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An inverse modelling study on the interpretation of magnetic anomalies caused by 2D dyke-shaped bodies
was carried out using the differential search algorithm (DSA), a novel metaheuristic inspired by the
migration of super-organisms. We aimed at estimating dyke parameters that include amplitude coefB-
cient, depth, half-width, origin and dip angle. First, the resolvability of these parameters and algorithm-
dependent parameters of the DSA that aAect the performance were determined. Two theoretical and two
Beld anomalies were used in the evaluations. Theoretical anomalies comprise one and two isolated dykes.
The eAect of noise content was also investigated in these cases. The inversion approach was then applied
to two known magnetic Beld anomalies measured over the Marcona iron mine in Peru and the Pima
copper mine in the US state of Arizona. The results showed that the eDciency of the DSA increases
significantly with the use of optimal parameter sets of the inverse magnetic problem. Furthermore, cost
function maps and relative frequency histograms showed that the parameters half-width and amplitude
can be estimated with some uncertainties, while the remaining significant model parameters of the source
body can be solved with negligible uncertainties. Findings indicated that the DSA provided satisfactory
solutions in accordance with actual data and previously obtained results. Thus, it can be concluded that
DSA is an eDcient tool for interpreting magnetic anomalies caused by magnetised 2D dykes.
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1. Introduction

Magnetic prospection is one of the most eAective
geophysical surveying methods for studying the
properties of the subsurface by measuring varia-
tions in the geomagnetic Beld caused mainly by
ferrous minerals such as ilmenite, magnetite and
pyrrhotite in geological formations (Ekinci et al.
2020a). Variations in magnetic Beld intensity
resulting from the contrast of magnetic suscepti-
bility between the targets investigated and the host
medium can be used to determine the depth,

geometry, and magnetic susceptibility of the
induced magnetization anomalies. The most com-
mon applications of the magnetic method generally
include explorations of mineral (Sharma 1987),
diamond (Power et al. 2004), oil and gas (Eventov
1997), cave (Balkaya et al. 2012), archaeological
remains (Ekinci et al. 2014), dyke location
(Sowerbuts 1987), solid waste landBll (Prezzi et al.
2005), basement depth (Kumar et al. 2017), buried
metallic objects (Barrows and Rocchio 1990) and
buried igneous intrusions (Ekinci and Yiğitbas�
2012).
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Geophysical inversion refers mainly to mathe-
matical and statistical techniques for determining
various physical properties of the subsurface such
as density, magnetic susceptibility and electrical
conductivity from geophysical measurements (Reid
2014). The main objective is to estimate the best
model parameters that match well to the observa-
tions by combining forward models with appro-
priate optimization techniques (Carbone et al.
2006). Numerous techniques are used to interpret
potential Beld data sets by considering simple
geometric shapes such as dykes, spheres, thin
sheets and faults. Among them, the dyke model has
been widely used in magnetic explorations (e.g.,
Abdelrahman et al. 2003, 2012; Venkata Raju 2003;
Beiki and Pedersen 2012; Al-Garni 2015; Ekinci
2016, 2018; Essa and Elhussein 2017). A variety of
derivative-based approaches including the steepest
descent, Gauss–Newton and Levenberg–Mar-
quardt are generally used to interpret magnetic
dyke anomalies (Radhakrishna Murthy et al. 1980;
Khurana et al. 1981; Won 1981; Ram Babu et al.
1982; Atchuta Rao et al. 1985; Radhakrishna
Murthy 1990; Beiki and Pedersen 2012). However,
due to the inherent non-uniqueness characteristics
of the potential data inversion, these approaches
strongly require some constraints on variables and
geophysical/geological prior information to pro-
vide a realistic and interpretable solution (Li and
Oldenburg 1996). Therefore, conventional methods
can only be successful if a reasonable initial guess
for model parameters, and sometimes geological
information are available; otherwise, the solution
may fall into local minima rather than the global
minimum.
Due to the importance of initial model parameter

estimations for an eAective solution, derivative-free
metaheuristics inspired by nature are becoming
increasingly popular for geophysical data inverse
modelling. Metaheuristics do not require initial
model parameters close to the actual value to reach
the global minimum. Local minima can also be
avoided by sampling in relatively large search
spaces, compared to derivative-based approaches
based on minimization procedure. Thus, they can
Bnd optimal solutions, even if there is no a priori
information for the model parameters to be inves-
tigated. Compared to conventional approaches, the
great disadvantage of metaheuristics is the higher
cost of performing numerous Btness evaluations
before a satisfactory solution is found. In the last
decade, several metaheuristics including genetic
algorithms (GA), particle swarm optimization

(PSO), differential evolution (DE) algorithm,
simulated annealing (SA) and its variants such as
very fast SA (VFSA), genetic-price algorithm
(GPO), and whale optimization algorithm (WOA)
have been applied to interpret seismic data
(G€okt€urkler 2011; Soupios et al. 2011; C�aylak et al.
2012), self-potential (SP) data (Peks�en et al. 2011;
G€okt€urkler and Balkaya 2012; Balkaya 2013; Di
Maio et al. 2016, 2019; Biswas and Sharma 2017;
Ekinci et al. 2020b; Gobashy et al. 2020a; Sung-
kono 2020), gravity and magnetic data (Biswas
and Acharya 2016; Ekinci 2016; Ekinci et al.
2016, 2017, 2019, 2020a, b, 2021; Singh and Biswas
2016; Balkaya et al. 2017; Biswas 2017; Kaftan
2017; Essa and Elhussein 2018, 2020; Anderson
et al. 2020; Di Maio et al. 2020; Gobashy et al.
2020b) and electrical resistivity data (Bas�okur
et al. 2007; Fern�andez Martinez et al. 2010; Balk-
aya et al. 2012; Peks�en et al. 2014). In addition,
G€okt€urkler et al. (2016) presented an application of
four metaheuristics, including PSO, GA, DE and
SA for the inversion of SP (1D), electrical resis-
tivity (1D), magnetic (3D) and cross-hole radar
(2D) datasets, respectively. To sum up, the most
common metaheuristics in applied geophysics are
GA, PSO, SA and more recently DE, especially for
geoelectrical and potential Beld data.
Differential Search Algorithm (DSA) is a novel

