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Eastern Central Qilian Block (E-CQB) is located in the Qilian orogenic belt, characterised by large
outcrops of granite. The subduction age and geochemical processes of E-CQB are not precise. In this
study, we conducted a comprehensive study of petrology, geochronology and whole-rock geochemistry of
the Middle Ordovician granites (Sanlian rock mass) in the E-CQB. The results provide three key Bndings.
First, the magmatic emplacement age of monzonite granites is about 466 Ma. Analysis derived from
geochemical and geochronological revealed that the sample contains high-K, calc-alkaline, strongly
peraluminous characteristics, and enriched in large-ion lithophile elements (LILEs; e.g., K, Th, and Rb).
Depleting intensely in high Beld-strength element (HFSEs; e.g., Ti and P) then weakly in Nb, Ba, Sr and
weak negative Eu. Monzonitic granites belong to S-type granites, can be divided into cordierite-bearing
peraluminous granites, and the provenance is mainly partial melting of metapelite and metagreywacke.
Second, combining the previous research and the new data obtained in this paper, the subduction age of
E-CQB can be further reBned to 444*466 Ma.

Keywords. Geochronology; geochemistry; Qilian orogenic belt; Eastern Central Qilian Block; Middle
Ordovician granites.

1. Introduction

The Qilian Orogenic Belt (QOB), one of the
orogenic belt in the west of China, connects with
the Inkling Orogenic Belt in the east and the
Algin–West Kunlun Orogenic Belt in the west,
forming the main part of the northern margin of
the Qinghai–Tibet Plateau (Xiao et al. 2005; Yuan
et al. 2005; Song et al. 2006; Zhang et al. 2006;

Dong et al. 2007). The QOB records a long history
of continental break up, seaCoor spreading, and
Bnal continental collision from the Neoproterozoic
to the Paleozoic (Li et al. 2017a, b; Liu et al. 2019;
Song et al. 2009, 2014, Song and Niu 2013; Yang
et al. 2015; Tung et al. 2016; Wang et al. 2016).
Based on tectonics (Song et al. 2006, 2013, 2014),
the QOB is divided into three sub-geotectonic units
as following: (i) North Qilian Orogenic Belt
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(NQ–OB), (ii) Central Qilian Block (CQB), and
(iii) South Qilian Miogeosyncline Belt (SQ–MB)
(Feng 1997; IGMGM 1965). The previous studies
of QOB mainly focused on the Northern Qilian
Orogenic Belt in the north and the Northern Qai-
dam Basin in the south. However, the study on the
intermediate-acid intrusive rocks in the eastern
section of Central Qilian Block (E-CQB) is rela-
tively weak (Gao et al. 2017). Yong et al. (2008)
proposed that there were two magmatic periods in
the E-CQB and determined the ages of Dongji-
azhuang rock mass with 446 ± 1 Ma and Xindian
rock mass with 454 ± 5 Ma, respectively. Li et al.
(2014) concluded that the Caledonian granite in
the E-CQB was probably the result of mixed fusion
of residual subducted oceanic crust and continental
sediments, and determined the weighted average
ages of two samples of Qingchengshan rock mass
with 430.0 ± 4.1 and 420.2 ± 2.4 Ma, as well as the
emplacement ages at 440.5 ± 2.5 Ma in Tongwei
area. Then it was found that the weighted mean
value of the surface age of 206Pb/238U of rock
mass in Juslang; Mengundao and Xiaogaoling was

444.1 ± 3.2, 445.1 ± 4.6 and 445.0 ± 4.1 Ma,
respectively (IGSQP 2015).
This study focused on the detailed geochronol-

ogy and whole-rock geochemistry of granites from
the Huangyuan area in the E–CQB, and discussed
the petrogenesis and geological significance of these
granites.

2. Geological setting and samples

The study area is located in the Sanlian area of
Haiyan county, belonging toCQBofCaledonian fold
system, adjacent to the NQ–OB in the north and the
SQ–MBwith the fault of the southern margin of the
Central Qilian and the Qinghai–Gulei fault in the
south (IGSQP 2015; Bgure 1).
The outcrop in the study area is relatively

complete, including Dongchagou formation of
Huangyuan Group (Pt1d), Liujiatai formation of
Huangyuan Group (Pt1l), and Qingshipo forma-
tion of Changchengian (Chq). Lithologic assem-
blages of Dongchagou are mainly composed of

