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Self-potential (SP) method has many applications, where the interpretation of SP data can be used for
qualitative and quantitative interpretation. However, inversion of SP data in this paper is of quantitative
interpretation and consists of highly non-linear, multimodal data and deploys global optimum method
(GOM). Micro-differential evolution (MDE) is a GOM with small or micro-population size (5–8 popu-
lations) for each iteration. Consequently, this approach involves small numbers of forward computation in
the inversion process. Two MDE variants, including adaptive MDE (lJADE) and vectorized random
mutation factor (MVDE) were tested Brst for different level of noises containing synthetic SP data with
single anomaly and applied to synthetic SP data of multiple anomalies. The MDE variants are reliable
and eAective for inverting noisy SP data. Furthermore, in order to check the rationality of MDE variants,
the algorithm is applied to seven Beld data from different applications, including groundwater explo-
ration, shear zone tracing, water accumulation in landslides and embankment stability assessment. The
model parameters revealed by MDE variants are accurate and show good agreement with the previous
results estimated using other approaches. In addition, MDE variants also require fewer forward modelling
calculations than other optimization approaches.

Keywords. Multiple anomalies; model parameters; uncertainty analysis; fast inversion; micro-
population.

1. Introduction

Self-potential (SP) method is a passive geophysical
method which measures natural potentials. The
potential is usually produced by electrokinetic,
electrochemical, and thermoelectric sources.
Hence, the SP method has wide applications
including cavity identiBcation (Jardani et al. 2006),
landslide study (Lapenna et al. 2003; Sungkono and
Warnana 2018), embankment leakage detection
(Moore et al. 2011; Sungkono and Warnana 2018),
mineral and geothermal exploration (Biswas and

Sharma 2014a; Byrdina et al. 2012), landBll
leachate identiBcation (Arora et al. 2007), and
groundwater investigations (Monteiro Santos et al.
2002). SP method is often successful in producing
both qualitative and quantitative interpretations
in single and multiple anomalies.
Interpretation of SP data can be classiBed into

two sections, signal analysis and an inversion pro-
cess. In the Brst section, SP data is considered as a
signal, which is then analyzed using signal analysis
method, for example, continuous wavelet trans-
form (Saracco et al. 2004), Euler deconvolution
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(Agarwal and Srivastava 2009) and Hilbert trans-
form (Sundararajan and Srinivas 1996), etc.
Meanwhile in the second section, SP anomaly is
analyzed using inversion approach. Two methods
have been applied in inverting SP data such as
local optimization (Srigutomo et al. 2006; Candra
et al. 2014; Mehanee 2014) and GOM. Several
GOMs have been successfully applied to SP
anomaly inversion including differential evolution
(DE) (Li and Yin 2012; Balkaya 2013), particle
swarm optimization (PSO) (Monteiro Santos 2010;
Peks�en et al. 2011), joint genetic-price algorithm
(GPA) (Di Maio et al. 2016), very fast simulated
annealing (VFSA) (Biswas and Sharma 2014b),
genetic algorithm (GA) (G€okt€urkler and Balkaya
2012), black hole algorithm (BHA) (Sungkono and
Warnana 2018), whale optimization algorithm
(WOA) (Abdelazeem et al. 2019), and neural net-
work (NN) (El-Kaliouby and Al-Garni 2009).
However, three algorithms, namely NN, GA, and
DE have not been studied yet for interpreting
multi-anomaly of SP data.
DE is more eAective and robust than PSO and

GA for self-potential anomaly inversion (Balkaya
2013). However, DE also succeed for determining
model parameters for gravity and magnetic
anomalies (Ekinci et al. 2016, 2017, 2019, 2020;
Balkaya et al. 2017). Nevertheless, DE algorithm
generally uses a large population size for Bnding
reasonable results, while giving a higher explo-
ration capability to the optimizer for Bnding global
solutions (Salehinejad et al. 2016, 2017). Therefore,
using algorithms with a large population size for
inversion process may not be suitable for highly
time-consuming forward modelling calculations
and for large number size of model parameters.
Consequently, a DE algorithm with smaller popu-
lation size for inversion process is required.
Recently, micro-DE (MDE) variants have been
proposed (Ren et al. 2010; Olgu�ın-Carbajal et al.
2013; Brown et al. 2016; Salehinejad et al. 2017).

