�29011.400E. The NH10 runs almost parallel to the
Teesta on the western side of Kalimpong. The
highway is extremely prone to landslides and is
usually damaged in the rainy seasons cutting oA
Kalimpong’s connectivity to the plains. One of the
very high susceptibility places is the Nimbong
Khasmahal Region of Kalimpong. Figure 2(d)
shows a place near Nimbong Khasmahal at
26�57042.200N, 88�34049.300E. Figure 2(e) shows a
damaged section of Rishi Road (27�05024.800N,

Figure 13. Kalimpong’s landslide susceptibility map using Rprop ANN.

Figure 14. Percentages of total area under different susceptibility categories.
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88�39001.000E) which is a moderate susceptibility zone
as per the Bnal landslide susceptibility map. The
main characteristic features of the zones of moderate
to high susceptibility are high slopes, degraded veg-
etative cover, retention of water in the slopes after
heavy rainfall, and moderate elevation as discussed
in section 5.1. The main Kalimpong town has low to
moderate susceptibility regions because of well-
established settlements, roads, and drainage net-
works. The low susceptibility regions show good
vegetative cover which holds the slope materials from
sliding as discussed in section 3.2.5 and section 5.1.
Forests in Kalimpong including the major portion of
Neora Valley National Park fall in the low to extre-
mely low susceptibility category (table 4).

6. Conclusion

In this study, the possible application of Rprop
ANN in landslide susceptibility mapping was
examined. Twelve landslide factors were processed
and converted to csv Bles for analysis. A suit-
able architecture was chosen to run the Rprop
ANN model, and it was veriBed using datasets that
were not used in training. After checking the
accuracy, the landslide susceptibility map was
prepared using the landslide factor raster layers.
The study also presents detailed discussions on the
contribution of landslide factors, a few comparisons
with earlier studies, and illustrates some important
landslide-affected locations in the study area.
However, a few limitations were recognized in this
study, viz., the inability to ground-validate inac-
cessible landslide locations, the size of the landslide
grids taken in this study (as described in section
5.1), and the consideration of 12 landslide factors
only. Despite the limitations, the landslide sus-
ceptibility map of Kalimpong developed using

Rprop ANN in this study showed a reasonable
accuracy. The prediction rate of the model at
84.35% highlights the suitability of the combina-
tion of the 12 landslide factors taken for this study.
The Bnal susceptibility map has distinguishable
areas of Bve susceptibility classes (Bgure 13), and
the results are encouraging. Even so, the prediction
accuracy may be improved by taking into account
the factors that have not been considered, e.g.,
lithology, soil overburden thickness, stream power
index, etc. Further, the size of grids may be taken
separately for each landslide to avoid overlapping
pixels of nearby drainages and add to the predic-
tion rate.
Conversely, the Rprop ANN has many inherent

advantages such as high speed and accuracy (sec-
tion 4). The speed and eDciency of this model
allowed the integration of 12 major landslide fac-
tors for the study without any burden on the sys-
tem’s computational capability. Thus, Rprop ANN
is feasible for working with a greater number of
landslide factors. Also, raster Bles of very high
resolution, i.e., small cell sizes, can be easily ana-
lyzed in a short time. This enables the user to
retain minute details of a landslide raster layer and
reduces the need to resample Bles into lower reso-
lutions due to system resource constraints. There-
fore, without compromising the quality of the
output, this model can be run on low-end systems
too. Other advantages include the absence of sub-
jectivity in assigning weights to landslide factors,
which is present in methods like the analytical
hierarchy process (AHP). Just like any other ANN
model, the Rprop ANN model is also independent
of the type of distribution of data. Both continuous
and categorical data can be integrated without
violating any model assumptions. Also, ANNs can
easily identify patterns and derive a solution set to
any kind of input data.

Table 4. Important locations in the study area and their landslide susceptibilities.

Susceptibility Locations in the study area

Extremely low–Low

(0.01–0.40)

Forests of Neora Valley National Park; Eastnar Forest; Eastern parts of Paren Forest; Paiengaon

Forest; main Kalimpong Town; Southern foothill plains of Kalimpong.

Moderate (0.40–0.60) Nobgaon Khasmahal; some parts of Kalimpong Town; Panbu Forest; Baluakhani near Teesta

River; Mangwa Forest; Western parts of Neora Valley; Ambiok, Dalim Basti.

High–very High (0.60–1) Regions around Rongo Village; Tangta Monastery; Southern part of Neora Valley National Park;

Region bounded by Pemling Khasmahal, Pagrangbong Khasmahal, and Nimbong Khasmahal;

Lolegaon; Sangsher Khasmahal North of Deolo Hill; Northwest region – South of Rangpo;

Munsong; Southern part of Yang Makum Khasmahal.
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The Bnal susceptibility map produced using
Rprop ANN highlights all the regions of Kalimpong
that need a policy maker’s attention. The moderate
to very high landslide susceptibility zones of
Kalimpong, where landslides occur frequently are
regions of immediate concern. These regions
require slope modiBcation like the use of chemical
binders, construction of retaining walls, pile driv-
ing, providing eDcient drainage, grouting of Bs-
sures in underlying rocks, etc., for stabilization of
the slope materials. Existing roads in and around
Kalimpong already have stretches reinforced with
retaining walls, but the stabilization work is mostly
post-mortem. To mitigate the devastating impacts
of landslides on life and property, it is imperative
to take preventive measures. Hence, this landslide
susceptibility map can be taken as a reference to
implement necessary ground improvement tech-
niques and landslide management eAorts. The
Rprop ANN model can also be used to quickly
develop landslide susceptibility maps to conduct
site suitability analysis for an infrastructure pro-
ject. Therefore, this study demonstrates the capa-
bility of the Rprop ANN model to obtain a reliable
landslide susceptibility map quickly and eDciently.
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