and eAective swarm-based metaheuristic algorithm
proposed by Civicioglu (2012) to solve real-valued
numerical optimization problems. Superorganism
migration is the main inspiration of the algorithm.
Multi-strategy-based DSA displays an advanced
evolutionary algorithm feature with its unique
mutation and crossover operators used in the evo-
lutionary cycle. In geophysics, the Brst applications
of DSA include surface-wave data inversion (Song
et al. 2014) and the horizontal-loop electromag-
netic (HLEM) data evaluation (Alkan and Balkaya
2018). Most recently, Ekinci et al. (2020b) per-
formed gravity data inversion through the algo-
rithm. To the best of our knowledge, this is the Brst
application of the algorithm for the inversion of
magnetic anomalies caused by dyke-shaped bodies.
Here, two theoretical anomalies consisting of one
and two magnetized bodies, and two Beld anoma-
lies measured over the Pima copper mine area (US
state of Arizona) and the Marcona iron mining area
(Peru) were used to test the eDciency of the
metaheuristic. We used an open-source MATLAB-
based code (hlem˙global) developed by Alkan and
Balkaya (2018), which was adapted to solve the
presented optimization problem. Since the inverse
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potential Beld problems suffer mainly from ambi-
guities and instability, various combinations of
model parameters can produce similar anomalies
(Carbone et al. 2006). Therefore, a possible ambi-
guity for the current optimization problem was also
investigated considering the formulation used to
compute magnetic anomalies caused by long tab-
ular bodies (i.e., Grant and West 1965; Venkata
Raju 2003). In the Brst synthetic case of an isolated
dyke, the eAect of two user-deBned control
parameters of the algorithm on the solution was
investigated, using the original ones (Civicioglu
2012) and those proposed by Alkan and Balkaya
(2018). The ambiguities of the model parameters
investigated were also demonstrated using error
energy maps and frequency distribution his-
tograms. Furthermore, the results obtained by the
DSA for Beld cases were compared with those of
previous studies.

2. Methodology

2.1 Differential search algorithm (DSA)

DSA is one of the latest population-based meta-
heuristics introduced by Civicioglu (2012) to solve
the problem of transforming geocentric Cartesian
coordinates into geodetic coordinates. The algo-
rithm is inspired by the migration of a super-
organism that includes a group of synergistically
interacting organisms of the same species as Bre
ants, honeybees and monarch butterCies. Seasonal
migration to more fertile sites can occur when the
natural resources of super-organisms such as water
resources and pastures decrease in some periods of
the year due to periodic climate change. If the
capacity and diversity of these vital sources are
satisfactory, the superorganism temporarily settles
at this new stopover and then continues its
migration to discover more productive habitats. In
the algorithm, a food area and the migration of the
superorganism are simulated by the search space
and a Brownian-like random-walk movement in
turn (Civicioglu 2012). DSA consists mainly of the
steps given below. A generalized Cowchart of the
algorithm is also shown in Bgure 1.

2.1.1 Step 1. Set control parameters of DSA

The control parameters of metaheuristics are usu-
ally problem-dependent and have a significant
eAect on the performance of the algorithm. Since

the selection of control parameters in the DSA, just
as in other metaheuristics, is an essential issue, the
algorithm may not perform well if these parameters
are not optimized for the problem under consider-
ation. The algorithm has only two control param-
eters, namely p1 and p2, which are used to
determine the individual perturbation frequency of
the superorganism participating in the search of
the stopover site. To achieve this, it mainly uses a
random process by changing its user-deBned initial
values at each epoch (i.e., the generation). In the
original DSA, these parameters are the same and
vary in the range of 0–0.3 (p1 ¼ p2 ¼ 0:3� rand1;2).
Here, rand1 and rand2 represent two uniformly

Figure 1. A simpliBed Cowchart of the DSA.

J. Earth Syst. Sci.         (2021) 130:135 Page 3 of 23   135 



distributed random numbers between [0, 1]. The
maximum number of population (Np) and epoch
(G) are other user-deBned parameters that must be
speciBed before the initialization stage.

2.1.2 Step 2. Initialize superorganism

The algorithm begins with a randomly initiated
superorganism composed of artiBcial-organisms.
Each artiBcial-organism of a superorganism is

denoted as Xi ¼ xi;j
� �

, where i ¼ 1; 2; 3; . . .;Npf g,
j ¼ 1; 2; 3; . . .;Df g. Here, D depicts the dimension
of the optimization problem. The initial position of
the jth component of ith artiBcial-organism in the
search space is randomly generated as follows.

xi;j ¼ xlowj þ rand � xupj � xlowj

� �
; ð1Þ

where low and up denote lower and upper limits of
unknown model parameters. Each artiBcial-organ-
ism represents a parameter vector that will evolve
into a global solution to the optimization problem.

2.1.3 Step 3. Check termination condition

The algorithm is terminated when the cost function
falls below a pre-deBned threshold or reaches a
certain number of G. In this study, the cost func-
tion (E), which represents the convergence beha-
viour of DSA, was computed using the following
equation.

Ek ¼ dobsk � dcalk

� �T� dobsk � dcalk

� �
=N ; ð2Þ

where N stands for the number of observed data,

dobs and dcal denote the observed and calculated
data, respectively, T is a transposition and k rep-
resents a counter of the observations. The square
root of equation (2) is rms error used in the appli-
cations after estimating the model parameters.

2.1.4 Step 4. Compute the stopover site

DSA demonstrates an eDcient approach by using a
Brownian-like random walk model, which enables
the movement of randomly selected individuals
towards the targets of a donor artiBcial-organism.
A stopover site position ðsÞ, which is one of the
solutions among the artiBcial-organisms, can be
computed by the following equation:

si;G ¼ Xi;G þ scale � donor� Xi;G

� �
: ð3Þ

A randomly selected member from the artiBcial-
organism serves a target vector, donor ¼
Xr1;Gjrandom shuffling, where r1 2 1; 2; 3; . . .;Npð Þ and

r1 6¼ i are the integers arbitrarily determined. In
DSA, the random shufflingðÞ function makes it
possible to arbitrarily change the order of the
individuals in the current population and plays a
crucial role in the realization of an eDcient
migration movement. Furthermore, the scale value
provides the determination of the perturbation
amount in the size of the member positions in the
artiBcial-organism. In DSA, this value can be
determined using a lognormal distribution for a
Brownian walk simulation.

2.1.5 Step 5. Check the bounds of the stopover
site

When the elements of the stopover site exceed the
limits of the predeBned search spaces, a new posi-
tion in the search space is randomly created using
equation (1). Afterwards, the artiBcial-superor-
ganism tries to move from its current position to a
better stopover site to reach the global minimum
value.