MDE algorithms are able to determine several
parameters where the number of parameters are
higher than the population size. In the algorithm,
MDE can solve more than 30 parameters with
number of population from 5 to 8. Thus, in this
paper, MDE is proposed for accurate and rapid
determining of the best model parameter for single
and multiple self-potential anomalies. Using MDE
approach in the inversion, computation time for
inversion process can be lessened.

2. Self-potential

The self-potential (SP) data for a simple polarized
structure (Bgure 1a and b) at a point xi can be
represented as:

v xið Þ ¼ K
xi �Dð Þ cos hð Þ þ h sin hð Þ

xi �Dð Þ2þh2
� �q ; ð1Þ

where K denotes the polarization amplitude (or
electrical dipole moment), h indicates the polar-
ization angle, xi describes a measurement point
coordinate at the surface along the proBle and h is
the depth of the anomaly body’s center source and
D describes the anomaly located at the center from
the origin of the measurement point, while q de-
notes the shape factor, which is equal to 1.5, 1.0,
and 0.5 for sphere, horizontal cylinder, and semi-
inBnite vertical cylinder, respectively.
The SP anomaly is located at a point on the

surface, on a line perpendicular to the strike of an
inclined sheet of inBnite horizontal extent (per-
pendicularly to the measuring proBle, Bgure 1c), as
given by the following (Biswas and Sharma 2014c):

vðxiÞ¼K log
x�Dð Þ�acoshf g2þ h�a sinhð Þ2

x�Dð Þþacoshf g2þ hþa sinhð Þ2

 !
;

ð2Þ

Figure 1. Description of model parameters for horizontal cylinder and sphere (a), vertical cylinder (b), and inclined sheet (c) in
subsurface.
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where h denotes the inclination angle and a is the
half-width of the sheet. The other notations have
the same meaning as equation (1). Equation (2) has
a property that a model is only geologically rele-
vant if h[ a sin h (Biswas and Sharma 2014b).
This condition must be owned by inclined sheet
model parameters.
Furthermore, the SP anomaly caused by multi-

ple anomaly sources is obtained through the sum-
mation of responses due to individual anomalies
(Biswas and Sharma 2014c). Mathematically, the
multiple SP anomaly sources can be expressed as
follows:

V xið Þ ¼
XNM
j¼1

vj xið Þ; ð3Þ

where vj xið Þ indicates the SP anomaly at xi mea-
sured location for jth body and NM represents the
number of bodies.

3. SP data inversion using
micro-de algorithm

3.1 Standard DE

DE algorithm is generated by vectors (numbers of
population) in the model spaces as candidate
solutions. Further, DE attempts to improve the
population for each generation to Bnd an optimal
solution using several processes in the DE algo-

rithm. The population P ¼ X1; . . .;XNp

� �
consists

of number of population (Np) vectors in each gen-
eration, where each vector Xi contains the number
of model parameter, generally called d dimen-
sion. Consequently, each Xi vector is deBned as

Xi ¼ Xi;1; . . .;Xi;d

� �
. DE algorithm generally con-

sists of the four processes including mutation,
constrain handling, cross-over, and selection.
Meanwhile several approaches appear in the

mutation process generally used in the standard
DE as the following (Zhang and Sanderson 2009;
Brown et al. 2016; Salehinejad et al. 2017):

(1) DE/rand/1

Vi ¼ Xi1 þ F Xi2 � Xi3ð Þ; ð4Þ

(2) DE/current-to-best/1

Vi ¼ Xi þ F Xbest � Xið Þ þ F Xi1 � Xi2ð Þ; ð5Þ

(3) DE/best/1

Vi ¼ Xi þ F Xbest � X1ð Þ; ð6Þ

where the indices i1; i2; and i3 represent different
integers uniformly selected from the population
such as i1 6¼ i2 6¼ i3 6¼ i where i 2 1; . . .;Npf g, Xbest

indicates randomly selected individuals from the
top 100% individuals in the current population
with p [ (0, 1], while F denotes the mutation factor,
in which F 2 0; 2�ð . The exploration and exploita-
tion of DE algorithm depends on that factor, where
exploration can be decreased by selecting lower
values for F.

