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Based on Poisson’s relation, a generalized equation to realize forward modelling of magnetic anomalies
due to arbitrarily magnetized 2D listric fault sources in any component is derived in the space domain.
The non-planar fault plane of a listric fault structure is described with a generalized polynomial equation.
The estimated coefBcients of a prescribed polynomial are used to construct the fault plane analytically.
The validity of the presented formula is established against the theoretical anomalies that are realized by
an analytic equation over a vertical fault structure. It is demonstrated with a synthetic example that the
magnetic anomalies in any component produced by a typical listric fault source always have lesser
magnitude when compared to the corresponding anomalous Beld produced by the same structure with a
planar fault plane assumption.
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1. Introduction

Faults are planar or gently curved fractures in
lithosphere rocks that are caused by tectonic and
other related disturbances/movements. Large scale
faults formed during rifting, drifting, and evolution
of passive continental margins are normally asso-
ciated with the basin development process. More
often than not, fault planes of marginal faults
associated with thick sedimentary basins are non-
planar because the primary detachment fracture
more often follows a curved path rather than pla-
nar (McKenzie 1978; Smith and Bruhn 1984;
Jackson 1987; Goussav et al. 2006; Chakravarthi
2011).
The geometry and kinematics of listric faults

have gained paramount importance in under-
standing the large-scale extensional processes and

exploring commercially viable mineralized targets.
Torizin et al. (2009) argue that the study of the
nature of fault dips with increasing depth could
improve the precision of seismic source character-
ization. Due to the non-planar nature of fault
planes, it is indeed difBcult to accurately estimate
the major extension and throw of faults from sur-
face geologic observations alone (McKenzie 1978;
Chakravarthi 2011). In such cases, the existence of
magnetization contrast(s) between the displaced/
detached rock masses on either side of fault planes
could generate measurable magnetic anomalies,
which can be mapped and parameterized to
quantify the listric fault morphologies.
A few techniques are available to estimate the

parameters of fault structures from observed
magnetic anomalies. The use of characteristic
curves in the interpretation of magnetic anomalies
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had been proposed by Moo (1965), Grant and West
(1965), Rao and Murthy (1978), and Rao et al.
(1980). Based on the application of Fourier inte-
gral, Sengupta (1974) had proposed a method to
analyse the magnetic anomalies caused by vertical
fault structures. Stanley (1977) demonstrated that
the horizontal gradient of total magnetic anomaly
over a vertical contact is the same as the total
magnetic anomaly over a thin dyke and that
speciBc points on the gradient are related to the
fault parameters. Qureshy and Nalaye (1978) pro-
posed a technique based on decomposing magnetic
anomaly into symmetric and anti-symmetric parts.
Rao and Babu (1983) presented standard curves
for magnetic anomaly interpretation treating the
angle of fault plane as 90� and that the magneti-
zation is caused purely by induction. Murthy
(1985) had developed an eDcient method of inter-
preting magnetic anomalies of arbitrarily magne-
tized fault structures, wherein the anomalies across
the structure are scaled at two different elevations
followed by identifying the maximum and mini-
mum anomalies and their mid points, which in turn
were used to estimate the source parameters.
Mushayandebvu et al. (2001) had developed a

method using extended Euler deconvolution to
analyse the anomalies produced by fault struc-
tures, while Murthy et al. (2001) used Marquardt’s
(1963) algorithm to analyse the magnetic anoma-
lies. The inversion scheme proposed by Murthy
et al. (2001) is noteworthy because their algorithm
presumes arbitrary magnetization for the fault
structures and analyses the anomalies in any
component for the source parameters. Using ana-
lytic signal and Euler deconvolution, Doo et al.
(2007) had devised a technique to estimate the
source parameters of a 2D magnetic contact.
Subrahmanyam and Rao (2009) have suggested a
simple method that uses a few characteristic posi-
tions on the magnetic anomaly to Bnd the param-
eters of a fault structure. Interpretation techniques
based on constrained optimization theory (Asfa-
hani and Tlas 2004) and stochastic algorithms
(Asfahani and Tlas 2007) are also available cur-
rently to analyse the magnetic anomalies of fault
structures. However, the practical utility of all the
above techniques is limited to analyse the magnetic
anomalies caused by large normal faults having
non-planar fault planes.
Chakravarthi (2010) had developed a forward

modelling technique to compute the gravity
anomalies of listric fault sources, among which the
density contrast differs continuously with depth.