2.1.6 Step 6. Determine the most fruitful
stopover site

A search process provides a stopover site via arti-
Bcial-organisms individuals of the superorganism.
To achieve this task, a trial vector is obtained as
follows.

s0i;j;G ¼
si;j;G

Xi;j;G

if
ri;j ¼ 0

ri;j ¼ 1

8
<

:

8
<

:
; ð4Þ

where s0i;j;G indicates a trial vector of the jth

component of the ith dimension in the Gth epoch
and ri;j is an integer number of either 0 or 1. Based
on the logical condition, the trial vector is inherited
from the mutant si;j;G or cloned from the target
vector Xi;j;G. At the selection stage, DSA swaps the
target vector in the next iteration if the trial vector
provides a cost function value being less than or
equal to that of its target vector. Otherwise, the
position of the target vector within the population
is preserved. The algorithm simply applies the
greedy rule to select the next population between
the stopover and the artiBcial-organism
population.
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Xi;Gþ1 ¼
si;G

Xi;G

�
if

f s0i;G

� �
� f Xi;G

� �

otherwise

(

; ð5Þ

where f ðs0i;GÞ and f Xi;G

� �
represent the evaluations

of the newly discovered and the currently best
stopover site. The cycle between equations (3) and
(5) continues until a stopping criterion is satisBed.
In both theoretical and Beld cases, two stopping

criteria were used in the optimization scheme: the
algorithm was terminated when the cost function
value obtained for each epoch reached a speciBed
threshold, or when the cycle reached the predeBned
number of epochs (i.e., Gmax). It should be noted
that the threshold value is 1e–5 nT and the Gmax

values for theoretical anomalies with one and two
isolated dykes are 500 and 1000, respectively.
These anomalies were also contaminated by zero-
mean pseudo-random numbers with a standard
deviation (SD) of 25 and 30 nT, respectively. Their
noise content was taken into account as a stopping
criterion in noisy cases. In Beld cases, the algorithm
was terminated at the end of the Gmax of 250.

2.2 Forward modelling

The algorithm explained in detail above was
implemented to interpret magnetic anomalies
caused by inBnitely long magnetized thick dyke-
shaped bodies. The magnetic anomaly at any point
xið Þ on the principal proBle of a thick 2D dyke
model can be expressed as following (Venkata Raju
2003):

F xið Þ ¼ P cosQ tan�1 xi � d þ bð Þ
h

� tan�1 xi � d � bð Þ
h

	 
�

þ sinQ

2
ln

xi � d þ bð Þ2 þ h2

xi � d � bð Þ2 þ h2

" #�
þMxi þ c;

ð6Þ

where d, b, and h are the surface projection mid-
point, half-width, and depth to the surface of the
dyke, respectively, and x is the distance of the
magnetic measurement points (i ¼ 1; 2; 3; . . .;N),
N denotes the number of observation points, while
M and c represent the regional slope and the
background level, respectively. Taking into
account the components of the Earth’s magnetic
Beld, namely the total (DT), vertical (DV ), and
horizontal (DH), the details of the amplitude
coefBcient (P) and the index parameter (Q) are
also given in table 1 (Venkata Raju 2003). In these
equations, I 0 denotes the inclination of the Earth’s

magnetic Beld intensity ðTÞ, while J0 and a are the
inclination and declination of the resulting mag-
netization (JÞ and a is the proBle azimuth. Besides,
K represents the magnetic susceptibility contrast

between the body and the medium, and I 1

tanI 1 ¼ tanI 0=cosa
� �

and J1 tanJ1 ¼ tanJ 0=cosa
� �

display the eAective inclination of the induced and
the resultant Beld, respectively (Hood 1964).
Lastly, d denotes dip of the thick dyke that varies
between 0� and 180�, b is equal to sin dð Þ. It must

also be noted that J 0 ¼ I 0, J
1 ¼ I 1, and a ¼ a for

induced magnetization. A plan view of 2D magne-
tized dyke in a Cartesian coordinate system is
given in Bgure 2(a). X and Y axes are along with
the magnetic proBle and strike of the body
(Dstr ¼ 90� a), respectively.
Further information on the formulations and

notations used can be found in both Hood (1964)
and Venkata Raju (2003). Here, equation (6) above
represents the forward part of the current inverse
modelling study. Figure 2(b) shows computed
magnetic anomalies for dykes with dip angles of
15�–90� in 15� steps and a cross-sectional view of a
thick dyke. It is also obvious that the calculation of
P and Q in table 1 requires various additional
information such as K , T and I 0 from the survey to
obtain the P value. Since the exact values of these
parameters are generally not available in the
researchers’ works, the inverse modelling of the
current study is mainly aimed at estimating the
unknown dyke parameters including burial depth
(h), half-width (b), surface projection midpoint (dÞ,
dip angle (d) and amplitude coefBcient (PÞ.

3. Results and discussion

To test the eDciency of the algorithm, two theo-
retical (Bgure 3) and two real magnetic anomalies
(Bgure 4) caused by dyke-shaped bodies were used
in the inverse modelling study.

3.1 Theoretical model 1

The Brst total theoretical magnetic anomaly shown
in the top panel of Bgure 3(a) comprises an inB-
nitely long dyke located at a depth of 30 m below
the surface (total measurement proBle is 600 m).
As shown in the bottom panel of the Bgure, the
thickness (2b) and the dip of the dyke (d) are 50 m
and 70�, respectively, while the amplitude coefB-
cient (P) was set to 500 nT to produce the theo-
retical anomaly. True model parameters to be
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estimated are h = 30 m, b = 25 m, d = 0 m,
d = 70� and P = 500 nT, respectively. Other
parameters for calculating the anomaly are I 0 ¼
15� and a ¼ 0�. It was also assumed that there is
no regional value (i.e., M ¼ c ¼ 0). The nature of
magnetic inversion problem, the eAects of control
parameters of the DSA and the noise content on
the solution and uncertainties in the model
parameters were also investigated using this
theoretical model.

3.1.1 The nature of the magnetic inverse
problem

As is generally known, optimization problems in
geophysics mainly exhibit ill-posed, non-linear, and
non-unique characteristics, resulting in the Bnding
of various models that Bt very well with the
observed anomalies. Furthermore, inverse poten-
tial Beld problems suffer from ambiguity and
instability due to the inherent characteristics of
potential Belds. Therefore, regardless of the applied
inversion approach, the nature of the optimization
problem under consideration should be determined
to clarify the resolvability characteristics of each
model parameter before the inversion procedure.
To achieve this aim, cost-function topography
maps (Fern�andez-Mart�ınez et al. 2012) are com-
puted since the ambiguities of the parameters can
be estimated from the outlines of the maps
(Bas�okur 2001).
In the case of circular contours, the parameters

are said to be uncorrelated and can be solved
independently (Bgure 5a). In the case of elliptical
contours, the parameters are still uncorrelated and
can be solved separately. However, one of them can
be estimated with lower sensitivity based on the
representation of a relatively larger solution range
(Bgure 5b). On the other hand, a correlation
between the parameters can be achieved if the
contours are tilted at an angle between the

parameter axes (Bgure 5c). In this case, the solu-
tion that can be achieved for one parameter
depends on the numerical value of the other
(Bas�okur 2001).
Figure 6 shows error energy maps obtained in

the vicinity of each parameter couple of the Brst
synthetic model, taking into account equation (2).
The remaining three parameters were Bxed by
their actual values to illustrate the relationships
between these parameters. Relatively narrow
search spaces were used for each parameter, which
can be seen from each axis of the maps. Actual
values were also highlighted on each axis by bold
and italic numbers. On the maps, the contours of
error energy values higher than 1e�4 nT2 were not
displayed to avoid information overload. White
contours surrounding the actual values (hollow red
circles) demonstrate 1e�2 nT2 and 1e�3 nT2 error
energy contours.
Based on these maps, mainly circular contours

seen in the Brst two rows of the Bgure show an
uncorrelation between d � P, b� d, b� d, h � d,
and h � d parameter couples. On the other hand,
valley-shaped elliptical contours presented in the
last row of the Bgure for h � P, b� h, and d � d
display a correlation between the parameters.
Besides, their correlation coefBcient is positive as
both parameters increase proportionally. In our
optimization case, the most notable error energy
map was obtained for b� P parameter couple
presented in the Brst panel of the second row. It
displays a curvilinear shape commonly called as a
banana or croissant, which is common in non-linear
inverse problems (Fern�andez-Mart�ınez et al. 2012).
The map indicates that the value of P will decrease
when b increases due to a negative correlation
between them. Therefore, the map presents a pos-
sible uncertainty through an equivalence region,
suggesting that any b� P parameter pair lying on
that region can generate cost values that are equal
to or most likely fairly close to each other. Thus, it
was determined from the analysis that these