After the mutation process, boundary handling
is used to keep the model parameter values always
within the model spaces. There are several
boundary handling approaches, but in this paper
boundary handling is represented as follows (Zhang
and Sanderson 2009):

Vi;j ¼
Xi;j þ Xminj
� �

=2; if Vi;j\Xminj

Xi;j þ Xmaxj
� �

=2; if Vi;j [Xmaxj

Vi;j ; otherwise,

8><
>:

ð7Þ

where Xminj and Xmaxj are the lower and upper
bounds of Xj , respectively and j ¼ 1; . . .; d.
Furthermore, cross-over process is applied in the
DE through interaction between the mutant and
parent vector:

Ui;j ¼
Vi;j ; if rand 0; 1ð Þ�Cr or jrand ¼ j

Xi;j ; otherwise

�
ð8Þ

where Cr indicates the parameter of cross-over
rates within the range of [0, 1]. The parameter
controls how many components are mutated in
each element from the mutant vector of the current
population. The rand 0; 1ð Þ represents a real ran-
dom uniform number in the interval 0; 1½ �, while
jrand is a randomly selected integer in the range
[1, d]. The binomial cross-over operator copies the
jth parameter of the mutant vector Vi;j to the
corresponding element in the trial vector Ui;j ; if
rand 0; 1ð Þ�Cr or jrand ¼ j. Moreover, it is copied
from the corresponding target vector Xi;j .
The cross-over in DE is used to increase the pop-

ulation diversity. Furthermore, acquisitive selection
is applied for selection in balancing exploration and
exploitation capabilities of DE. Selection is carried
out through comparison between the Btness value of
Ui and Xi vectors where the one with better Btness
value is elected for the next generation.

Xi ¼
Ui; if f Uið Þ� f Xið Þ
Xi; otherwise.

�
ð8Þ
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3.2 Micro-DE approach

MDE generally uses a very small population size
compared to standard DE. Smaller population size
means faster convergence rate. However, the solu-
tion is at risk of trapping in the local optimum.
Therefore, in order to increase the diversity in
population of MDE algorithm (Salehinejad et al.
2016, 2017) a slightly modiBed mutation factor in
the standard DE is proposed, where vectored ran-
dom mutation factor is used for every single
dimension of each individual. Consequently, the
algorithm is called MVDE. Therefore, the muta-
tion factor is deBned for each individual i as follows
(Salehinejad et al. 2017):

Fi ¼ Fi;1; . . .;Fi;d

� �
; 8i 2 1; . . .;Npf g; ð9Þ

where Fi;j is generated using random uniform dis-
tribution (Olgu�ın-Carbajal et al. 2013; Salehinejad
et al. 2017). Cr in the MVDE is set as in the
standard DE. Further, MDE algorithm is started
with an initial population. Then the mutation is
estimated using equations (4–6), while boundary
handling and cross-over steps are determined sim-
ilar to the DE algorithm using equations (7) and
(8), respectively. After the processes, greedy
selection is applied to determine the population for
the next generation. The termination condition is
met when the maximum number of generations has
been satisBed.
On the other hand, because the mutation factor

is generated by a random value, the MDE results
may be unstable and become trapped in the local
optimum. Different from MVDE, Brown et al.
(2016) proposed an adaptive MDE, called lJADE.
In the algorithms, both mutation factor and cross-
over rate parameters are adaptively determined for
solving optimization problems with micro-popula-
tion and external archive. The algorithm is modi-
Bed from JADE to avoid a user’s prior knowledge
of the relationship between the parameter settings
and the characteristics of the optimization prob-
lems. In the lJADE algorithm, modiBed DE/cur-
rent-to-best/1 (equation 5) is used as the mutation
operator, as following:

Vi ¼ Xi þ Fi Xbest � Xi1ð Þ þ Fi Xi2 � X̂i3

� �
; ð10Þ

where X̂i3 is randomly selected from P [ A, union
of the current population and the archive, while Fi

describes the mutation factor associated with Xi.
In this paper, Fi is generated through adoption in
JADE (see original paper) and updated for each

iteration (Zhang and Sanderson 2009; Brown et al.
2016). Furthermore, the mutation operator in
lJADE is equal to that in standard DE, but Cr is
modiBed as the following

bi;j ¼
1; if rand 0; 1ð Þ�Cr or jrand ¼ j

0; otherwise

�
ð11Þ

Cri ¼
Pd

j¼1 bi;j

d
: ð12Þ

Furthermore, perturbation mechanics are
applied in order to correct the cross-over and bi;j
results. The perturbation is described as follows:

Ui;j ¼
Lj þ rand 0; 1ð Þ Uj � Lj

� �
; if rand 0; 1ð Þ� 0:005

Ui;j ; otherwise

(

ð13Þ

bi;j ¼
0; if rand 0; 1ð Þ� 0:005

bi;j ; otherwise:

�
ð14Þ

After the mutation process, greedy selection
approach is applied to select both further and
archive population. When the best objective
function does not improve for max(10,1d)
generations, the population (excluding the best
solution) is re-initialized.

3.3 Inversion using MDE

In order to invert SP anomaly using MDE algo-
rithm, several SP parameters (as in equations 1
and 2) are accommodated in the Xi vector (equa-
tion 4). Using forward problem as equations (1)
and (2) seems simple. However, the inversion of
both problems in reality are very difBcult to solve
(Tlas and Asfahani 2013; Biswas and Sharma
2014b). Furthermore, the SP parameters are
determined through MDE algorithm in a way to
minimize the objective function Q, namely (Mon-
teiro Santos 2010):

Q ¼
2 Vo

i � Vc
i

		 		
Vo

i � Vc
i

		 		þ Vo
i þVc

i

		 		 ; ð15Þ

where Vo
i and Vc

i describe the observed and
calculated self-potential data, respectively. N
denotes the number of observed self-potential
data. Furthermore, the misBt between measured
and inverted SP data is evaluated using the
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average relative error (in %) and can be deBned
as:

misfitð%Þ ¼ 100

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

Vo
i � Vc

i

Vo
i

� �2

vuut : ð16Þ

In general, GOMs as MDE have two properties
namely, exploration and exploitation. Exploration
in the DE variant is used to preserve diverse
populations, while exploitation is used to choose
the best candidate model parameters. Ideally, the
two properties must balance out, because if the DE
leans more towards exploitation, the algorithm will
often become trapped in the local optimum, which
can lead to fast convergence. Conversely, DE will
Bnd the true global optimum model slowly.
Furthermore, when DE focuses in exploration,
the solution of model parameters for DE with a
balance between the two properties is fast
convergence and the solution is around the true
model parameter (optimum global).
An algorithm used to invert SP anomaly gener-

ally needs balancing exploitation and exploitation
capabilities. The capabilities are crucial for the
algorithms performance in order to estimate the
posterior distribution model (PDM) of the SP
anomaly. PDM works to handle non-unique solu-
tion in the inversion process (Sungkono and San-
tosa 2015). Generally, PDM can be provided by
GOM with applied threshold for the objective
function. The approach can be studied further in
the following papers (Sungkono and Warnana
2018; Sungkono 2020).

4. Synthetic data

Before MDE is applied to Beld SP data, it is used to
determine model parameters for mono-source SP
anomaly. Specifically, in an inclined sheet model,
as presented in table 1. Moreover, MDE is also
tested in two anomaly sources of SP proBle gener-
ated by two simple polarized anomalies as a sphere
and horizontal cylinder, as listed in table 2.