Figure 2. Hand specimen photographs and optical photomicrographs in cross-polarized light of the monzonitic granites from the
Huangyuan area, E-CQB. (a) Hand specimen of monzonitic granite; (b) photomicrographs of monzonitic granite. Pl: plagioclase;
Bt: biotite; Q: quartz; (c) Beld of monzonitic granites; (d) outcrop of monzonitic granites.
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mica quartz schist, quartz mica schist, and
phyllite with laminated marble, and Liujiatai is
mainly composed of biotite plagioclase gneiss,
biotite monzonitic gneiss, and plagioclase horn-
blende schist, with Caledonian rocks (such as
diorite and granodiorite) intruding into it.
However, lithologic assemblages of Moshigou are
mainly composed of ash black to oA-white and
fresh red block stratiBed quartzite, with phyllite
at the top of some sections, quartz-conglomerate
near the bottom, and mica quartz schist at the
bottom. Similar to Moshigou, lithologic assem-
blages of Qingshipo are mainly composed of ash
black to black phyllite, platy phyllite, phyllite
slate, silty slate and silty metasandstone, with a
small amount of mica schist at the bottom. The
overlying strata are Xining formation (Ex) of
Paleogene system (IGSQP 2015).
There is Syncline with NW–SE axis direction is

developed in Liujiatai formation of Huangyuan
Group (Pt1l), and the core lithology is quartz mica
schist, the two limbs are biotite plagioclase gneiss.
Due to the inCuence of late magmatic activity, the
synclinal landform is not complete.
Under the inCuence of frequent magmatic

activities, intrusive rocks are widely developed
and distributed, but the exposed area is not

large. The intrusive body is generally elliptic,
which can be divided into granodiorite (cdO3)
and monzonitic granite (gcO3). The fault struc-
ture is well developed in the region, which is
mainly NW or NWW trending longitudinal fault
and NE or NEE trending transverse fault
(IGSQP 2015).
Monzonite granites, located in the E-CQB and

distributed in NW–SE direction, are distributed
on both sides of deep and large faults and along
the axis of the fold. And Cuorite outcrops were
found in it. Samples (SL; Bgure 2a) of monzonite
granite are taken from the Sanlian area in
Huangyuan, located in the E-CQB (36�4901600N,
101�0000200E), The samples are characterized by
fractured granitic structure and blocky struc-
ture, which are mainly composed of biotite,
plagioclase, potassium feldspar, quartz and opa-
que metallic minerals occasionally. Under the
inCuence of brittle tectonics, the rock is broken
and cemented by late siliceous hydrothermal
solution, and about 20% of the debris is visible.
They are characterized by the strong clayzation
of plagioclase and chloritization of biotite. The
biotite was produced by brown scaly structure
aggregation with a particle size of 0.05–1.51 mm,
and mainly distributed in the interstice of large

Table 1. Major element compositions for the Sanlian monzonitic granitic.

Sample SL-1 SL-2 SL-3 SL-4 SL-5 SL-6 SL-7 SL-8 SL-9 SL-9R

SiO2 75.92 71.59 71.75 72.21 71.13 72.98 72.87 70.34 73.45 73.53

TiO2 0.19 0.29 0.31 0.22 0.24 0.24 0.31 0.39 0.32 0.33

Al2O3 12.76 14.94 14.74 13.82 13.21 13.86 13.83 14.75 13.49 13.60

Fe2O3 1.43 2.18 2.25 1.68 1.77 1.70 2.51 3.13 2.30 2.32

MnO 0.02 0.04 0.04 0.02 0.03 0.02 0.03 0.06 0.05 0.05

MgO 0.26 0.70 0.63 0.39 0.51 0.44 0.53 0.83 0.70 0.70

CaO 0.40 0.83 0.65 1.49 2.85 0.42 0.67 2.02 0.66 0.66

Na2O 2.41 2.86 2.80 2.90 2.70 2.75 3.39 3.64 2.66 2.68

K2O 4.78 4.70 4.95 5.27 4.87 5.28 4.20 3.14 3.31 3.32

P2O5 0.08 0.11 0.12 0.09 0.10 0.09 0.12 0.14 0.12 0.12

LOI 1.46 1.69 1.68 1.54 1.90 1.36 1.55 0.88 2.09 2.11

Total 99.71 99.93 99.92 99.63 99.31 99.15 100.00 99.33 99.15 99.41

r 1.570 1.996 2.094 2.286 2.040 2.150 1.929 1.685 1.169 1.180

AR 3.406 2.838 3.034 3.290 2.786 3.568 3.196 2.360 2.457 2.454

SI 2.894 6.731 5.921 3.802 5.170 4.298 4.994 7.697 7.792 7.762

FL 94.707 90.048 92.289 84.576 72.636 95.005 91.850 77.102 90.033 90.073

MF 84.739 75.609 78.134 81.157 77.609 79.527 82.530 79.106 76.696 76.804

A/CNK 1.293 1.322 1.321 1.048 0.886 1.260 1.219 1.129 1.474 1.477

A/NK 1.397 1.527 1.477 1.319 1.359 1.354 1.366 1.570 1.696 1.699

R1 3041.36 2592.83 2559.46 2498.64 2587.30 2601.17 2595.29 2566.29 3107.75 3101.39

R2 550.12 692.84 663.23 711.19 836.08 599.75 627.83 815.00 617.24 621.57

Note: Samples with ‘R’ at the end of the sample number are parallel samples.
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particles of quartz, feldspar or wrapped inside
the particles. Most of the particles developed
clayzation with a content of about 8%. The
plagioclase is idiomorphic to semi-idiomorphic
plate columnar with a particle size of 0.11–3.25
mm. It has a strong clayzation, and its Bne and
dense agglomerated twin crystals can be vaguely
seen. Some of the particles are contained in the
potassium feldspar particles, or are produced as
inlaid particles, with a content of about 26%.
The potassium feldspar is semi-idiomorphic to

