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Operational forecasting of tropical cyclone (TC) track and intensity in the IndiaMeteorologicalDepartment
(IMD) relies more andmore on the numerical weather prediction (NWP)model guidance from national and
international agencies particularly, on the medium range (24–120 h). Any improvement in TC forecasts by
theNWPmodels enhances the operational forecaster’s conBdence and capability. The real-time information
from the National Centre for Medium Range Weather Forecasting (NCMRWF) global NWP model
(NCUM-G) is routinely used by operational forecasters at IMD as model guidance. The present study
documents the improved skill of NCUM-G in forecasting the North Indian Ocean (NIO) TCs during
2015–2019, based on a collection of 1810 forecasts involving 22 TC cases. The study highlights three sig-
nificant changes in the modelling system during the recent Bve years, namely (i) increased grid resolution
from 17 to 12 km, (ii) use of hybrid 4D-Var data assimilation (DA), and (iii) increased volume of assimilated
data. The study results indicate a consistent improvement in the NCUM-Gmodel forecasts during the pre-
monsoon (April–May,AM) andpost-monsoon (October–December,OND)TC seasons. In addition to a 44%
reduction in the initial position error, the study also reports a statistically significant decrease in the direct
position error (DPE) and error in the intensity forecast, resulting in a forecast gain of 24 hrs. Comparing
NWP models with IMDs oDcial track error shows that NCUM-G and ECMWF model forecasts feature
lower DPE than IMD in 2019, particularly at higher (96, 108, and 120 h) lead times.

Keywords. Tropical cyclone forecast; uniBed model; NCUM; model veriBcation; track error; intensity
prediction; landfall prediction.

1. Introduction

Tropical cyclones (TCs) are among the strongest
and the most destructive natural disasters world-
wide. In particular, over the North Indian Ocean

(NIO), which consists of two basins, i.e., the Bay
of Bengal (BoB) and the Arabian Sea (AS), their
eAect is very devastating due to the frequency
and intensity of the TCs along the long coastlines
with dense population. In terms of frequency of
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occurrence, NIO witnesses 5–7% of cyclones that
form worldwide (Neumann 1993). The BoB
cyclones alone have accounted for 75% of global
deaths caused by TCs in the last 300 years (Dube
et al. 2014), with more frequent systems developing
over this basin in recent years (Singh et al. 2000).
There are two main cyclone seasons over the NIO,
i.e., the pre-monsoon season, which is April–May,
and the post-monsoon season is from October to
December. In recent years, the number of intense
cyclones has increased (Knutson et al. 2010; Deo
and Ganer 2013), resulting in increased destruction
(Emanuel 2005). For these reasons, the accurate
and timely forecasting of TCs is of extreme
importance in this region.
There are many studies based on NWP model

forecasts of TC generation and propagation in the
NIO (Mohapatra 2014; Mohanty et al. 2014, 2019;
Mohapatra and Sharma 2019). Mohapatra and
Sharma (2019) discussed various models and meth-
ods used by IMD in cyclone warning services in the
NIO. They emphasized NWP models’ importance,
including NCMRWF UniBed Model (NCUM-G)
and Global Forecast System (GFS), for predicting
track and intensity for 24–120 h forecasts. Mohap-
atra (2014) presented a detailed description of
methodologies used to verify track forecasts. It
highlights that the DPE of track forecasts is higher
in the AS than the BoB, and also, this error is higher
in the pre-monsoon season than post-monsoon.
Kotal et al. (2014) presented the cyclone prediction
system (CPS) developed at IMD for operational
cyclone forecasting over NIO. The forecasts of TCs
fromCPSwere veriBed, and itwas observed that this
model has good skill in predicting genesis, track,
intensiBcation, and decay of a TC. Mohanty et al.
(2019) showed that although the TC track predic-
tion has improved in recent years, the intensity
prediction is still a challenge for forecasters. How-
ever, with the development of high-resolution NWP
models, the forecasts of theTC intensity have shown
considerable improvement (Bender et al. 2007;
Gopalakrishnan et al. 2012).
Many studies relate the eAect of data assimila-

tion (DA) on the forecasts of TCs (Rakesh and
Goswami 2011; Mohanty et al. 2014; Kutty et al.
2018, 2020). Rakesh and Goswami (2011) studied
the eAect of background error statistics (BES) on
TC forecasts over the NIO. They used a 3D-Var
DA method with different BES in the Weather
Research and Forecasting (WRF) model and con-
cluded that regional BES provides better TC track
forecasts than a global BES. Mohanty et al. (2014)

showed that a reliable TC forecast could be
obtained from the WRF by assimilating good
quality observations from several sources. Kutty
et al. (2020) demonstrated the superiority of the
hybrid ensemble transform Kalman Blter (ETKF)
over the 3D-Var system in the WRF model.
Although NCUM-G has been operational at