4.1 Parameter tuning of MDE

Generally, performance of DE algorithm is con-
trolled by three parameters including F ;Cr and Np.
ThelJADEdoesnot requireCr ,F, andNp canbe set
to 8, whileMVDEalgorithmonly depends on theCr ,
because F is automatically generated andNp can be

set to 5 ([4 as the minimum in ‘DE/rand/1’) for
solving high dimension (10, 30, 50, and 100) (Olgu�ın-
Carbajal et al. 2013; Salehinejad et al. 2017). The
condition is different to standard DE, where the
minimum of Np required is 5d�10d (Yang 2014).
This means that solving a model parameter with 30
dimensions requires 150–300 populations.

Furthermore, the adequate value of Cr in MVDE
aAects the convergence rate and it depends on the
problem to be solved. For instance, Cr � 0:2 can be
used for the separable functions, while Cr � 0:9 can
be used for the non-separable ones (Ronkkonen et al.
2005).Consequently, several test performance in the
inversion process using MVDE is acquired with
several of Cr 2 0:1; 0:9½ � in order to Bnd global opti-
mization and provide good PDM. However, in order
to maintain populations diversity, the parameter of
F is set as Fi;j ¼ rand 0:1; 1:5½ � (Olgu�ın-Carbajal
et al. 2013) and Fi;j ¼ rand 0; 1:5½ �. Table 1 is the

success rate (SR) (if theminimumobjective function
can be found under 0.05) and statistics of theMVDE
objective functions with several Cr value and two
ranges of F from 20 independent runs for noise-free
SP synthetic data inversion (table 2). The inversion
uses 5 populations and 800 generations (number of
function evaluation/NFE set to 4000). Table 1
demonstrates that Fi;j ¼ rand 0:1; 1:5½ � with Cr ¼
0:5 has the highest SR and best objective function of
inversion of SP anomaly. Thus, the parameters
(Fi;j ¼ rand 0:1; 1:5½ � and Cr ¼ 0:5) are clearly the

best option in terms of the objective function
statistics and therefore can be used to invert SP
data. The change of mutation factor for the last
parameter of each iteration inMVDE is presented in
Bgure 2(a).

Furthermore, the MVDE results are compared
with those of standard DE and lJADE. In order to
equalize the comparison, the NFE of standard DE
and lJADE are also set to 4000. Consequently,
standard DE (DE) and lJADE have operated using
50 and 8 for Np and 80 and 500 for maximum gen-
eration, respectively. StandardDE in this paper uses
DE/best/1 as the mutation process with F ¼
0:5 and Cr ¼ 0:9 (Balkaya 2013; Ekinci et al. 2016;
Balkaya et al. 2017), while lJADE has an adaptive
mutation factor and cross-over rates are adaptively
determined as in Bgure 2(b). However, lJADE
requires p, which is set to 0.05.

Figure 3 is the comparison between three
methods (standard DE, MVDE and lJADE) for
Bnding the global optima in the inversion of SP
data. The Bgure shows that lJADE is more
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eDcient and more robust for determining model
parameters in SP data inversion comparison to
MVDE and standard DE, because lJADE is cap-
able of Bnding the global optimum around 2500 of
NFE, while the others fail to seek until the last
NFE. Furthermore, lJADE, MVDE and standard
DE have 80%, 60% and 0% of SR (table 1). The
time consumed by the three algorithms (DE,
MVDE and lJADE) are comparable (table 1),
because NFE is set as the same for all algorithms.