heteromorphic plate columnar, mainly striated
feldspar and orthoclase, with the largest particle
size up to cm. Most of the particles are relatively
complete, often containing a large number of
idiomorphic plate columnar plagioclase, the
content is about 30%. The quartz accounts for
35% of the sample content, is heteromorphic
with particle size between the plagioclase and
potassium feldspar, and exhibits slight brittle
structural fracture and slight wavy extinction
(Bgure 2b).

Table 2. Trace element compositions for the Sanlian monzonitic granitic.

Sample SL-1 SL-2 SL-3 SL-4 SL-5 SL-6 SL-7 SL-8 SL-9 SL-1R

Trace element

Rb 192.24 210.50 214.07 243.03 198.23 197.83 189.77 175.65 168.64 197.97

Ba 610.52 702.72 708.31 795.06 729.31 940.17 631.55 485.15 484.24 617.42

Th 15.20 26.49 22.96 20.35 20.12 17.64 23.40 27.02 26.96 15.93

U 2.53 8.59 7.38 3.10 3.20 2.96 4.46 3.58 4.16 2.53

Ta 1.68 2.11 2.14 1.69 1.73 1.80 2.44 2.72 2.76 1.72

Nb 13.28 19.71 21.13 15.16 16.29 17.44 21.79 24.97 23.06 13.48

Sr 169.87 222.75 224.48 176.91 209.14 222.99 175.67 261.38 164.77 170.72

Zr 108.81 160.78 154.96 121.11 148.94 134.90 161.07 200.00 181.63 108.06

Hf 3.06 4.39 4.37 3.34 4.05 3.78 4.64 5.53 5.16 3.06

Ti 1085.45 1828.59 1909.00 1349.76 1496.09 1507.28 1891.29 2401.07 1992.38 1128.23

Y 8.58 22.35 20.60 18.62 23.08 12.84 21.66 23.96 25.26 8.54

REE

La 30.93 50.93 48.95 47.96 42.89 34.93 47.68 49.01 48.28 31.91

Ce 62.14 97.73 94.13 90.04 81.58 67.46 91.37 94.50 90.37 63.92

Pr 6.06 10.68 10.23 9.89 9.09 7.17 10.15 10.50 10.37 6.25

Nd 20.45 38.47 36.82 35.57 32.94 24.78 36.89 37.82 38.30 21.16

Sm 3.48 6.59 6.29 5.96 5.85 4.55 6.43 6.77 6.80 3.57

Eu 0.58 0.88 0.97 0.98 0.94 0.85 0.93 0.90 0.78 0.58

Gd 2.47 4.97 4.78 4.50 4.58 3.46 4.93 5.36 5.32 2.57

Tb 0.35 0.73 0.70 0.61 0.68 0.49 0.73 0.80 0.79 0.35

Dy 1.80 4.06 3.87 3.31 3.88 2.64 4.06 4.52 4.53 1.79

Ho 0.33 0.77 0.72 0.62 0.74 0.47 0.77 0.84 0.88 0.32

Er 0.89 2.14 1.93 1.71 2.01 1.24 2.06 2.27 2.41 0.84

Tm 0.13 0.33 0.29 0.26 0.30 0.18 0.32 0.34 0.37 0.13

Yb 0.85 2.07 1.81 1.64 1.91 1.18 2.02 2.14 2.40 0.80

Lu 0.13 0.31 0.27 0.24 0.28 0.18 0.29 0.32 0.36 0.12
P

REE 123.63 205.28 197.38 190.4 173.28 139.73 193.45 199.49 194.9 127.39

LREE 6.95 15.38 14.38 12.89 14.4 9.85 15.18 16.59 17.06 6.92

HREE 17.78 13.35 13.73 14.77 12.04 14.19 12.75 12.03 11.42 18.42

LREE/HREE 26.04 17.62 19.45 20.94 16.1 21.32 16.93 16.45 14.41 28.68

(La/Yb)N 130.58 220.66 211.76 203.3 187.68 149.58 208.63 216.08 211.95 134.31

Sm/Nd 0.17 0.17 0.17 0.17 0.18 0.18 0.17 0.18 0.18 0.17

dEu 0.57 0.45 0.52 0.55 0.54 0.63 0.49 0.44 0.38 0.56

dCe 1.05 0.98 0.98 0.96 0.96 0.99 0.97 0.97 0.94 1.04

Note: Samples with ‘R’ at the end of the sample number are parallel samples.
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The original rock is biotite monzogranite, which
has a slight brittle tectonic fragmentation and
forms about 20% detrital granite. Irregular metal-
lic minerals can be seen occassionally, the content
is about 1%.