An automatic inversion scheme to simultaneously
estimate the fault parameters (listric) and regional
gravity background from a set of observed gravity
anomalies was also proposed (Chakravarthi 2011).
To the best of authors’ knowledge, no algorithm is
reported/available explicitly to analyse the mag-
netic anomalies generated by listric fault sources.
Therefore, a need exists to develop suitable tech-
niques to analyse magnetic anomalies produced by
fault structures presuming (i) arbitrary magneti-
zation for the source and (ii) non-planar surfaces
for fault planes.
In this paper, we derive a generalized equation

for computing the magnetic anomaly due to a lis-
tric fault morphology in any component (i.e., hor-
izontal, vertical, and total Beld). A computer code
in JAVA is developed to realize forward modelling
in an interactive mode. The advantage of this code
is that it is platform-independent and works on any
GUI-based operating system with at least the jdk
1.6 version installed.

2. Forward modelling: Magnetic anomaly
of an arbitrary magnetized 2D listric fault
source

In the Cartesian co-ordinate system, let the z-axis
is positive vertically downwards and x-axis tra-
verse to the strike of a listric fault source whose
geometry is shown in Bgure 1. The 2D fault struc-
ture (inBnite strike length) is conBned between the
depth limits zT and zB (zB [ zT) along the z-axis.
Here, we treat the sediments within the hanging
wall as magnetically transparent, while the mag-
netic interface (fault plane) is only responsible for
generating the anomalies. Further, the structure is
bounded on the left by a non-planar surface deBned

by f zð Þ ¼
Pn

i¼0 fiz
i; and towards the right, it

extends to inBnity. Here, fi represents a set of
coefBcients, and n stands for the degree of the
polynomial. Because both induced and remanent
magnetizations are responsible for generating
magnetic anomalies over a geologic structure, we
presume that the structure is magnetized in an
unknown direction along the resultant of both
induced and remanent magnetic vectors. For a 2D
source, the resultant magnetic Beld vector, J , can
be resolved spatially into three mutually orthogo-
nal components namely, J sin h, J cos h cos d, and
J cos h sin d along the vertical, parallel to the strike
of the source, and perpendicular to the strike of the
source in the horizontal plane, respectively. Here,
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h is the resultant magnetic dip, and d denotes the
resultant magnetic Beld vector’s declination from
the source’s strike. Because the component
resolved along the strike of the body fails to gen-
erate magnetic anomalies, the eAective magneti-
zation which is responsible for producing the
anomalies can be expressed (Murthy 1998) as:

Jef ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h cos2 dð Þ:

p
ð1Þ

The dip of the eAective magnetization vector is
given by

hef ¼ tan�1 tan h cosec dð Þ: ð2Þ

The eAective magnetization always lies in a
vertical plane perpendicular to the strike of the
source.
Now considering dc as the density contrast of the

structure, the magnetic potential, W , at any point
P 0; 0ð Þ outside the source region can be expressed
using the Poisson’s relation as (Murthy 1998)

W ¼ � Jef
Gdc

oU

ox
cos hef þ

oU

oz
sin hef

� �

; ð3Þ

where G is universal gravitational constant, and U
represents the gravity potential.
The vertical magnetic anomaly DV outside the

source region can be expressed as:

DV ¼ Jef
Gdc

o2U

ox oz
cos hef þ

o2U

oz2
sin hef

� �

: ð4Þ

The gravity potential U due to the 2D source at
the point P 0; 0ð Þ is given by

U ¼ �Gdc

Z

s

lnðx2 þ z2Þds; ð5Þ

where s is the cross-sectional area of the structure
and x; zð Þ stands for the source coordinates of an

element within the structure. Substituting the
expressions for partial derivatives of U from
equation (5) in equation (4), we obtain