NCMRWF since 2012, the operational TC forecast
started in 2015. NCUM-G is based on the United
Kingdom’s UniBed Modeling (UKMO) framework
adopted under ‘UM partnership’. It uses an
advanced Hybrid 4D-Var DA method. In June
2018, NCUM-G was upgraded to NCUM-G: V5
and one of the major changes was the increase in
the model’s horizontal resolution. Details about the
modelling, DA systems, and upgrade timelines are
presented in section 2.
IMD brieCy reports the performance of NWP

model data used in TC prediction for all the
tropical cyclones over NIO as part of its routine
activity (http://rsmcnewdelhi.imd.gov.in/report.
php?internal˙menu=MjY=). Routray et al. (2017)
and Singh et al. (2021) evaluated TC prediction
skills of NCUM-G, but their studies are limited to
only case studies. In the present study, we have
compared the skill of operational global model
forecasts (NCUM-G: V5) with its predecessor
(NCUM-G: V4) in predicting the tracks, intensity,
and landfall for 22 NIO TC cases from 2015 to 2019.
All the veriBcation is carried out against the best
track (BT) data obtained from IMD. More details
about these cyclones are presented in section 3.
This paper is organized into seven sections.

Section 2 gives a detailed description of NCUM-G
(V4 and V5) modelling and DA systems. A brief
description of the NIOTC cases during 2015–2019 is
presented in section 3. In section 4, the TC tracker
and veriBcation methodology are discussed. A
detailed discussion of results is presented in section
5. Additionally, a comparison of IMD oDcial track
errors with NCUM-G and NWP models from other
international operational centers for 2019 is shown
in section 6. Finally, conclusions based on this study
are summarized in section 7.

2. Description of NCMRWF uniBed
modelling system

2.1 Model description

In recent years, there has been an increasing
demand for location-speciBc forecasts for high
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impact or extreme weather events, leading to a
need to increase the NWP model’s resolution. The
NCUM-G model was upgraded from NCUM-G: V4
to NCUM-G: V5 in May 2018 (Kumar et al. 2018).
One of the major changes was the increase in the
horizontal resolution from 17 km in V4 to 12 km in
V5, reducing the model time step from 7.5 to 5 min.
The model’s vertical resolution was retained from
V4 to V5, i.e., with 70 vertical levels reaching a
height of 80 km. NCUM-G model uses a semi-
implicit semi-Lagrangian formulation to solve the
non-hydrostatic, fully compressible deep-atmo-
sphere equations of motion (Wood et al. 2014). The
science setting components of the model for the
atmosphere and land remain the same for both the
versions (Kumar et al. 2018) which are the Global
Atmosphere Science version 6 (GA6) and Global
Land version 6 (GL6) (Walters et al. 2017). The
dynamic core for the NCUM-G model is the
ENDGame (Even Newer Dynamics for General
atmospheric modeling of environment, Wood et al.
2014), introduced in November 2015. This dynamic
core exhibits improved stability, accuracy, and
reduced damping, resulting in increased variability
in the tropics with improved representation of
tropical systems like cyclones and reduced surface
biases (Walters et al. 2017; Kumar et al. 2018).
Comparison between the two versions of NCUM-G
have been tabulated and presented in table 1.

2.2 Data assimilation

For creating 6-hourly atmospheric analyses,
NCUM-G has adapted the 4-Dimensional Varia-
tional (4D-Var) DA method based on Rawlins et al.
(2007) since its operational implementation at
NCMRWF in 2012. 4D-Var allows more eAective
use of observations through the consistent use of
observation-operators in the model equations
(Rabier et al. 1998, 2007). The NCUM-G DA has
undergone many modiBcations during the study
period. In the early part of 2015 and before it, 4D-
Var assimilation was carried out at 60 km resolu-
tion with the baseline observations shown in
table 2, while the forecast model resolution was
*25 km (Rajagopal et al. 2012). The DA resolution
was increased to 40 km in late 2015, while the
model forecast resolution was increased to 17 km
(George et al. 2016). A weakness of the primary
4D-Var method is that it uses a Bxed ‘climatolog-
ical’ model of the error covariance in the back-
ground forecast, which lacks the Cow-dependent