3. Whole-rock geochemistry

Major element contents of the sample were
determined by X-ray Cuorescence (XRF) at the
Beijing Kuangyan Geoanalysis Laboratory Co.
Ltd. The analytical uncertainty is typically less
than 5%. Trace element and rare earth element
(REE) contents were determined using an Agi-
lent 7500a inductively coupled plasma mass
spectrometer (ICP-MS) at the Beijing Kuangyan
Geoanalysis Laboratory Co. Ltd. (Liu et al.
2010). The detailed analytical procedures and
precisions are the same as those described by Liu
et al. (2008b). The major and trace element

analytical results are listed in tables 1 and 2,
respectively.
The sample chemistry was changed into a ‘dry’

system (excluding volatile water after converted
to 100%), the main elements in the intrusive rock
classiBcation in the diagram (Middlemost 1985;
Bgure 3), can be seen from the Bgure, granite rock
sample points, nine points in the granite interval
distribution, one point distribution within the
range of granodiorite. The content of chemical
composition of each intrusive rock is slightly
different.
It can be seen from table 1 that the monzonitic

granites have high contents of SiO2 (70.34–5.92
wt.%), K2O (3.14–5.28 wt.%), Na2O (2.41–3.64
wt.%), and Al2O3 (12.76–14.94 wt.%). The samples
showed calc-alkaline and high-K, calc-alkaline
aDnities on the SiO2 vs. K2O discrimination dia-
gram (Peccerillo et al. 1976; Bgure 4a), calc-alkaline
onAR vs. SiO2 (Wrighe andDoherty 1970;Bgure 4b)
and AFM plots (TFeO vs. Na2O+K2O vs. MgO,

Figure 3. ClassiBcation diagram of principal elements of monzonitic granites from Huangyuan area.
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Bgure 4c) (Irvine and Baragar 1971) and stron-
gly peraluminous compositions (0.886\A/CNK
\ 1.477, 1.319\A/NK\ 1.699) on the A/CNK
vs. A/NK discrimination diagram (Rickwood
1989; Bgure 4d). In addition, there are relatively
low contents of MnO (0.02–0.06 wt.%), MgO
(0.26–0.83 wt.%) and P2O5 (0.08*0.14 wt.%) in
samples. Therefore, the monzogranite in the
Huangyuan area is a peraluminous calc-alkaline
rock.
Furthermore, the samples had

P
REE =

130.58–220.66 ppm with a slightly higher slope
[(La/Yb)N = 14.41–28.68], which means that light
rare earth elements (LREE) are enriched relative
to heavy rare earth elements (HREE). Weak neg-
ative Eu anomalies with Eu/Eu* values of

0.38–0.63 (Rollinson 1983; Bgure 5a), which is
shown that some plagioclase remained in the
magma source area (unBnished plagioclase) or
separated from the magma due to crystallization,
resulting in granitic magma plagioclase loss (Sun
and McDonough 1989).
In the spider diagrams, the nine samples show

that they were clearly enriched in large-ion
lithophile elements (LILEs; e.g., K, Th, and Rb),
and strongly depleted in high Beld-strength ele-
ment (HFSEs; e.g., Ti and P), weakly depleted in
Nb, Ba and Sr (Sun and McDonough 1989,
Bgure 5b). It is generally believed that the loss of
Ti is caused by the crystallization of Ti-containing
minerals, and the loss of P is caused by the
crystalline differentiation of apatite, which

Figure 4. Discrimination diagrams of (a) SiO2 vs. K2O, (b) AR vs. SiO2, (c) TFeO vs. (Na2O+K2O) vs. MgO and (d) A/CNK
vs. A/NK showing compositions of the monzonitic granites from Huangyuan area. AR: alkalinity ratio, A: Al2O3, N: Na2O,
K: K2O, C: CaO.
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indicates that they are derived from crust-derived
magma or the magma was once crust-derived
during the formation process.