Table 1. Additional expressions for amplitude coefBcient P and index parameter Q required in
equation 6 to compute the magnetic anomaly (Venkata Raju 2003).

Components P Q

Total (DT) 2KTbð1� cos2I0sin
2aÞ1=2ð1� cos2I0sin

2aÞ1=2 I 1 þ J1 � d� 90

Vertical (DV) 2KTbð1� cos2J0sin
2aÞ1=2 J1 � d

Horizontal (DH) 2KTb cosað1� cos2J0sin
2aÞ1=2 J1 � d� 90

  135 Page 6 of 23 J. Earth Syst. Sci.         (2021) 130:135 



parameters can be estimated with some uncer-
tainties for the current magnetic optimization
problem.

3.1.2 Investigating control parameters of DSA

Metaheuristics generally have control parameters
that can aAect the success of optimization results.
Moreover, control parameters proposed by algo-
rithm developers and widely used by researchers
are not always optimal for any type of optimization

problems. Although the process of parameter
tuning is a time-consuming task due to the trial-
and-error approach that requires various simula-
tions and experiments, researchers should perform
it to obtain better parameter estimates.
Similar to many search algorithms, DSA has two

control parameters: p1 and p2 which are used to
determine the perturbation of members in a posi-
tion corresponding to an individual, as already
mentioned. Civicioglu (2012) presented the tested
and most appropriate initial values for these

a b

Figure 2. (a) A plan view of the magnetic polarization of dyke. (b) Bottom panel shows a vertical section view of inclined dykes
with dip angles between 15� and 90�. Net polarization vector, J with inclination, J 0 is also shown in the inset, and the computed
magnetic anomalies are presented in the top panel (I 0 ¼ 15�, a ¼ 0�, M ¼ c ¼ 0).

a b

Figure 3. Theoretically generated total magnetic anomalies resulting from (a) one and (b) two dipping dykes (top panels).
Bottom panels show a schematic representation of their geometries. Noise levels and true model parameters are also shown on the
corresponding panels.
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parameters, which change randomly with each
cycle, as p1init ¼ p2init ¼ 0:3� rand1;2. Moreover, the

original work concluded that DSA’s problem-solv-
ing performance is not too sensitive to its initial
values. Therefore, its eAect on the solution, in
general, was not investigated by various numerical
optimization applications. Contrary to this widely
accepted practice, after a detailed tuning study,
Alkan and Balkaya (2018) proposed new initial

values p1init ¼ 1� rand1; p2init ¼ 5� rand2
� �

to esti-

mate the model parameters of HLEM anomalies. In
the current magnetic optimization problem, both
initial values were used to determine whether there
is any eAect on the DSA convergence rate. Here-
after the original and proposed values will
be named as Strategy-1 and Strategy-2 in the
following applications.
A comparison was achieved by 30 independent

runs of the algorithm, with each run terminating
either with a certain number of Gmax (i.e., 500) or
meeting a comparatively lower predeBned thresh-
old (i.e., 1e�5). Furthermore, the artiBcial-organ-
ism consisted of 50 individuals corresponding to ten
times the number of model parameters (i.e.,
D � 10Þ. Results obtained with both strategies are
summarized in table 2, together with the parame-
ter spaces used during optimization. It is quite
clear that the best performance of the DSA was
achieved with the proposed initial control param-
eters of Strategy-2. The algorithm with Strategy-1,
which represents the use of original and widely
used values, indicates the worse statistics than
taking into account the true model parameters of
the Brst theoretical noise-free case. Furthermore,
none of the terminations considering 30 indepen-
dent runs was achieved below the chosen threshold.
As a result, the mean elapsed computation time
per cycle was increased almost twice compared to
the results obtained with Strategy-2. Table 2 also
shows that P is estimated with relatively large SD

values among the model parameters for both
strategies. This is due to the nature of the current
magnetic optimization problem, regardless of the
inversion scheme used. However, it is obvious that
Strategy-2 provides more successful estimations.

Figures 7 and 8 show the convergence charac-
teristics of both strategies on the error energy maps
computed for h � d and b� P parameter couples,
respectively. The maps in the Brst rows of
Bgures 7(a) and 8(a) demonstrate the results of the
Brst strategy, while the second-row maps of
Bgures 7(b) and 8(b) show Strategy-2. Each map
was generated using the results of the run that
produced the best solution vector of 30 sequential
independent DSA applications. As can be seen
from table 2, the best solution was obtained by
Strategy-2 at the end of the 389th epoch before
reaching the Gmax value while Strategy-1 needed
500 epochs. Consequently, it displays a faster
convergence with good accuracy compared to
Strategy-1. In the Bgures, the Brst column shows
the distribution of the initial population (artiBcial-
organism), which was randomly generated by
equation (1) in step 2. On the maps, solid white
contours indicate E values of 1e�2, 1e�3 and
1e�4 nT2. Each individual of the artiBcial-organ-
ism represents a candidate solution vector. It is
clear that there are only a few vectors within these
contours, which are indicated by red hollow circles.
Hollow green circles are characterized by higher E
values on maps. The second and third columns of
the illustrations show the solution vectors obtained
at the end of the 100th and 300th epoch. Based on
the candidate solution vectors seen in the error
energy maps, it can be concluded that Strategy-2
oAers more fruitful stopover sites than Strategy-1,
which was provided in the algorithm’s evaluation
cycle. This is already quite clear in the relatively
early epochs (i.e., 100) of the cycle shown in the
middle column of the Bgure. If temporary stopovers
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Figure 4. Field vertical magnetic intensity anomalies (a) Marcona (Peru) and (b) Pima (Arizona).
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determined by both strategies in the later epochs
(i.e., 300) are considered, it can be concluded that
Strategy-2 provides closer solutions to assumed
model parameters. Since the initial values proposed
by Strategy-2 yield more eAective results than the
original ones, the control parameters of the DSA
should be adjusted to the optimization problem
under consideration, contrary to the commonly
used assumption. Based on this conclusion,