error of the day (Lorenc 2003). To address this
issue, the NCUM-G 4D-Var DA system was
upgraded to Hybrid 4D-Var following Clayton
et al. (2013) and implemented operationally in
October 2016 (Kumar et al. 2018). NCMRWF runs
an ensemble prediction system based on NCUM-G,
i.e., the NCMRWF Ensemble Prediction System
(NEPS; Sarkar et al. 2016; Mamgain et al. 2018).
The NCUM-G Hybrid 4D-Var assimilation system
combines the Cow-dependent errors calculated
from the Ensemble Transform Kalman Filter
(ETKF) based NEPS forecasts with the climato-
logical background errors. The hybrid approach is
scientifically attractive as it elegantly combines the
beneBts of an EPS and 4D-Var in a single DA
system (Barker and Clayton 2011).
The bias correction method applied to the

satellite radiances at NCMRWF has changed dur-
ing the study period. Until October 2016, a static
bias correction scheme based on Harris and Kelly
(2001) was operational. Later, it was upgraded to
an adaptive bias correction scheme following
Cameron and Bell (2018). Biases in the satellite
radiances are corrected using an adaptive bias
correction algorithm known as the Variational Bias
Correction (VarBC), closely following the incre-
mental formulation described in Auligne et al.
(2007).
In addition to the above changes in DA tech-

nique and bias correction, many new observations
in the DA were introduced, particularly after 2017.
These include: (i) the radiances and atmospheric
motion vectors from Spinning Enhanced Visible
and InfraRed Imager (SEVIRI) onboard Meteosat-
8 relocated to the Indian Ocean Data Coverage
(IODC) in February 2017, (ii) scatterometer sea
surface winds from Scatsat-1 operated by Indian
Space Research Organization (ISRO) since
November 2017, (iii) Advanced Himawari Imager
(AHI) radiances from Himawari-8 satellite, (iv) sea
surface winds from Windsat since May 2018, and
(iv) Global Precipitation Mission (GPM) Micro-
wave Imager (GMI) radiances and INSAT-3D
imager radiances (Rani et al. 2019) since August
2018. For accurate prediction of the track and
intensity of TCs, the location and the magnitude of
the low pressure in the model analysis should be as
realistic as possible. In NCUM-G, the location and
the minimum low pressure associated with the TCs
are adjusted by assimilating the estimated surface
pressure information from the TC Vital (TC Vital)
reports since October 2018 (Heming 2016). Fig-
ure 1 shows the timeline of the changes in the DA
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system, including the new observations during the
period from January 2015 to December 2019.

3. Tropical cyclone cases during 2015–2019

For robust and reliable statistical results, a rela-
tively large number of data samples are preferred.
This study has considered 22 TCs formed over NIO
during 2015–2019, resulting in 1810 forecasts

(forecasts based on 00 and 12 UTC at 6-hr interval
and all lead times from 0 to 120 h). There are ten
TCs, out of which three cyclones formed over AS
and seven cyclones formed over BoB from 2015 to
May 2018. Based on maximum sustained surface
wind speed (MSW), IMD classiBes the cyclonic
disturbances over NIO. This classiBcation is pre-
sented in table 3. Out of these ten TCs, three were
extremely severe cyclonic storms (ESCS), two were
very severe cyclonic storms (VSCS), one was a

Table 1. Comparison of model conBguration of NCUM-G: V4 and V5.

Parameters NCUM-G: V4 NCUM-G: V5

Implementation November 2015 May 2018

UM version UM 10.2 UM 10.8

Dynamics ENDGame ENDGame

Resolution N768L79 (*17 km) N1024L70 (*12 km)

Numerical scheme Semi-implicit

Semi-Lagrangian

Semi-implicit

Semi-Lagrangian

Vertical levels 70 70

Time step 7.5 min 5 min

Model top height 80 km 80 km

Atmosphere science version GA6 GA6

Land science version GL6 GL6

Microphysics scheme Wilson and Ballard (1999) Wilson and Ballard (1999)

Radiative transfer scheme Edwards and Slingo (1996) Edwards and Slingo (1996)

Boundary layer scheme Lock et al (2000) Lock et al (2000)

Table 2. List of baseline observations.