4. Zircon U–Pb age analyses

Cathodoluminescence images (SL; Bgure 6) were
acquired prior to U–Pb dating. Subsequently, zir-
con U–Pb dating was conducted using laser abla-
tion inductively coupled plasma mass spectrometry
(LA-ICP-MS) at the Beijing Kuangyan Geoanaly-
sis Laboratory Co. Ltd. The detailed analytical
procedures and precisions are the same as those
described by Liu et al. (2008b). The oA-line pro-
cessing of the analysis data (including the selection
of samples and blank signals, instrument sensitiv-
ity drift correction, element content and U–Th–Pb

isotope ratio and age calculation) was completed
by using the software ICPMSDataCal (Liu et al.
2008a, 2010).
Apart from a few dark browns, most Zircons

from sample SLCN (Sanlian monzonitic granites)
were predominantly colourless. And they had
prismatic lengths ranging from 90 to 220 lm,
aspect ratios of 2:1 to 3.5:1 (Bgure 6). Most of the
zircons displayed a typical rhythmic oscillating
zoning (often narrow zoning) in CL images, which
could indicate a low-temperature magmatic origin
(Pagel et al. 2000; Wu and Zheng 2004). Some
zircons show signs of rounded edges, cones, and
pits, suggesting that the zircons were subjected to
later hydrothermal alteration or metamorphic
processes.
The study focused on the above zircons with

oscillating zonings. U–Pb isotope dating was
carried out by LA-ICP-MS method and its
isotope parameters were listed in table 3. The
analysis revealed that the zircon Th/U ratio
ranged from 1.07 to 2.18. On the U–Pb Con-
cordia diagrams for zircons (Bgure 7a), the six
analysis points give the older 206Pb/238U age
(956–1356 Ma), which may be the inherited
zircon age. In addition, there are two younger
206Pb/238U ages and two points deviating from
the Concordia lines. Excluding the above
analysis points, the 206Pb/238U ages of the
remaining nine analysis points are all concen-
trated, with a weighted average of 466 ± 4.5
Ma (MSWD = 0.27; Bgure 7b). This age is the
magmatic crystallization age of Huangyuan
monzonitic granites.

Figure 5. (a) Chondrite-normalized REE patterns and (b) primitive mantle-normalized spider diagrams of the monzonitic
granites from Huangyuan area.

Figure 6. Representative CL images of zircons from samples
SLCN.
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5. Discussion

5.1 Timing of granite emplacement

Zircon grains from the gneissic granite sample SL had
length/width ratios ranging from 2:1 to 3.5:1 and
showed oscillatory zoning in CL images (Bgure 6).
They also showed high Th/U ratios ranging from 1.07
to 2.18, indicating a magmatic origin. In addition, the
206Pb/238U ages of the remaining nine analysis points
are similar, with a weighted average of 466 ± 4.5 Ma
(Bgure 7b), which represents the crystallization age of
Huangyuan monzonitic granites.

The main emplacement age of the rock samples is
theOrdovician. In addition, it can also be found that
a small number of samples may contain records of
late magmatic activity (396 Ma). At the same time,
there are 956–1356 Ma residual cores of inherited
zircons in the rock mass, it can be found that there
was magma activity during this period (IGSQP
2015). The rock emplacement age is Ordovician, but
may also contain records of late magmatic events
(396 Ma). At the same time, there are 956–1356 Ma
residual cores of inherited zircons in the rock mass,
we can also see from other literature that there was
magma activity during this period.

Table 3. LA-ICP-MS U–Pb data from zircons for the Sanlian monzonitic granites.