Strategy-2 was used in the following DSA appli-
cations to estimate magnetic parameters.
A comparison between the observed and the

calculated noise-free magnetic anomalies presented
with the best results of Strategy-2 (presented in
table 2) is shown in Bgure 9(a). Taking into
account, 30 consecutive independent runs of the
algorithm, table 2 presents more detailed statisti-
cal results, including the worst, mean and SD

p1 p1 p1

p2 p2 p2

 ra
ng

e

 ra
ng

e

a b c

Figure 5. Error energy maps displaying (a) circular, (b) elliptical, and (c) tilted contours (adapted from Bas�okur 2001).
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values for estimated parameters, rms, and epoch
values. In addition, the best-estimated parameters
and rms values obtained from the DSA implemen-
tation are also shown in the corresponding Bgure.
Although Strategy-1 at the end of 500 epochs dis-
plays sufBcient mean results, the application of
Strategy-2 provides more satisfactory estimates
and results for the noise-free case. It should also be
noted that the mean of 262 epochs also provides a
lower forward computation in the implementation.
As a result, DSA exhibits a faster convergence
characteristic to the global optimum by using
initial control parameters of Strategy-2.

3.1.3 Convergence of DSA

Figure 10(a) presents the change in error energies
with the epochs of the runs and provides the best
estimates obtained from both strategies in the
noise-free case. Compared to Strategy-1, Strategy-
2 achieves a lower rms value before reaching the
predeBned Gmax value. The remaining graphs in
Bgure 10(b–f) show the convergence characteristics
of both strategies to the correct parameter values
in each epoch. Based on the results, it can be
concluded that Strategy-2 provides a more eDcient
convergence aspect compared to Strategy-1 using
the proposed control parameters in the algorithm
scheme. In addition, it reduces almost half of the
epochs required for the optimal solution. This
result is an expected situation, as it is clearly
highlighted in the section examining the control

parameters of the algorithm, and demonstrates the
importance of the parameter tuning process for
metaheuristics.

3.1.4 Investigating the effect of noise

As shown in Bgure 3(a), the anomaly was also
contaminated by zero-mean pseudo-random num-
bers with an SD of ± 25 nT to investigate the
eDciency of the proposed algorithm. Results from
Strategy-2 were presented in table 2, similar to the
noise-free case. In the analysis, only the suggested
values of the original control parameters based on
the results from the noise-free case were used.
Furthermore, each cycle of 30 independent runs
was terminated to prevent over-parameterization
when the error energy value fell below the noise
content added to the synthetic anomaly. It is
obvious that the DSA yielded eAective parameter
estimates for the presence of noise by producing
rms values close to the noise content. Fig-
ure 9(b) shows a comparison between the theoret-
ical and calculated anomalies based on the best
results of Strategy-2, which can be seen in the last
line of table 2. Changes in the error energy with the
epoch are also shown in Bgure 11(a). The remaining
graphs in Bgure 11(b–f) present changing of model
parameters at each epoch. The black dashed lines
in the Bgure indicate exact parameters and esti-
mated parameters were also displayed on each
graph.

Table 2. Investigation of the eAects of initial control parameters of the DSA on the solution for the noise-free case. The Brst row
shows true model parameters and search spaces for parameters used in the evaluation. The second and third rows show statistical
values obtained with both the traditional (Strategy-1, Civicioglu 2012) and proposed approaches (Strategy-2, Alkan and Balkaya
2018) at the end of 30 independent runs of the DSA. The last row shows the results obtained with Strategy-2 for the noisy case.

Parameters
h ½m� b ½m� d ½m� d ½�� P ½nT�

Epoch

True values
30 25 0 70 500

Search spaces 0:100 0:100 �100:100 0:120 50:2000 rms ½nT�

Strategy-1, Noise-free case The best 29.996 25.002 0.001 70.002 499.930 1e�2 500

The worst 28.580 26.688 �0.128 69.978 458.869 2.42 500

Mean 30.038 24.919 �0.053 69.942 502.15 0.443 500

SD 0.372 0.545 0.096 0.104 12.768 0.653 0.00

Strategy-2, Noise-free case The best 30.000 25.000 0.000 70.000 500.001 1.6e�3 389

The worst 29.998 25.004 0.000 70.000 499.922 3.2e�3 456

Mean 29.999 25.000 1e�4 70.000 499.997 2.7e�3 262.2

SD 1.1e�3 1.9e�3 6.3e�4 6.4e�4 0.042 4.4e�4 87.08

Strategy-2, Noisy case

(SD of ± 25 nT)

The best 30.548 23.144 �0.259 70.866 552.541 23.72 105

The worst 28.970 25.160 0.439 72.593 498.068 24.0 38

Mean 30.151 22.777 0.095 71.364 572.424 23.9 80.97

SD 2.065 4.002 0.367 0.566 115.734 9.2e�2 55.13
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3.1.5 Analyzing the parameter uncertainties

Relative frequency distributions obtained using the

model parameters estimated during the optimiza-

tion are presented in Bgure 12. To this end, all
solutions containing each epoch of 30 independent

runs of the DSA were logged into a Ble. Thus, a
histogram of each model parameter displays a
maximum of 750,000 data information (i.e.,
50 9 500 9 30), obtained from the evaluation of
an artiBcial-organism consisting of 50 individuals
over 500 epochs of 30 independent runs of the
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algorithm. The Brst and second rows of the
Bgure belong to the noise-free case of the theoret-
ical model obtained with both strategies, the latter
one shows the frequency distribution of model
parameters from Strategy-2 for the noisy case. All
histograms are displayed between the parameter
search bounds, and the actual values are also dis-
played on the histograms, as seen in the Brst row of
the Bgure. Parameters that indicate a relatively
narrow estimation range in the histograms clarify
that they have a higher resolvability rate than
wider ones. Hence, origin (d), dip (d), and depth
(h) of the dyke have less uncertainty in the esti-
mations. On the other hand, the amplitude coefB-
cient (P) and the thickness (b) of the dyke have a
relatively larger range, which represents a greater

uncertainty in optimization. This Bnding is also
expected based on the analysis of the error energy
maps. Likewise, the histograms of the noisy syn-
thetic case obtained with control parameters of
Strategy-2 present similar characteristics with a
lower resolvability option than the noise-free case.