Observation

type Observation description

AHIClear Advanced Himawari imager radiances from Himawari-8

Aircraft Upper-air wind and temperature from aircraft

AIRS Atmospheric infrared sounder of AQUA

AMSR Radiances from AMSR-2 onboard GCOM satellite

ATOVS AMSU-A, AMSU-B/MHS, HIRS from NOAA-18 & 19, MetOp-A&B

ATMS Advanced technology microwave sounder in NPP satellite

CrIS Cross-track infrared sensor observations in NPP satellite

GOESClear Cloud clear imager radiances from GOES

GPSRO Global positioning system radio occultation observations from various satellites

GroundGPS Ground based GPS observations from various locations

IASI Infrared atmospheric sounding interferometer from MetOp-A&B

SAPHIR SAPHIR microwave radiances from Megha-Tropiques

Satwind Atmospheric motion vectors from various geostationary and polar orbiting satellites

Scatwind Advanced Scatterometer in MetOp-A&B

SEVIRIClear Cloud clear observations from SEVIRI of METEOSAT 11

Sonde Radiosonde observations, upper-air wind proBle from pilot balloons, wind proBles, VAD wind observation from

Indian DWR

Surface Surface observations from land and ocean

SSMIS SSMIS radiances
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severe cyclonic storm (SCS), and four were in the
category of cyclonic storms (CS). Twelve TCs
formed during June 2018–2019, out of which six
TCs formed over AS and the rest over BoB. These
TCs are also of mixed intensity, with one having
the intensity of a super cyclonic storm (SuCS).
Figure 2 shows each system’s observed tracks
obtained from the IMD BT data. The details like
name, the basin of formation, dates/duration,
category, MSW, minimum mean sea level pressure
(MSLP), and life (number of days) of all the TCs
are presented in table 4. The sample size of
cyclones used to compare forecasts from the two
versions of the model, NCUM-G: V4 and
NCUM-G: V5, are very similar in number and
distribution over the BoB and AS.

4. TC Tracker and veriBcation methodology

4.1 Tracking algorithm

To get the information of a TC from NCUM-G
forecasts, an objective TC-tracker is operationally
run at NCMRWF. This TC-tracker uses a bi-
variate approach for tracking a storm. In this

algorithm, Brstly, the maximum value of relative
vorticity at 850 hPa (850RV) is used to provide the
approximate position of a cyclonic system. This
approximate position is then relocated to the
location of local minimum MSLP which provides
the center of the storm. The threshold for 850RV
and MSLP for the formation of a TC is set to 1.5 9

10�4 s�1 and 1000 hPa, respectively. However,
these thresholds are tunable for different resolu-
tions of the model. The TC-tracker algorithm uses
seven model parameters: orography, surface tem-
perature, u and v components of winds at 10 m and
850 hPa, and MSLP. Orography and surface tem-
perature are used only for identifying the system in
the model’s analysis Beld. For other forecast lead
times, the remaining Bve parameters are used.
Details of the TC tracking algorithm are available
in Heming (2017). The tracker output provides the
position and intensity of a cyclone at every 6-h
interval up to 120 h.

4.2 VeriBcation methodology

To convey the skill of an NWP model to a fore-
caster, regular forecast veriBcation and model
evaluation statistics related to it are essential. At
NCMRWF, model track and intensity for all the
TCs over NIO are veriBed, and the model perfor-
mance report is shared with IMD. The veriBcation
of a TC track is carried out using standard veriB-
cation scores like direct position error, the along
and cross-track errors. Errors in model predicted
MSW and MSLP provide the intensity veriBcation
scores (Heming 2009; Mohaptra et al. 2013a, b;
Heming 2017). Further, the landfall location and
time error are also calculated. Errors related to
landfall are crucial for disaster management and
planning to minimize the loss of life and property.
This veriBcation is done against IMD BT data. BT
data are a post-cyclone estimation of TC position,
which gives the latitude, longitude, and intensity in
terms of MSW and MSLP. IMD provides the BT
data of a TC post the event. The details of BT data

Figure 1. Change in data assimilation (DA) system during
2015–2019.

Table 3. ClassiBcation of cyclonic disturbances over the NIO by IMD 2015.