DV ¼ 2Jef

Z

s

z2 � x2ð Þ sin hef þ 2xz cos hef
x2 þ z2ð Þ2

ds: ð6Þ

Applying Stokes’ theorem, equation (6) can be
rewritten as

DV ¼

2Jef

Z zB

z¼zT

Z 1

x¼f zð Þ

z2 � x2ð Þ sin hef þ 2xz cos hef
x2 þ z2ð Þ2

dx

" #

dz:

ð7Þ

Upon simpliBcation equation (7) takes the form

DV ¼ 2Jef

Z zB

z¼zT

z cos hef � f zð Þ sin hef
f 2 zð Þ þ z2

dz: ð8Þ

The vertical magnetic anomaly due to the

structure at any point P 0 xj ; zj
� �

on the topography

along the principal proBle can be obtained as:

DV xj ; zj
� �

¼ 2Jef

Z zB

z¼zT

z � zj
� �

cos hef � f zð Þ � xj
� �

sin hef

f zð Þ � xj
� �2þ z � zj

� �2 dz:

ð9Þ

Further, the anomaly in horizontal component
DH at the point P 0; 0ð Þ can be obtained from
equation (3) as:

DH ¼ Jef sin#

Gdc

o2U

ox oz
cos hef �

p
2

	 

þ o2U

oz2
sin hef �

p
2

	 
� �

;

ð10Þ

where # is strike of the body. The horizontal
magnetic anomaly due to the structure at any

B

zBasement 
zB

Non-planar listric fault plane

ZT 

Figure 1. Schematic diagram showing a conceptual geometry of a typical listric fault source. The x-axis is transverse to the strike
of the structure, z-axis is vertically positive downwards, and the fault plane is described by a polynomial of speciBc degree. The
source is striking inBnitely along the y-axis.
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point P 0 xj ; zj
� �

on the principal proBle outside the

source region can be expressed using equation (5)
as:

DH xj ; zj
� �

¼ 2Jef sin#

�
Z zB

z¼zT

z � zj
� �

cos hef � p
2

� �
� f zð Þ � xj
� �

sin hef � p
2

� �

f zð Þ � xj
� �2þ z � zj

� �2 dz:

ð11Þ

From equations (9 and 11), one can realize that
the vertical magnetic anomaly produced by a 2D
listric fault source is similar to the horizontal
magnetic anomaly produced by the same structure
but with a different amplitude and phase.
The generalized equation for the magnetic

anomaly in any component due to a listric fault

source at an observer location at P 0 xj ; zj
� �

can be

Bnally expressed as:

DT xj ; zj
� �

¼ 2J 0
Z zB

z¼zT

z � zj
� �

cos h0 � f zð Þ � xj
� �

sin h0

f zð Þ � xj
� �2þ z � zj

� �2 dz

ð12Þ

where J 0 ¼ Jef
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 # cos2 að Þ

p
and h0 ¼ hef�

tan�1 sin #=tan að Þ.
Equation (12) is a standard form to calculate the

magnetic anomaly of a listric fault source in any
speciBc component. For example, by setting a to
90�, 0�, and i in equation (12) the vertical, hori-
zontal, and total magnetic anomalies can be real-
ized, respectively. Further, it is more appropriate
to solve equation (12) by a numerical approach
rather than analytical because of the simple fact
that the polynomial, f zð Þ, in the integrand may
assume any degree (Chakravarthi 2010, 2011).
We demonstrate the validity of equation (12) by

comparing the anomalies (in each component)
obtained from the present method against the ones
realized from an analytical equation (Murthy et al.
2001) over a vertical fault structure (Bgure 2b). In
this case, the assumed parameters of the source are
zT = 0 km, zB= 4.0 km, hef = 30�, Jef ¼ 100 nT and
# = 40�. The anomalies in each component are
calculated along a proBle in the interval
xj � ð0; 40 kmÞ on the observational plane zj = 0 and

(a)

(b)

(c)