3.2 The second synthetic case

To demonstrate the applicability of DSA in the
existence of increasing model parameters, a total
magnetic anomaly was produced using two iso-
lated, inBnitely long magnetized dykes having
depths of 20 and 30 m below the surface
(Bgure 3b). The noisy anomaly was also generated
with zero-mean pseudo-random numbers with an
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Figure 10. (a) Changing the error energies with the epoch and (b–f) changing the model parameters in each epoch for the
noise-free case. The true and estimated model parameters obtained from both strategies are also shown in each corresponding
graph.
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Figure 11. (a) Changing the error energies with the epoch and (b–f) changing the model parameters in each epoch for the noisy
case. The true and estimated model parameters obtained from both strategies are also shown in each corresponding graph.
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SD of ± 30 nT. As the Bgure clearly shows, the
length of the measurement proBle similar to the
Brst synthetic case is 600 m, and the distance
between the two dykes is 120 m. Besides, the dip of
the Brst dyke is 40�, while the second is 30�. All
model parameters of the anomaly are also shown on
the bottom panel of the Bgure. The values of
I 0 ¼ 57�, a ¼ 0�, and M ¼ c ¼ 0 were used in the
computation.
This example was evaluated using Strategy-2,

which provides more eDcient parameter estimates
than the traditional approach. Figure 13(a and c)
shows a comparison between the magnetic anom-
aly, which theoretically produced (red Blled circles)
and the calculated (black line) using estimates

obtained by Strategy-2 implementations of DSA
for noise-free and noisy cases of the second syn-
thetic example. A cross-sectional view of the dykes
can also be seen in Bgure 3(b), along with true
model parameters. Besides, table 3 presents search
space limitations used during optimization and the
best-estimated model parameters over 10 inde-
pendent execution of DSA. In the application, the
initial population consisted of 200 artiBcial-organ-
ism (i.e., D 9 20) and Gmax was Bxed at 1000
epochs. Furthermore, the values of 6 and 10 were
used for the initial control parameters (p1 and p2)
of the DSA based on the reported results (Alkan
and Balkaya 2018). Considering the estimated
values given in the table and also shown in the
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Figure 13. Comparison of theoretical and calculated magnetic anomalies obtained from the Strategy-2 implementations of DSA
for (a) noise-free and (b) noisy cases of the second synthetic example. Estimated parameters and obtained rms values are also
displayed in the graphs. (c, d) Changing the error energies with the epoch for both cases.

Table 3. True model parameters, search spaces and the best-estimated parameter values obtained
with the 10 Strategy-2 implementations of DSA for the second synthetic case. The obtained rms
values are 3.2e�3 nT for the noise-free case and 29.9 nT for the noisy case (SD of ± 30 nT).

Parameters h ½m� b ½m� d ½m� d ½�� P ½nT�

The Brst dike True values 20 10 �70 40 400

Search spaces 0:60 0:60 �150:0 0:90 0:800

Noise-free case Estimated values 20.003 9.995 �70 39.998 400.25

Noisy case Estimated values 20.395 9.297 �70.98 35.584 439.85

The second dike True values 30 20 50 30 800

Search spaces 0:60 0:60 0:150 0:90 600:1500

Noise-free case Estimated values 29.997 20.004 50 29.999 799.796

Noisy case Estimated values 30.026 19.397 48.951 28.54 821.02
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so-called Bgure, one can conclude that the DSA
oAers one of the optimal solutions in the vicinity of
the actual values in the existence of two dykes,
which led to the complexity of the optimization
problem. The rms value of the noise-free case is
3.24�3 nT at the end of 1000 epoch. In addition,
max, mean and SD values of the rms values are
7.2e�1, 1.7e�1, and 2.24e�1 nT, taking into
account 10 execution of the algorithm. On the other
hand, the algorithm could not provide a misBt value
below 1e�5 nT, which is the other stopping crite-
rion deBned in the algorithm for the second theo-
retical example. However, the application of DSA
with Strategy-2 yielded eAective parameter esti-
mates, which were obtained by an average epoch of
238.6 at the end of 10 independent runs for the noisy
case. Figure 13(b and d) presents the change of error

energy at each epoch for noise-free and noisy cases
of the second synthetic example.

4. Field cases

Two known real data from the Marcona District
(Peru) and Pima County (Arizona, US) were used
to test the eAectiveness of the DSA.

4.1 Marcona District magnetic anomaly (Peru)

Unlike the synthetic cases, the Brst case study
includes a vertical magnetic anomaly observed
near the magnetic equator and over the Marcona
District of Peru (Gay 1963; Venkata Raju 2003).
Although the iron mining area was discovered in
1914, it was developed after World War II as a
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Figure 14. Comparison of the observed Beld and calculated anomalies obtained by Strategy-2 implementation of DSA
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each graph.
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Figure 15. (a) Changing the error energies with epoch for the Marcona district (Peru) anomaly and (b–f) changing the model
parameters in each epoch. Estimated model parameters are also shown in each corresponding graph.
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foreign source of iron ore, and the Brst ore was
shipped in 1953 (Gay 1966). In the area, geo-
physical exploration began 4 years later after a
detailed low-level aeromagnetic survey and con-
tinued until 1963. This survey mainly revealed 30
magnetic anomalies over known deposits and
more than 70 newly discovered (Gay 1966).
Figure 4(a) shows the current anomaly, compris-
ing 61 data points with an interval of 20 m
(Al-Garni 2015).
One of the verticalmagnetic anomalies inMarcona

Districtwas invertedby theDSAusing 250 epochs for
each cycle of 30 independent runs. The values of
I 0 ¼ 6:3�, a ¼ 0�, and M ¼ c ¼ 0 were also used
in the forward solution. Optimal values resulting
in an rms value of 26.6 nT are: h = 151.31 m, b =

200.61 m, d = �1.07 m, d = 56.91�, and P =

1782.95 nT. A comparison between the observed and
calculated anomalies and the estimatedparameters is
presented in Bgure 14(a). The change in error energy
with the epochs is given in Bgure 15(a), while the

remaining graphs in the Bgure show changes inmodel
parameters at each epoch.
The results obtained with the Strategy-2 imple-

mentations of the DSA were also compared with
those of previous studies (table 4). Of them, Gay
(1963) used the standard curve approach, while
Koulomzine et al. (1970) considered an analysis of
the symmetrical and asymmetrical components of
the proBle for the interpretation of magnetic
anomalies. Pal (1985) applied a simpliBed inversion
scheme based on gradient analysis for the magnetic
anomaly caused by the inclined and inBnitely thick
dyke, which does not require the approaches of Gay
or Koulomzine et al. in the application. Radhakr-
ishna Murthy (1985) obtained a depth of 135 m for
the dyke using the horizontal and vertical deriva-
tive proBles of the Marcona anomaly considering
the vertical component of equation (6). Recently,
Al-Garni (2015) used a neural network technique
to interpret this anomaly. Therefore, it can be
assumed that the approach mentioned in this study
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Table 4. Search spaces and estimated parameters in the framework of the Strategy-2 implementation of the DSA and comparison
of results with those of previous studies for Marcona District magnetic anomaly (Peru).