Cyclonic system

Maximum sustained

surface winds

Cyclonic storm (CS) 34–47 kts

Severe Cyclonic storm (SCS) 48–63 kts

Very Severe Cyclonic storm (VSCS) 64–89 kts

Extremely Severe Cyclonic storm (ESCS) 90–119 kts

Super Cyclonic storm (SuCS) C120 kts
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processing methods at IMD are provided in
Mohapatra et al. (2012b).

5. Discussion of results

5.1 Improved NCUM-G skill during 2015–2019

To assess the improvement in forecasting skill of
NCUM-G, the Day-3 850 hPa wind forecast is

analyzed in terms of Root Mean Square Error
(RMSE) during April–May and OND over the
Indian region (6.5–38.5�N, 66–98�E) and is shown
in Bgure 3(a). These forecasts have been veriBed
against the radiosonde observations at 39 locations
over India, shown in Bgure 3(b). It is found that the
RMSE shows a decreasing trend during both sea-
sons. There is approximately 17% and 23% reduc-
tion in the RMSE during AM and OND,

Figure 2. Best track plot of tropical cyclones as obtained from IMD for (a) 2015–May 2018 and (b) June 2018–2019.

Table 4. List of tropical cyclones studied and their details.

Sl. no. Name Dates

Basin of

formation ClassiBcation

MSW

(kt)

MinSLP

(hPa)

Life

(days) Landfall

1 Chapala 28 Oct–04 Nov 2015 AS ESCS 115 940 8 Yes

2 Megh 05–10 Nov 2015 AS ESCS 95 964 6 Yes

3 Roanu 17–22 May 2016 BoB CS 45 983 6 Yes

4 Kyant 21–28 Oct 2016 BoB CS 40 996 8 No

5 Nada 29 Nov–2 Dec 2016 BoB CS 40 1000 4 Yes

6 Vardah 6–13 Dec 2016 BoB VSCS 70 975 8 Yes

7 Maarutha 15–17 April 2017 BoB CS 40 996 3 Yes

8 Mora 28–31 May 2017 BoB SCS 60 978 4 Yes

9 Ockhi 29 Nov–6 Dec 2017 BoB VSCS 85 976 8 No

10 Mekunu 21–27 May 2018 AS ESCS 95 960 7 Yes

11 Daye 19–22 Sep 2018 BoB CS 35 992 9 Yes

12 Luban 6–15 Oct 2018 AS VSCS 75 978 10 Yes

13 Titli 8–12 Oct 2018 BoB VSCS 80 972 5 Yes

14 Gaja 10–19 Nov 2018 BoB VSCS 70 976 10 Yes

15 Phethai 13–18 Dec 2018 BoB SCS 55 992 6 No

16 Fani 26 Apr–04 May 2019 BoB ESCS 115 932 9 Yes

17 Vayu 10–17 Jun 2019 AS VSCS 80 970 8 No

18 Hikaa 22–25 Sep 2019 AS VSCS 75 978 4 Yes

19 Kyarr 24 Oct–02 Nov 2019 AS SuCS 130 922 10 No

20 Maha 30 Oct–07 Nov 2019 AS ESCS 100 956 9 No

21 Bulbul 05–11 Nov 2019 BoB VSCS 75 976 7 Yes

22 Pawan 02–07 Dec 2019 AS CS 40 998 6 Yes
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respectively. This reduction in RMSE highlights
the consistent and substantial improvement in
NCUM-G forecast skill in predicting lower tropo-
spheric circulation during 2015–2019. The impact
of improved forecasting skills of the model is also
reCected in TC prediction, as discussed in the fol-
lowing subsections.

5.2 Track and intensity forecast error

Direct position error (DPE) is the simplest form of
track error. It is deBned as the great circle distance
between the observed and forecast position at any
forecast validity time. It is helpful in the estimation
of a ‘cone of uncertainty’, which is generally Bxed
as some quartile of DPE (Mohapatra et al. 2012a).
Though DPE is easier to calculate, it does not
provide the information related to the system’s
speed (fast/slow) and directional movement and
alone is not sufBcient to evaluate the model TC
forecasting skill (Heming 2017). Two other error
components, Along Track Error (ATE) and Cross
Track Error (CTE), provide better information of
predicted tracks. If it is assumed that DPE repre-
sents the hypotenuse of a hypothetical right-angled
triangle, then ATE and CTE are representative of
the other two sides. For better illustration, these
track errors are diagrammatically represented in
Bgure 4. ATE provides information related to the
movement of a system along with the observed
position. A positive (negative) value means the
model predicted system moves faster (slower) than
the observation. CTE tells about the directional