Figure 2. (a) Comparison of vertical magnetic anomalies obtained from the present method and the analytic equation (Murthy
et al. 2001), (b) geometry of vertical fault, and (c) differences between the anomalies from the two methods.
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shown in Bgures 2(a) and 3(a, c), respectively. The
differences between the anomalies obtained from
the present method and the analytic equation in
each component are shown in Bgures 2(c) and 3(b,
d). In the case of vertical anomaly, a maximum
difference of �6E�04 nT is observed at the 19th
km on the proBle (Bgure 2c), whereas in horizontal

and total components, the observed maximum
differences are �2E�04 nT and �4E�04 nT,
respectively (Bgure 3b and d). These insignificant
differences between the anomalies in all the com-
ponents demonstrate the accuracy of the proposed
method of forward modelling.

3. Computer code

Based on the algorithm described in the text, a
GUI-based software, FRMGLSTRK, coded in
JAVA, is developed to compute the magnetic
anomalies of a 2D listric fault source in any
component.
The code is built on the Model-View-Controller

(MVC) architecture according to the structural
relationship shown in Bgure 4. The module ‘Model’
estimates the coefBcients of a prescribed polyno-
mial to construct the geometry of a fault plane and
computes the magnetic anomalies of the structure

(a)

(b)

(c)

(d)

Figure 3. (a) Comparison of horizontal magnetic anomalies obtained from the present method and the analytic equation
(Murthy et al. 2001), (b) differences between the horizontal anomalies obtained from the two methods, (c) total magnetic
anomalies from the present method and the analytic equation (Murthy et al. 2001), and (d) differences between the total
anomalies from the two methods.

Figure 4. Structural relationship between Model, View and
Controller.
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in the required component. The ‘View’ module
reads the input data and displays the output in
both graphical and ASCII forms. The ‘Controller’
executes the task of passing the required actions to
Model and View modules whenever they called for.
Once the batch Ble of the software is invoked, the

view module appears on the monitor, as shown in
Bgure 5. The view module is arranged into the
input, graphical, and ASCII layouts (Bgure 5). The
input layout consists of nine input Belds and eight
action buttons. The graphical layout is divided into
the anomaly panel on top and the structural panel
at the bottom. The ASCII layout towards the right
displays the output in ASCII format.
The input parameters to the code are: proBle and

ID, number of observations, distance to each
observation as measured with reference to the Brst

station (any units), depth to the basement (any
units), degree of the polynomial, the strike of the
source with reference to magnetic north (degrees),
intensity of magnetization (nT), direction of mag-
netization (degrees), and code number (1 for ver-
tical, 2 for horizontal, and 3 for total magnetic
anomaly). The code allows the user to specify the
input in two ways: (1) the data can be entered in a
notepad and loaded to the code by the ‘load Ble’
action button, or (2) data can be directly entered in
respective Belds of the input layout (Bgure 5). The
action buttons of the input layout are: specify fault
coordinates, draw/edit fault plane, forward mod-
elling, save and print, clear, save Ble, load Ble, and
exit.
After specifying the input parameters and

invoking the action button ‘specify fault

Figure 5. View module of FRMGLSTRK.

Figure 6. Selection of control points by mouse clicks in the structure panel. The appearance of number of control points in red
warrants the selection of addition points.
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coordinates’, the user selects a few control points in
the structure panel by means of mouse clicks to
construct a fault plane. The code automatically
assigns the coordinates x; zð Þ to each such selected
point in the structure panel, and the same is dis-
played on the right-hand side of the structure
panel. The number of selected control points are
also displayed in the graphical layout, as shown in
Bgure 6. In addition, the code guides the user to

select the optimum number of control points in the
structure panel to construct the fault plane. For
example, if the number of control points to describe
the fault plane is insufBcient (depending upon the
degree of chosen polynomial), then the number of
selected control points is displayed in red (as shown
in Bgure 6). In such a case, the user needs to select
a few more points in the structure panel till the font
colour turns to blue (Bgure 7).

Figure 7. The number of control points (six) appear in blue indicates the selection of sufBcient control points in the structure
panel.