4.2 Inversion of single anomaly

Figure 4 shows synthetic noise-free and noise-
added (dots) of SP anomaly parameter with
inclined sheet sources (table 2). As described
above, MDE (MVDE and lJADE) has probably
failed to search for model parameter in SP data
inversion. Consequently, MDEs are processed
using a minimum of Bve independent runs (except
for noise-free data) for obtaining good PDM. The
model response (table 2) from the best objective
function of Bve independent runs is depicted
through synthetic SP data in Bgure 4(a–d). The

calculated data of the MDE (MVDE and lJADE)
shows relatively good Btting for ‘observed’ SP
data.
Figure 5 shows the best objective function for

each iteration of both MVDE and lJADE algo-
rithms of several noise levels. The Bgure indicates
that noise in SP data can deform the objective
function in the inversion process, where this result
is supported by several researchers (Fern�andez-
Mart�ınez et al. 2014a, b). Moreover, Bgure 5 also
demonstrates that lJADE and MVDE algorithms
can reach convergence at around 2000–3500 and
2000–3800 of NFE, respectively. The convergence
curves use to determine threshold for generating
PDM.
In order to handle non-unique solution of SP

data inversion, PDM is revealed from the threshold
of objective function of the best MDE results. The
threshold values for providing the PDM are 0.05,
0.075, 0.1, and 0.13 for noise-free data and Gaus-
sian noise-added with 5%, 10% and 15%, respec-
tively. The PDM results are based on the threshold
value (Vrugt and Beven 2018), while the strategy
in determining the threshold is clearly described in
the papers (Sungkono and Warnana 2018;

Table 1. The performance MVDE for inversion of noise-free SP data with various Cr and two mutation factor intervals.

F Cr

Objective function

SR Times (s)Min. Max. Median Interquartile

[0:1.5] 0.1 1.80E-02 3.94E-01 1.00E-01 9.66E-02 25.00% 23.76

0.2 1.52E-02 1.82E-01 7.94E-02 4.29E-02 15.00% 23.77

0.3 4.05E-03 3.60E-01 8.46E-02 5.41E-02 30.00% 24.24

0.4 1.22E-02 3.74E-01 8.21E-02 1.40E-01 30.00% 24.38

0.5 3.98E-03 3.79E-01 8.78E-02 2.77E-01 15.00% 24.42

0.6 2.97E-03 3.75E-01 7.66E-02 6.57E-02 25.00% 21.62

0.7 4.28E-03 4.22E-01 9.48E-02 7.06E-02 15.00% 21.29

0.8 5.48E-03 4.58E-01 9.52E-02 3.01E-01 25.00% 21.44

0.9 4.19E-03 5.78E-01 9.27E-02 1.93E-01 15.00% 20.8

[0.1:1.5] 0.1 2.12E-02 3.12E-01 9.67E-02 4.81E-02 10.00% 23.58

0.2 1.67E-02 3.77E-01 8.66E-02 4.11E-02 10.00% 24.29

0.3 1.45E-02 3.75E-01 7.70E-02 6.65E-02 35.00% 24.26

0.4 2.46E-03 3.84E-01 4.99E-02 8.10E-02 50.00% 24.81

0.5 3.56E-05 3.59E-01 4.05E-02 8.15E-02 60.00% 24.47

0.6 1.24E-04 2.32E-01 7.53E-02 6.27E-02 35.00% 24.98

0.7 6.28E-03 3.75E-01 9.17E-02 2.71E-01 10.00% 24.34

0.8 2.28E-03 4.87E-01 9.13E-02 2.61E-01 15.00% 25

0.9 1.62E-04 4.16E-01 2.78E-01 2.85E-01 20.00% 24.56

lJADE 2.25E-12 9.47E-02 1.47E-06 2.87E-02 80.00% 22.32

Standard DE 1.35E-02 9.46E-02 8.15E-02 3.73E-02 0.00% 25.82

NFE is set 4000 for all algorithms (standard DE, MVDE, and lJADE) and various parameters of MVDE. The optimum of SR
(success rates) for MVDE is denoted by bold face, i.e., using parameter of DE Fi;j ¼ rand 0:1; 1:5½ � and Cr ¼ 0:5. Standard DE
uses 0.9 and 0.5 for F and Cr , respectively, while lJADE is adaptive to determine both parameters. However, the best accelerates
the convergence speed is lJADE (Bgure 3) if the performance of MVDE, lJADE and standard DE are compared.
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Sungkono 2020). The best curve Btting acquired
from inversion using both algorithms are presented
in Bgure 4, while the statistical values of PDM are
presented in table 2. The median of PDM describes
the best model parameter, while the interquartile
of PDM reCects the uncertainty of model parame-
ters. The estimated model parameters indicate that
the higher noise in the data can be shifted out of
the inversion result and objective function
(table 2) (Pallero et al. 2015).T
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Figure 2. Changes of mutation factor and cross-over rates of
MDE variants for inversion noise-free of SP data; (a) changed
mutation factor for the last parameter in MVDE algorithm;
and (b) changed mutation factor (upper panel) and cross-over
rates (lower panel) for lJADE algorithm.