error, and a positive (negative) value indicates the
model tracks the system right (left)-wards of the
observed position. The sign of CTE will change in
the southern hemisphere.
The intensity of a TC is usually measured in

terms of MSW. From an NWP model, these
parameters are calculated from standard model
outputs, viz., 10 m winds. Prediction of intensity is
challenging for global NWP models because they
have relatively coarser resolutions. A stronger
system is even more challenging to predict in terms
of its intensities (Heming 2017). Thus, it would be
interesting to assess the performance of a 12-km
grid resolution model compared to the 17-km res-
olution. As highlighted in Heming (2017), the
veriBcation of MSW is not that accurate as the
model’s 10 m winds may not be a true represen-
tative of it. Nevertheless, since the same Beld and
same methodology of TC-tracker is applied for all
the systems, any improvement in the prediction of
the model’s 10 m winds around a TC will be
anticipated as an improvement in MSW prediction.

5.3 VeriBcation of model predicted track

DPE for two different versions of NCUM-G has
been compared in Bgure 5(a) and represented as a
box–whisker plot. The plot describes the minimum,
Brst quartile, median, third quartile, and the
maximum DPE at each forecast length. The out-
liers in data are the errors outside the mini-
mum–maximum bound and they have also been
represented in the Bgure. This comparison has been

Figure 3. (a) Root Mean Square Error in NCUM-G forecast of winds at 850 hPa calculated against radiosonde during 2015–2019
for pre-monsoon (April–May) and post-monsoon (October–November–December) season. (b) Location of radiosonde monitoring
stations.
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made for the initial (model analyzed) position and
6-hrly forecasts up to 120 h. But only initial posi-
tion and 24, 48, 72, 96, and 120 h forecast errors
have been shown for brevity. The model’s (V4 and
V5) mean initial position error is lower than 100
km. At 120-h forecast lead time, DPE is lower
(more) than 300 km in V5 (V4). V5 has a relatively
smaller DPE at all the forecast lead times. The
mean initial position error in V5 is lower by 44%,
whereas the percentage decrease in DPE at 24, 48,
72, 96, and 120 h are 34, 25, 27, 19, and 26%,
respectively (table 5). The improvement in model
track prediction is statistically significant up to 72
h (p\ 0.05). Overall, the track prediction skill of
V5 against its predecessor has improved by
approximately 24 hrs (1-day). These track errors
are the mean of DPEs calculated for all the
cyclones formed during the study period. The
numbers of forecasts veriBed are shown in
Bgure 5(b). As evident, the forecast points are
higher for shorter lead times for both versions of
the model. The forecast points are more for the
TCs during 2018–2019 as these have relatively
longer lives than TCs of the 2015–2018 period,
leading to a larger sample of forecast points for V5
than V4.
In Bgure 5(c), a comparison between V4 and V5

predicted mean ATE shows that V5 has reduced
error at all forecast lead times, and the maximum
gain noticed was at 78 h forecast (not shown in the
Bgure). ATE in V5 is lower than 100 km up to 72 h
forecast. Similarly, in Bgure 5(d), mean absolute
CTEs for V4 and V5 have been plotted for

comparison. Both the model versions have CTEs
less than 100 km up to 72-h forecast. It is also
worth noting that CTEs are relatively lesser than
ATEs at shorter forecast lead times. The V5 model
has improved skills at all the forecast lead times
except for 120 h, where the mean CTE is relatively
higher (4%). Overall, the improvement in track
prediction by V5 in terms of DPE is majorly
attributed to the reduction in ATE.

5.4 VeriBcation of model predicted intensity

To evaluate the model’s skill in intensity predic-
tion, the error in NCUM-G predicted MSW for
both the versions at different forecast lead times
has been compared and displayed as a box–whisker
plot in Bgure 6. The plot represents minimum, Brst
quartile, second quartile (median), third quartile,
and maximum error at each forecast lead-time. The
outliers have been highlighted as open circles.
Interestingly, the intensity errors are not consis-
tently increasing with forecast lead time like the
mean track errors (DPE, ATE, and CTE). The
improvement in model intensity prediction at dif-
ferent forecast lead times is in the range of 9–32%
(statistically significant up to 24 h forecast, p \
0.05), with more improvement in model analysis
and shorter forecast lengths. These errors are cal-
culated for all forecast lead times but are presented
only at 24 h intervals for brevity. The minimum
reduction in error (9%) in MSW prediction is
noticed at 108 h (not shown in the Bgure). Thus,
the NCUM-G: V5 model shows improved intensity
prediction skills attributed to the model’s
improved initial conditions and higher resolution.