Figure 8. Analytically deBned fault plane by a 5th degree polynomial. The footwall is represented with solid red and the hanging
wall in yellow. The estimated coefBcients of the polynomial and the coordinates of six control points are displayed in the lower
panel of ASCII layout.
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Upon invoking the ‘draw/edit fault plane’ action
button in the input layout, the code solves the
polynomial coefBcients, fk, by Btting the prescribed

polynomial to the coordinates of control points.
These estimated coefBcients are then used to con-
struct an analytically deBned fault plane, as shown

Figure 9. Vertical magnetic anomaly over a listric fault morphology. The non-planar fault plane is described with a 5th degree
polynomial. The magnitude of anomaly at each observation is displayed in the top panel of ASCII layout.

Figure 10. Output of forward modelling in html format with a print dialogue box attached to it.
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in Bgure 8. If the user opts for modifying the fault
plane, then the control points in the structure
panel are edited by simple drag and drop mouse
operations. Accordingly, the coefBcients of the
polynomial get updated, and the fault plane is
reconstructed and displayed in real-time. The user
also has the option to change the degree of the
polynomial, if required.

Once the model space is constructed, the
anomalous Beld in any speciBc component (by
specifying code number 1 for vertical, 2 for hori-
zontal, and 3 for total) can be realized by invoking
the ‘forward modeling’ operator (Bgure 9). The
business logic computes the magnetic anomalies in
the required component and displays the response
in the anomaly panel, as shown in Bgure 9. The
computed anomalies are also displayed in a tabular
form in the ASCII layout (Bgure 9). The user saves
the output by invoking the ‘save and print’ action
button (Bgure 10).

4. Example

The applicability of method and code is demon-
strated on a synthetic listric fault model, whose
geometry is shown in Bgure 11(d). The assumed
model space remains the same as in Bgure 2(b), but
in this case, a 5th degree polynomial is used to
describe the listric (non-planar) fault plane, as
shown in Bgure 11(d). The coefBcients of the cho-
sen polynomial (5th degree) are given in table 1.
For such a structure, the magnetic anomalies in
vertical, horizontal, and total components are cal-
culated from the present method and compared to
the anomalies obtained from the analytic equation
(Murthy et al. 2001), which presumes the planar
surface for the fault plane. In both cases, the
observer is on the top of the topography at zj = 0
km. The theoretical anomalies obtained from both
methods at 41 equi-spaced observations on a proBle
in the interval xj � ð0; 40 kmÞ are shown in
Bgure 11(a–c). It is clearly seen from Bgure 11(a–c)
that the magnetic anomalies produced by the lis-
tric fault structure differ in magnitude from the
corresponding anomalies realized from the analytic
equation. Therefore, the assumption of a planar
surface for a fault plane should be accepted with
caution, particularly when interpreting the mag-
netic anomalies caused by large normal faults.

5. Conclusions

A generalized equation that combines both ana-
lytic and numeric approaches to compute the
magnetic anomalies due to an arbitrarily magne-
tized 2D listric fault source in any component is
presented. It is demonstrated with a synthetic
example that the magnitude of anomalies produced
by a listric fault source, in any component, portray
lesser magnitude than the anomalies produced by

(a)

(b)

(b)

(c)

Figure 11. (a) Vertical, horizontal, and total magnetic
anomalies obtained from the present method over a listric
fault source (fault plane is described with a 5th degree
polynomial) whose geometry is shown in (d). The magnetic
anomalies in the three components calculated over the same
structure by an analytic equation (Murthy et al. 2001)
presuming a planar fault plane are also shown for comparison.

Table 1. CoefBcients of 5th degree
polynomial.

CoefBcient Magnitude

a0 20.014

a1 –0.1479

a2 0.4836

a3 0.0711

a4 –0.0023

a5 0.00039
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the same structure with a planar fault surface.
Therefore, the application of routine modelling and
inversion algorithms that consider the fault planes
as planar surfaces to analyse the magnetic
anomalies of large normal faults is discouraged.
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