Spot U Pb Th Th/U 207Pb/206Pb 1r 207Pb/235U 1r 206Pb/238U

SLCN-1 49095.6 147469.1 128567.5 1.15 0.0597 0.0024 0.6177 0.0281 0.0750

SLCN-2 355848.7 612157.8 528278.5 1.16 0.0716 0.0011 1.5866 0.0363 0.1605

SLCN-3 263803.9 1142531 578382.4 1.98 0.0597 0.0010 0.6122 0.0126 0.0742

SLCN-4 2191086 3613922 2291746 1.58 0.1980 0.0101 1.6513 0.0664 0.0634

SLCN-5 583513.7 2799327 1474562 1.90 0.0642 0.0015 0.6628 0.0170 0.0747

SLCN-6 103631.6 330228.5 241159.2 1.37 0.0573 0.0018 0.5975 0.0201 0.0755

SLCN-7 573513.8 1504351 1502216 1.00 0.0619 0.0011 0.6450 0.0149 0.0753

SLCN-8 474806.2 1282459 1444575 0.89 0.0562 0.0009 0.5548 0.0128 0.0714

SLCN-9 1.58E+10 2.76E+09 1E+09 2.75 0.9095 0.0111 29.3919 0.5243 0.2341

SLCN-10 1.47E+10 2.66E+09 9.73E+08 2.73 0.7987 0.0100 25.3429 0.3514 0.2297

SLCN-11 192519.6 636322 366483.6 1.74 0.0577 0.0026 0.5853 0.0254 0.0739

SLCN-12 423170.7 1273953 1018664 1.25 0.0610 0.0014 0.6373 0.0194 0.0754

SLCN-13 915342.3 3047472 1858000 1.64 0.0552 0.0011 0.6047 0.0140 0.0796

SLCN-14 1217448 1122985 1878596 0.60 0.0695 0.0010 1.5344 0.0340 0.1598

SLCN-15 571804.6 2160187 918392.3 2.35 0.0557 0.0016 0.5787 0.0173 0.0755

SLCN-16 319230.7 1128814 613042 1.84 0.0571 0.0020 0.5907 0.0231 0.0754

SLCN-17 2.97E+10 5.37E+09 1.89E+09 2.84 0.9070 0.0102 28.9986 0.4793 0.2317

SLCN-18 2.84E+10 5.26E+09 1.93E+09 2.72 0.7808 0.0100 24.7369 0.3367 0.2299

Spot 1r 208Pb/232Th 232Th/238U 207Pb/206Pb 1r 207Pb/235U 1r 206Pb/238U 1r

SLCN-1 0.0012 0.0193 1.0700 591 89 488 18 466 7

SLCN-2 0.0031 0.0276 0.9078 974 30 965 14 960 17

SLCN-3 0.0010 0.0150 1.5415 591 37 485 8 462 6

SLCN-4 0.0011 0.0465 1.0815 2810 84 990 25 396 7

SLCN-5 0.0011 0.0115 1.5378 750 49 516 10 464 7

SLCN-6 0.0011 0.0195 1.1985 502 69 476 13 469 7

SLCN-7 0.0010 0.0220 0.8017 672 39 505 9 468 6

SLCN-8 0.0012 0.0206 0.7448 461 31 448 8 445 7

SLCN-9 0.0036 0.4332 2.4082 – – 3467 18 1356 19

SLCN-10 0.0022 0.4263 2.2246 – – 3322 14 1333 12

SLCN-11 0.0011 0.0208 1.4033 520 100 468 16 460 7

SLCN-12 0.0013 0.0198 1.0345 639 48 501 12 469 8

SLCN-13 0.0012 0.0179 1.1169 420 46 480 9 494 7

SLCN-14 0.0028 0.0456 0.4923 915 28 944 14 956 16

SLCN-15 0.0011 0.0196 1.8978 443 65 464 11 469 7

SLCN-16 0.0015 0.0197 1.3295 498 78 471 15 468 9

SLCN-17 0.0032 0.4144 2.3926 – – 3453 16 1344 17

SLCN-18 0.0022 0.4061 2.1774 – – 3298 13 1334 12
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5.2 Petrogenesis and source nature

The monzonitic granites in the study area have
high contents of SiO2 (70.34–75.92%), and the
A/NK ratio (1.32–1.70) is greater than the aver-
age value of A-type granite (1.05). The TFeO/
MgO value (1.41–2.52) is far less than the typical
A-type granite (13.4), and it does not have
the characteristics of A-type granite. Moreover,
the Zr content (108.08910�6 – 200.00 9 10�6)
and (Zr + Nb + Ce + Y) of Muscovite granite

(192.80 9 10�6 – 363.43910�6) were significantly
lower than that A-type granite (Zr [ 250910�6

and (Zr + Nb + Ce + Y)[350910�6). In the (Zr +
Nb + Ce + Y) – (Na2O + K2O)/CaO classiBca-
tion diagram (Whalen et al. 1996; Bgure 8), Most
of the samples fall into FG (fractionated granite)
area and belong to the I-type, S-type and M-type
granite with high fractionation. It is also clear
that mica granite does not belong to A-type
granite.
It is difBcult or even impossible to identify I-type

granite, S-type granite or A-type granite, since the
mineral composition and chemical composition
tend to be low co-coalescence granite when the
above granites undergo highly fractionated crys-
tallization (Chappell and White 1992; Chappell
et al. 2000; Wu et al. 2007). Therefore, the identi-
Bcation of monzonitic granite needs to be discussed
synthetically with petrographic and geochemical
characteristics. In the Harker diagrams (Bgure 9),
Al2O3, CaO, TFe2O3, MgO, TiO2, and P2O5 con-
tents in these granites decrease with increasing
SiO2. This geochemical signature of the monzonitic
granites of Huangyan is characteristic of high-K,
calc-alkaline, strongly peraluminous, and S-type
granites.
The petrogenesis of peraluminous granites is

usually attributed to be the result of Al-poor
magma (Petford and Atherton 1996; Springer and
Seck 1997; Sylvester 1998; Clemens 2003). The
fractionation of Al-poor magma usually produces
rocks containing metals, rich in Na, and low in

Figure 7. (a) U–Pb Concordia diagrams for zircons from the Huangyuan monzonitic granites and (b) their weighted average
ages.