5.5 VeriBcation of model predicted landfall

The mean errors in landfall position and time have
been computed for all the TCs. Out of 22 TCs
studied (table 3), six TCs dissipated over the sea. It
is to be noted that for two cyclones, namely Megh
(November 2015) and Maarutha (April 2017), V4
was not able to predict the landfall. These errors
are calculated as the great circle distance between
model-predicted landfall and actual position (BT)
at the time of landfall reported by IMD. As the
model provides forecasts at 6-h intervals, landfall
position from the forecasts is obtained by linear
interpolation between two successive forecasts
(before and after landfall). A similar methodology
has been adopted for the calculation of landfall

Figure 4. Diagramatical representation of DPE, ATE, and
CTE.
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time errors as well. In Bgure 7(a), the mean landfall
position error from V4 and V5 has been shown. The
errors are seen to be increasing with forecast lead
time with a minimum error of 74 and 79 km before
24–48 h of the landfall in V4 and V5, respectively.
The reduction in landfall position error has also

been highlighted in the same Bgure. The maximum
reduction of 43% is seen at 72–96 h. The skill of
NCUM-G in the prediction of landfall time has
been evaluated in terms of landfall time error, and
it has been shown in Bgure 7(b). Interestingly,
landfall time error does not increase with forecast

Figure 5. Comparison of track errors from two versions of model NCUM-G: V4 and NCUM-G: V5. (a) Direct position error,
(b) number of forecast points veriBed, (c) average along track error, and (d) average cross track error at different forecast lead
times.

Table 5. DPE comparison.

DPE (km) comparison

Forecast hour NCUM-G: V4 NCUM-G: V5 % decrease p value

0 86 48 44 2.76E-06

24 137 91 34 0.0001464

48 164 122.5 25 0.0048

72 210 154 27 0.003

96 259 209 19 0.1595

120 380 282 26 0.1356
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lead time, and it was highest for the forecasts
issued before 48–72 h in both versions of the model.
The mean landfall time error in V5 is substantially
lower at all forecast lead times. V5 has the best
prediction skill for landfall time in 24–48 h with the
lowest error of 4:00 h compared to 11:00 h in V4.

6. Comparison of NWP models with IMD
oDcial forecast in 2019

IMD is an operational agency and the WMO-des-
ignated Regional Specialized Meteorological Cen-
tre (RSMC). It is responsible for issuing oDcial TC
forecasts over NIO and the necessary warnings for
India and all the neighbouring countries lying
across its coasts by following a standard operation
procedure (SOP) described in the IMD manual
(Mohapatra and Sharma 2019). A continuous eAort

and modernization of observational and forecasting
setup have improved TC forecasting skills (Moha-
patra et al. 2013a, b; Mohapatra and Sharma
2019). Satellite, radar, and synoptic guidance using
statistical methods are given more preference for
shorter forecast lead times (up to 12/24 h),
whereas, for higher forecast lengths (24–120 h),
NWP models are preferred (Mohapatra and
Sharma 2019). IMD makes use of NWP products
from all the leading global operational NWP cen-
ters (European Centre for Medium-Range Weather
Forecasts (ECMWF), the National Centers for
Environmental Prediction (NCEP), and the United
Kingdom’s Met ODce (UKMO)), including
NCMRWF for providing the TC forecasts. In
Bgure 8, mean DPE for NCUM-G: V5 and other
NWP models mentioned above have been com-
pared with the oDcial IMD forecast. It is obtained
from the IMD’s report entitled ‘Report on Cyclonic
Disturbances over North Indian Ocean during
2019’ (https://rsmcnewdelhi.imd.gov.in/uploads/
report/27/27˙fddc6c˙rsmc2020.pdf) for 2019. The
NIO in this particular year was relatively more
active as it witnessed seven TCs (against the cli-
matology of Bve, Mohapatra et al. 2015). These
cyclones had mixed intensities, including one
SuCS, two ESCS, three VSCS, and one CS. The
forecast DPEs from IMD is available at the 12-h
interval going up to 120 h. These forecast errors
consistently increase with forecast lead time for
both the NWP models and IMD. The forecast DPE
from IMD at 0 h (equivalent to model analysis) is
not available as the position of a TC at this forecast
time is provided by IMD as the best estimate. For
the shorter forecast lengths (up to 24 h), IMD’s
oDcial track information is more accurate than any
NWP model. The NWP models from different
operational centers have different forecast skills at