Studies Parameters h ½m� b ½m� d ½m� d ½�� P ½nT�

Present study Search spaces 50:500 10:500 �200:200 0:130 100:10,000

The best values 151.31 200.61 �1.07 56.91 1782.95

The mean values 152.48 199.52 �0.46 57.04 1798.05

SD 2.61 2.32 1.79 0.39 33.27

Al-Garni (2015) Search spaces 70:150 100:250 80a 10:80 �
Estimated values 130.0 191.7 � 65.49 �

Gobashy et al. (2020b) Estimated valuesb 150.0 196.44 � 58.57 �
Essa and Elhussein (2019) 138.28 196.84 � � 1862.75

Kara et al. (2017) 154 188 � � �
Radhakrishna Murthy (1985) 135 198 � � �
Pal (1985) 132.6 193.8 � � �
Koulomzine et al. (1970) 135.5 202.75 � � �
Gay (1963) 124.0 186 � 60 �
a It has been assumed via Stanley’s (1977) approach.
b Gobashy et al. used the same search space values as Al-Garni.
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is more coherent than the ones summarized above,
as it provides a comparison between observed and
calculated anomalies. Furthermore, this study uses
the same forward formula for interpreting mag-
netic anomalies caused by dipping dykes and dis-
plays estimated results of dyke parameters such as
h, b, and d. As shown in table 4, the parameter
spaces used for estimating the model parameters in
their study (70�150) are moderately narrower
than the current investigation (50�500). The value
estimated by the neural network application for
the depth to the top of the dyke (i.e., h) is 130 m.
This is 21.31 m less than our estimation (i.e.,
h = 151.31 m), which is outside the search limits
used by neural network application. Also, the ori-
gin of the dyke (i.e., d) was estimated on the basis

of Stanley’s (1977) assumption based on the main
minimum and maximum values of the anomaly
proBle. Kara et al. (2017) obtained 154 m depth
using an approach incorporating the even compo-
nent of magnetic anomalies, while Essa and
Elhussein (2019) retrieved a depth of 138 m with
the Brst horizontal derivative anomalies. Lastly,
the anomaly was interpreted with WOA (Gobashy
et al. 2020b). Considering the parameter search
spaces indicated by Al-Garni, this application
yields a depth estimate of 150 m, which is fairly
close to our result. However, it also corresponds to
the upper search bound of h (i.e., 70–150). Conse-
quently, the studies show relatively different
parameter estimates and unfortunately there is no
drilling result from the area (i.e., Gay 1963), to

Table 5. Search spaces and estimated parameters determined at the end of 30 independent runs of the DSA using Strategy-2 for
Pima copper mine magnetic anomaly (Arizona). The last column of the table shows the rms obtained for each independent run of
the algorithm.

Parameters h ½m� b ½m� d ½m� d ½�� P ½nT� rms [nT]

Search spaces 0:200 0:100 �364:364 0:180 50:10,000

Estimated values at each run 1 67.162 2.377 �5.273 107.114 8196.845 7.20

2 67.171 2.020 �5.277 107.111 9643.748 7.20

3 66.823 6.536 �5.325 107.095 2973.506 7.25

4 65.801 14.055 �5.526 106.913 1371.722 7.53

5 64.169 19.397 �5.736 106.700 985.790 7.97

6 67.153 2.972 �5.261 107.124 6553.881 7.20

7 67.170 2.133 �5.275 107.113 9132.009 7.20

8 66.131 13.432 �5.403 106.992 1442.067 7.46

9 66.504 10.310 �5.315 107.084 1881.629 7.35

10 65.950 16.857 �5.410 106.973 1148.360 7.65

11 67.077 4.086 �5.275 107.111 4763.944 7.21

12 65.313 18.824 �5.425 106.956 1026.056 7.77

13 66.427 12.138 �5.229 107.004 1600.844 7.42

14 66.880 7.162 �5.312 107.083 2715.651 7.26

15 63.543 24.892 �5.627 106.825 767.122 8.36

16 67.067 4.334 �5.314 107.090 4491.902 7.22

17 66.738 6.679 �5.427 106.985 2908.207 7.26

18 67.164 2.074 �5.273 107.115 9392.801 7.20

19 66.751 9.135 �5.307 107.109 2128.706 7.31

20 66.815 8.558 �5.315 107.081 2272.557 7.29

21 66.953 6.467 �5.302 107.089 3008.997 7.25

22 65.629 13.037 �5.542 106.970 1480.069 7.51

23 67.154 2.326 �5.271 107.114 8373.298 7.20

24 67.089 4.898 �5.276 107.111 3975.553 7.22

25 67.142 2.977 �5.274 107.117 6544.072 7.20

26 67.676 3.531 �5.899 106.619 5551.361 7.39

27 66.444 10.510 �5.437 106.990 1845.174 7.35

28 67.115 3.930 �5.288 107.110 4955.058 7.21

29 66.378 11.556 �5.337 107.024 1677.190 7.39

30 66.777 7.869 �5.326 107.035 2470.123 7.28

Statistics Mean 66.539 8.502 �5.375 107.025 3842.608 7.377

SD 0.906 5.987 0.154 0.124 2820.536 0.263
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verify the predictions obtained. Relative frequency
histograms of the estimates for each parameter
provided by the DSA application are also shown in
Bgure 16. Each histogram was generated from
375,000 data estimates (i.e., 50 9 250 9 30). Thus,
we present the results for researchers interested in
the subject.

4.2 Pima copper mine magnetic anomaly
(Arizona)

Since the 19th century, copper mining in the US
state of Arizona has been of crucial importance.
Pima copper mines in the state, one of the most
important commercial copper ore deposits in US,
were discovered in the early 1950s by geophysical
exploration using a combination of electromagnetic
and vertical intensity magnetic surveys (Thur-
mond et al. 1954). The ore body is a metamorphic
contact deposit with chalcopyrite as the main
mineral. Moreover, the Laramide igneous activity
is the main cause of the mineralization that
occurred in the region (e.g., ShaBqullah and Lan-
glois 1978). In this study, one of the two significant
vertical magnetic anomalies mentioned above and
observed by the geophysical survey was selected as
a second Beld example for the DSA application.
Figure 4(b) shows a 728 m long anomaly consisting
of 57 data points with a sampling interval of 13 m
(i.e., Ekinci 2016). Since drilling data of 63.7 m is
available for the area (e.g., Gay 1963), this anom-
aly has attracted more attention from researchers
than the Marcona district magnetic anomaly
(Peru) to interpret their approaches. Some exam-
ples of interpretations can be found in Gay (1963),
Abdelrahman and Sharafeldin (1996), Venkata
Raju (2003), Abdelrahman and Essa (2015), Tlas
and Asfahani (2011, 2015), Ekinci (2016), Asfahani
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Figure 17. Representation of the estimated b values (hollow
red circles) on the computed error energy map considering the
Pima magnetic anomaly. Inner and outer contours with white
colour refer to error energy values of 1e�3 nT2 and 1e�4 nT2,
respectively. The rms values as well as both min and max

values (hollow green squares) for b estimation are also shown
on the map.
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Figure 18. (a) Changing the error energies with the epoch for Pima copper mine magnetic anomaly (Arizona) and (b–f)
Changing the model parameters in each epoch. Estimated model parameters are also shown in each corresponding graph.
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and Tlas (2007), Biswas et al. (2017), Kaftan
(2017) and Di Maio et al. (2020).
Pima magnetic anomaly was inverted by the

Strategy-2 approach of the DSA. 250 epochs were
performed for all 30 independent runs. The values
of I 0 ¼ 15�, a ¼ 0�, and M ¼ c ¼ 0 were used to
compute the anomaly. An overview of the overall
results of the current implementation is given in
table 5, which contains estimated parameters for
each run of the DSA and its statistics. Figure 14(b)
shows a comparison between the observed Pima
magnetic anomaly and the calculated one taking
into account the estimated model parameters
achieved by the 2nd independent run of the DSA
with Strategy-2. This anomaly also shows one of
the min rms values (i.e., 7.2 nT).