Figure 3. Comparison of the best objective function for MDE
(MVDE and lJADE) and standard DE in inversion of SP
data. The mutation factor and cross-over rates are set as
table 1 (the bold face type for MVDE), 0.9 and 0.5, respec-
tively, for standard DE, and is adaptively set for lJADE. The
lJADE algorithm indicates faster and more robust than
others.
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Furthermore, the PDM histogram as revealed by
noise-free SP data inversion using lJADE (upper
panel) and MVDE (lower panel) are demonstrated

in Bgure 6. The Bgure indicates that the high
probability of PDM is correlated to its median and
true model parameters. This means that both

Figure 4. Synthetic data for an inclined sheet contaminated without and with 5%, 10%, and 15% Gaussian noise with
their inversion results (a), (b), (c), (d), respectively. Dots indicate the synthetic data, while the solid line shows the response
model parameter resulted by MDE variants (MVDE and lJADE). Solid lined indicates MVDE, while line crosses denotes
lJADE.

Figure 5. Median of the best objective function (Obj) resulted by MDE as function of the NFE for various noises containing in
the SP data; (a) lJADE; (b) MVDE. The median is created by 20 independent runs for noise-free synthetic data, while others
derived by 5 independent runs.
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algorithms are able to provide PDM in SP
inversion. Furthermore, the process is repeated to
generate PDM in future sections.

4.3 Inversion of multiple anomalies

SP anomaly generally contains more than one
source. In deriving model parameter of two-source
anomalies (10 model parameters), MVDE and
lJADE use 7000 of NFE for inverting the synthetic
data, where both MVDE and lJADE utilize 7 and
8 populations, respectively. It means that the size
of model parameters is greater than the size of the
populations, where such condition cannot be
applied in standard DE. In addition, for inversion
of two-source anomalies MDE (MVDE and
lJADE) only needs 7000 forward computations,
where the amount is ultimately slightly less when
compared to the needs of the whale optimization
algorithm (WOA) (Abdelazeem et al. 2019) and
black holes algorithm (BHA) (Sungkono and
Warnana 2018) that require 200,000 and more than
140,000, respectively. It indicates that the MDE
(MVDE and lJADE) is far more capable than
WOA and BHA in the forward calculation.
Furthermore, the synthetic and the calculated

SP data are shown in Bgure 7(a), while the true
model parameters and the parameters ranges for
the inversion process are tabulated in table 3. The
inversion is processed 10 independent times to
overcome the premature result of the inversion.

From 10 processes, one process is selected based on
the lowest objective function. After that, PDM is
determined using limit acceptability (described
before) from selection process. Furthermore, med-
ian of the PDM reCects the model parameter

Figure 6. Histogram of DPM for each parameter of noise-free SP data revealed by lJADE (upper panel) and MVDE (lower
panel). Both panels indicate that higher probability of PDM correlates with true model parameter (dots) and median of PDM
(crosses). It means that both algorithms are able to determine PDM.

Figure 7. Synthetic data and two sources of idealized bodies
and its model response of inversion results. (a) Black dots
indicate the synthetic data, solid line is model response of
MVDE result and solid crosses line represents lJADE result,
(b) The sketches is representing the model parameter revealed
by MVDE (blue) and lJADE (red) inversion for synthetic
data anomaly. The positions of anomalies are identic for both
algorithms.
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solution, while the interquartile indicates the
uncertainty model parameter to handle non-unique
model solutions in the inversion (Sungkono and
Santosa 2015). The median of PDM resulted by
MVDE and lJADE is similar to the true model
parameters (except amplitude of polarization and
shape factor for Bst anomaly, as presented in
table 3. Furthermore, Bgure 7(a) indicates a good-
Bt between the observed and calculated models
from MVDE and lJADE, while Bgure 7(b) shows
that the position and shape of anomalies from both
algorithms are similar.