Figure 8. (Zr + Nb + Ce + Y) – (Na2O + K2O)/CaO classiB-
cation diagram of monzonitic granites from the Huangyuan. FG:
fractionated granite, OGT: other granite type.
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K2O/Na2O acids in closed systems (Zen 1986;
Gaudemer et al. 1988; Springer and Seck 1997;
Sylvester 1998; Clemens 2003). However, the
samples analyzed in the study are strongly pera-
luminous, K-rich rocks. Thus, the diagenesis of
these granites cannot be explained simply by

fractionation in a closed system (Liu et al. 2019).
The Bnding is also supported by discrimination
plots of Sm vs. La/Sm and La vs. (La/Yb)N
(Bgure 10).
Previous researchers have proposed three origins

of silica-rich, strong peraluminous granites: (1)
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Figure 9. Harker diagrams illustrating major element variations in the monzonitic granites from the Huangyuan area.
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partial melting of Al-rich metapelite and meta-
greywacke (Miller 1985; Sylvester 1998; Patino
Douce 1999); (2) tonalite and granodiorite at
pressures C8 kbar with clinopyroxene in the restite
(Patino Douce 1999); (3) partial melting of basaltic
rocks and/or amphibolites under H2O-saturated
conditions (Ellis and Thompson 1986). The com-
position of most samples indicates that at low
pressure (5 kbar B P B 12 kbar, Bgure 11a, b), and
the high K2O/Na2O ratios and negative Eu
anomalies indicate a dominantly granitic melt
generated under inconsistent H2O-saturated con-
ditions. Thus, most of the strongly peraluminous
granites in our study may have been generated by
partial melting of metapelite and metagreywacke,
the others have been generated by tonalite and
granodiorite.
The ratio of CaO/Na2O (wt.%) can be used as an

indicator of an S-type granite source, where melts

produced from plagioclase-rich and clay-poor
sources will tend to have higher ratios than melts
derived from pelitic sources (Sylvester 1998). The
gneissic granite samples show relatively lower
CaO/Na2O ratios (Bgure 12), suggesting that clay
is the main source, and lower Al2O3/TiO2 indicates
that it was formed at high temperatures.
In A–B analysis (Bgure 13), the degree of alu-

minization decreases with the increase of the
degree of differentiation of granite. In addition, it is
considered that the mica minerals in granite are
mainly biotite. The samples can be divided into
cordierite-bearing peraluminous granitoids (CPGs)
in the granitoid classiBcation of Barbarin (1990)
because of their strongly high aluminum content,
and it must be the partial melting of sedimentary
rock (Barbarin 1990, 1999). There is no cordierite
in the granite, which may be due to the high water
activity in the magma source area. In the

Figure 10. Compositional variation diagrams of (a) Sm vs. La/Sm and (b) La vs. (La/Yb)N for monzonitic granites from the
Huangyuan area.

Figure 11. Diagrams of (a) CaO + Al2O3 vs. CaO/Al2O3; (b) Al2O3 + Fe2O3
T + MgO + TiO2 vs. Al2O3/(Fe2O3

T + MgO +
TiO2), for monzonitic granites from the Huangyuan area.
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Figure 12. Diagrams of Al2O3/TiO2 vs. CaO/Na2O for monzonitic granites from the Huangyuan area.

Figure 13. Diagrams of A vs. B for monzonitic granites from the Huangyuan area. A=Al–(K+Na+2Ca), reCecting the
characteristics of Al. B=Fe+Mg+Ti decreased from most primitive granite magma to most evolved granitic magma.
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A/MF–C/FM classiBcation diagram (Altherr et al.
2000; Bgure 14), almost all samples fall into the
partial melts from metapelitic sources.

5.3 Tectonic setting and implications

Regarding the tectonic setting of the CQB in the
Middle-Late Ordovician, many studies found that
the granites were arc-type or collision-type gran-
itoids (Wan et al. 2000, 2003; Gehrels et al. 2003;
Liu et al. 2006; Chen et al. 2008; Tung et al.
2016). Previous studies suggested that CQB was
formed at the active continental margin (Guo
et al. 1999; Wan et al. 2000). Also, some basement
rocks suggest an intraplate environment (Wan
et al. 2000).
According to the geotectonic background of the

study area and previous research data, the early
Paleozoic evolution of the E-CQB can be roughly
divided into four stages (Feng 1997; Xia et al.
1996): (1) Subduction of oceanic crust on both sides
of Central Qilian in Late Cambrian to early Middle
Ordovician; (2) the ancient ocean basin closed, and
land (arc)–land collision occurred in middle–late of
Middle Ordovician, the crust thickened during this
period; (3) the subducting plate breaks oA in Late
Ordovician to late Early Silurian; (4) the crust
melts under the inCuence of plate fragmentation in
late Early Silurian to early Middle Silurian.
On the Y–Nb diagram of the granite (Pearce

et al. 1984; Bgure 15a), the samples fall on the

volcanic arc granite (VAG) area and the syn-col-
lisional (Syn-COLG) area. Then, on the (Nb +
Y)–Rb diagram of the granite (Pearce et al. 1984;
Bgure 15b), the sample projection points are all
located in the volcanic arc granite (VAG) region.
Most of the samples on the R1–R2 diagram of the
granite (Batchelor and Bowden 1985; Bgure 16a)
fall on the area of pre-plate collisional granite, and
several of the samples fall on mantle-differentiated
granite.
In Rb/10-Hf-3Ta diagram of the granite