Depending on the table, it can be concluded that
a certain uncertainty is observed between the
model parameters b and P of the dyke. Based on a
number of the estimated results presented,min and
max values of b change between 2.02 and 24.892 m.
Likewise, the value of P indicates a range between
767.122 and 9643.748 nT. Due to the negative
correlation between them, as already described,
inverse Cuctuations are expected for the current
magnetic optimization problem. Ultimately, they
produced rms values in a narrow range between 7.2
and 8.36 nT although the gap between the values
determined, which can also be seen in Bgure 17.
Changes in the error energies (Bgure 18a) and

the model parameters (Bgure 18b–f) in each epoch
are also presented considering the second
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Figure 19. Relative frequency distributions of parameters estimated by the DSA with Strategy-2 for the Pima district (Arizona)
Beld case.

Table 6. A summarized comparison list for the depth of the dyke obtained from the current study and
those of previous ones for Pima district magnetic anomaly of Arizona state (the USA).

Researcher(s) Interpretation method

Parameter

h ½m�

Present study DSA Min 63.5

Max 67.7

Mean 66.5

SD 0.91

Di Maio et al. (2020) GPA 77.84 ± 0.05

Gobashy et al. (2020b) WOA 67.93

Essa and Elhussein (2018) PSO 68.24

Kaftan (2017) GA 63.4

Biswas et al. (2017) VFSA 68 ± 1.7

Ekinci (2016) 2nd Order derivative 67.87 ± 3.4

3rd 61.05 ± 5.2

4th 66.35 ± 6.5

PSO 68.3

Abdelrahman and Essa (2015) A numerical approach 60

Tlas and Asfahani (2015) The simplex algorithm 64.1

Tlas and Asfahani (2011) The fair function minimization 71.25

Asfahani and Tlas (2007) The adaptive SA 71.5 ± 3.9

Venkata Raju (2003) Gauss–Newton 69.8

Abdelrahman and Sharafeldin (1996) A least-square approach 66

Gay (1963) Standard curve approach 69.8

Drilling result 63.7
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independent runs of the algorithm. Relative fre-
quency histograms generated from 375,000 data
estimated by the implementation are also shown in
Bgure 19. Histograms of b and P show a complexity
that causes Cuctuation between them. On the other
hand, it is evident from the histograms of the
remaining parameters that the DSA exhibits a
robust characteristic for the parameters h, b, and d
during the optimization process. Thus, table 6
presents a short comparative list for the dyke
depth (h), which is the most commonly estimated
parameter considering previous research studies
with different applications. As is also clear from
table 6, min, max and mean values of h estimated
via DSA are 63.5, 67.7, and 66.5 m, respectively.
Compared to the values seen in the table consider-
ing the drilling result (i.e., 63.7) from the area (e.g.,
Gay 1963), we conclude that DSA provides one of
the most eAective estimates for h value. Moreover,
the uncertainty of the current magnetic optimiza-
tion problem became clear in contrast to previous
studies by considering the forward formula used in
the inverse modelling study.

5. Conclusions

Due to the disadvantages of the derivative-based
traditional inversion schemes, metaheuristics pro-
vide eDcient estimates without good initial
parameters and have gained popularity in the sci-
entiBc community, especially in the last decade. In
this study, one of the recently introduced eDcient
population-based metaheuristics, DSA, was used to
estimate some model parameters of dyke-shaped
bodies such as depth, half-width, origin, and dip of
theoretical and Beld magnetic anomalies. Essen-
tially, the algorithm imitates the migration con-
cepts of superorganisms through a random walk
such as Brownian motion. Like many metaheuris-
tics, it has the advantage of simplicity and Cexi-
bility, which provides a broad basis for solving a
wide variety of optimization problems. Further-
more, it is not sensitive to initial estimates, as it
randomly searches the entire parameter space in
the optimization process.
Cost function maps were generated for each

unknown parameter couple. Findings showed that
any pair of b� P parameters located in the curvi-
linear equivalence region could generate the
observed data with a certain cost tolerance.
Accordingly, the model parameters b and P were
estimated with ambiguity. Therefore, the

resolvability of parameters should be investigated
before the parameter estimation studies to reveal
the nature of the inverse problem.
In most cases, the selection of control parameters

of a metaheuristic is a key issue and also problem-
dependent. However, it is generally accepted that
the DSA is not very sensitive to its initial values.
Therefore, we investigated their initial values to
determine whether or not they aAect the DSA
convergence rate for the current magnetic inverse
problem or not. To this end, the original and
commonly used initial values (Strategy-1) and the
ones (Strategy-2) suggested by a DSA application
for HLEM anomalies were taken into account.
Synthetic cases were performed on an inBnitely
long and two isolated dykes, and the results
obtained show that Strategy-2 is more eAective
than Strategy-1 to achieve good estimates. Con-
sidering the Brst synthetic case, DSA with Strat-
egy-2 mainly oAered a lower rms value (i.e.,
\ 1e�5 nT) before 500 epochs in which a prede-
Bned Gmax value was implemented compared to
Strategy-1. Thus, it exhibited a faster convergence
aspect and higher accuracy than the Strategy-1
approach and significantly reduced the number of
epochs required for an eAective solution. However,
the algorithm needs more epochs (i.e., 1000) in the
evaluation cycle to provide eDcient parameter
estimates as the problem grows larger. Conse-
quently, the results of two theoretical cases showed
that DSA typically delivers faster convergences to
the global solution with initial parameters of
Strategy-2 and solves relatively large-scale prob-
lems eAectively. Therefore, this study revealed that
DSA needs parameter tuning studies to achieve
successful parameter estimates like other eAective
metaheuristics such as GA, PSO and DE.
The interpretation of two known case studies,

involving an iron deposit (Marcona, Peru) and a
copper mine (Pima, Arizona), also demonstrated
the feasibility of the algorithm. Of these, the Pima
County magnetic anomaly provided a more realis-
tic assessment of the algorithm, as drilling infor-
mation (i.e., 63.7 m) is available from the area.
Based on the results of model parameter estimation
studies, the DSA through Strategy-2 provided a
depth estimate of 63.5 m, which is well consistent
with drilling data and published studies. From this,
it can be concluded that DSA is a practical alter-
native metaheuristic approach that not only pro-
vides good randomization to escape from local
minima, but is also a method for seeking to Bnd a
near-optimal solution.
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