Figure 6. Comparison of errors in model (NCUM-G: V4 and
V5) predicted intensity in terms of maximum sustained wind
speed (MSWE) and percentage improvement at different
forecast lead time.

Figure 7. Comparison of mean landfall error from NCUM-G: V4 and NCUM-G: V5 (a) in position (km) and percentage
improvement and (b) same as (a) but in time (h).
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different forecast lead times. The mean DPE at 12
h from IMD is 22% lower than the best performing
model (NCEP-GFS). This margin decreases with
an increase in forecast lead time, and at 84 h, the
errors from the two forecasts are almost equal. At
higher lead times, NCUM-G and ECMWF show an
edge over IMD oDcial track forecasts, and the
mean DPEs of NCUM-G (ECMWF) at 96, 108,
and 120 h is lower than that of IMD by 6 (9)%, 7
(10)%, and 20 (19)%. This intercomparison sug-
gests that NCUM-G and ECMWF show lower
DPE than IMD’s oDcial DPE, indicating very
promising improvements in NWP modelling in
recent years. It would be interesting to monitor the
performances of NCUM-G in subsequent years for
consistent improvement so that improved TC
forecasts over NIO based on NCUM-G may form
an essential input for the IMD’s oDcial TC
forecasts.

7. Conclusions

This study documents the improved skill of the
NCMRWF UniBed Model (NCUM-G) forecast of
NIO TC during 2015–2019. The results are based
on a collection of 1810 forecasts involving 22
tropical cyclones of NIO during the study period.
In this study, the improvement in TC forecasts in
terms of intensity, track, landfall location, and
time were analyzed from two versions of NCUM-G,
i.e., V4 and V5. The major changes in these two
model versions included increased model resolu-
tion, an improved DA system, and several new
observations in DA. Following the June 2018

model upgrade (NCUM-G: V5), there is a consis-
tent improvement in the NCUM-G model during
the pre-monsoon and post-monsoon seasons.
RMSE in the Day-3 forecast of 850 hPa winds
shows a *17% reduction during pre-monsoon and
23% during post-monsoon season. The model has
shown an improved forecast skill of the initial
position of TCs, and the decrease in DPE is 44%.
The reduction in DPE in V5 is 34, 25, 27, 19, and
26% in 48, 72, 96, and 120 h, respectively. V5
shows gain in skill by approximately 24 h (1-day)
over V4. NCUM-G: V5 also shows the reduction
in the ATE (33–46%) and CTE, with ATE con-
tributing majorly to the reduction in track forecast
errors. V5 shows an improvement in the intensity
forecast in terms of MSW in the range of 9–32%.
V5 also shows better accuracy in predicting the
landfall position, reducing error by 43% in 72–96 h
lead time. The landfall time prediction by V5 is
more precise than V4, with improvements of more
than 50% up to 96 h before the landfall. An inter-
comparison of the NWP models with IMD’s oDcial
track forecasts suggests lower DPE in NCUM-G:
V5 at higher lead times. The DPE in NCUM-G: V5
(ECMWF) at 96, 108 and 120 h are lower by 6
(9)%, 7 (10)% and 20 (19)%, respectively.

Limitations and future scope: An important
outcome of the current study is the impact of
enhanced resolution on the TC forecast errors. The
results deal with the TC track, intensity, and
landfall errors, while the cyclogenesis prediction is
out of the scope of the present study. A similar
potential future study may be on the possible
improvement in the genesis predictions and

Figure 8. Comparison of DPE from different NWPmodels with IMD oDcial forecast error.
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reduction in the false alarms. Another essential
feature of the current experiment is the great
strides in data assimilation and the quality and
quantity of the new satellite datasets gone into the
improved initial conditions. It is not easy to sepa-
rate and quantify the eAect of resolution and
improvements in initial conditions, which caused
the improved TC forecasts in the operational
environment and warrants a thorough investiga-
tion with dedicated resources.
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