(Bgure 16b), the samples are all located in the
junction of WPG and collision of granite on the
geotectonic background. In summary, the Middle
Ordovician Huangyuan monzonitic granites (466 ±

4.5 Ma) are volcanic arc granite formed before the
plate collision, and orogeny is about to happen.
The study area is adjacent to NQ–OB. According

to the previous research, NQ–OB is a subduction
zone, where subduction direction has some theories,
such as northward subduction (Xu et al. 1994; Xia
et al. 1995; Zhang andXu 1997; Hou et al. 2005; Song
et al. 2009), southward subduction (Wang and Liu
1976; Zuo and Wu 1997) and double subduction
(Zuo and Wu 1987; Zuo and Liu 1997; Wu et al.
2006, 2011; Wang et al. 2008; Hou et al. 2015). Its
subduction age is generally believed to have occur-
red at 469–445 Ma (Xia et al. 1996; Su et al. 2004).
According to the previous research, muscovite

occurs in Dongjiazhuang rock mass (less than 5%),
and R1–R2 discriminant maps of tectonic

Figure 14. A/MF–C/FM classiBcation diagram of monzonitic granites from the Huangyuan.
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environment are concentrated in the collision zone
(Yong et al. 2008). Therefore, the Middle Qilian
was probably a Japanese-type island arc terrane in
the early Paleozoic.
The late Ordovician Beigou rocks outcropped

from the Lajishan belt in the south of the study
area are similar to the standard Adakite and belong
to the island arc (subduction) rock structural
association (IAG). The discovery of Adakite

further indicates that oceanic crust subduction
occurred at that time. Adakites are closer to the
trench than normal island-arc magmatic rocks
(Defant and Drummond 1990). Therefore, the
direction from Adakite to normal island-arc mag-
matic rocks represents the subduction direction of
the oceanic crust.
The late Ordovician rocks, early diorites and

granodiorites, continental arc (subduction) rock

Figure 15. (a) Y–Nb classiBcation diagram and (b) (Nb + Y)–Rb classiBcation diagram of monzonitic granites from the
Huangyuan area. WPG: Within-Plate Granite, ORG: Oceanic Ridge Granite, VAG: Volcanic Arc Granite, Syn-COLG: Syn-
Collisional Granite.

Figure 16. (a) R1–R2 classiBcation diagram and (b) Rb/10–Hf–3Ta classiBcation diagram of monzonitic granites from the
Huangyuan area. �: mantle-differentiated granite, `: pre-plate collisional granite, ´: post-plate collisional granite, ˆ: late
orogenic granite, ˜: anorogenic granite, Þ: syn-collisional granite, þ: post-orogenic granite, WPG: Within-Plate Granite,
ORG: Oceanic Ridge Granite, VAG: Volcanic Arc Granite.
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structural assemblages (CAG) occur in the Qilian
belt. The occurrence of rocks in this period is the
result of the closure of Lajishan small ocean basin
and the subduction of ocean and continent, and
the subduction of Lajishan small ocean basin can
be further determined from the spatial position of
the out-crowd intrusive rocks. The collisional
granites exposed in late Ordovician and early
Silurian belong to continental collisional rock
tectonic assemblage (CCG). In the early late
Ordovician, the lateral compression caused by
subduction led to the shrinking of the residual
basin, and in the late Ordovician, the basin
closed and the collision of the middle and south
Qilian continental blocks led to the formation of
a new collisional orogenic belt. Therefore, the
magmatic activity in the Qilian Mountains led to
orogeny.
In the southeast direction of the study area,

Dongjiazhuang rock (446 ± 1 Ma), Xindian rock
(454 ± 5 Ma), Mengundao rock (445.1 ± 4.6 Ma)
and Xiaogaoling rock (445.0 ± 4.1 Ma) (Bgure 1)
belong to the contemporaneous rock mass. In other
words, all are the Syn-COLG, Juslang rock (444.1
± 3.2 Ma) belongs to anorogenic granite. But the
samples from the study area were 466 ± 4.5 Ma
which are pre-plate collisional granite. The com-
parison shows that the subduction age started at
about 466 Ma, and ended at 444 Ma, which is early
than previous research results.

6. Conclusions

By comparing the research results of this paper
with those of previous studies, the following con-
clusions can be concluded:

(1) Monzonitic granites sampled in the Huan-
gyuan area, E-CQB, formed at 466 ± 4.5
Ma. The geochemical and geochronological
analyses of the samples show high-K, calc-
alkaline, strongly peraluminous and S-type
characteristics.

(2) The geochemical features of the samples indi-
cate that the samples can be classiBed as
cordierite-bearing peraluminous granitoids,
and the provenance is mainly partial melting
of metapelite and metagreywacke.

(3) The Middle Ordovician Huangyuan mon-
zonitic granites are volcanic arc granite formed
before the plate collision. The subduction age
of E-CQB started at about 466 Ma and ended
at 444 Ma.
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