5. Field studies

MDE variants performance is examined through
different Beld SP anomaly optimization problems.
The Beld SP anomalies are classiBed into two dis-
tinct types, single and multiple anomaly sources.
Multiple sources are generally measured in SP
proBles because of the complexity and variety of
mechanisms that can aAect SP data such as geo-
logical and topographical conditions. In this sec-
tion, the MDE results are given in seven examples
of SP Beld data that represent single and multiple
SP anomalies including Sawoo, Pinggirsari, and
LUSI embankment anomalies (Indonesia), Neem-
ka-Thana anomaly (India), KTB anomaly (Ger-
many), and Karakoc� creek (Turkey). Moreover,
these examples will also be presented and com-
pared with other approaches.

5.1 Sawoo anomaly, Indonesia

The SP survey that discovers the anomaly was
measured in the landslide potential area, Sawoo
district, Ponorogo regency, East Java, Indonesia.
The SP data is corroborated after the regional
eAects has been removed. The anomaly is used to

identify the position and depth of Cuid accumu-
lation which is caused by landslides. Sungkono
and Warnana (2018) have analyzed the anomaly
using BHA, while Ramadhani and Sungkono
(2019) have employed the anomaly using hybrid
dragonCy algorithm with regressive–regressive
PSO (MHDA), and Sungkono (2020) applied
Cower pollination algorithm (FPA) to derive the
PDM of the data. Furthermore, in this example,
the SP data is inverted using MVDE and lJADE
approaches with 5 and 8 populations, respectively.
Both algorithm processes use 5000 NFE for 10
independent runs. The PDM of both algorithms
are set using 0.13 as the threshold of objective
function.
Figure 8(a) shows that the SP data calculated

using MVDE and lJADE is similar to the observed
data. The best model parameters and its

Table 3. Synthetic model parameters, parameter ranges in MDE variants inversion, and their results for the two synthetic models
(sphere and vertical cylinder) and inversed model parameters.

Parameters Sources K (mVm) D (m) h (m) h (�) q

Ranges 1 3000:7000 20:60 0:50 0:180 0.01:2

2 �1000:0 80:200 0:50 0:180 0.01:2

True Parameters 1 5000 40 3 90 1.5

2 �500 130 8 60 0.5

MVDE 1 3190.32 ± 551.78 40.03 ± 0.38 3.06 ± 0.51 91.75 ± 12.32 1.32 ± 0.05

2 �501.96 ± 38.55 130.26 ± 0.51 7.58 ± 0.64 60.67 ± 2.26 0.50 ± 0.02

lJADE 1 3383.72 ± 73.16 39.95 ± 0.04 2.83 ± 0.01 88.06 ± 2.14 1.37 ± 0.01

2 �502.81 ± 64.81 130.12 ± 0.36 8.19 ± 0.01 60.05 ± 2.21 0.5 ± 0.03

Figure 8. MDE inversion results for Sawoo anomaly (Sung-
kono and Warnana 2018); (a) comparison between observed
(dots) and calculated SP anomaly using MVDE (solid line)
and lJADE (crosses solid line), (b) subsurface model param-
eters revealed by MVDE (blue) and lJADE (red).
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uncertainty resulted by MVDE and lJADE is
presented in table 4, and the result is compared
with BHA, MHDA and FPA results. The uncer-
tainty of FPA is higher than the others, meaning
that FPA has explorative capacity in this inver-
sion. The MVDE and lJADE results are inter-
preted in Bgure 8(b). The MVDE, BHA and FPA
results indicate that the model parameters from all
algorithms are very similar, where the anomaly
source in the form of horizontal cylinder or pipe
represents a Cuid channel. The channel works to
move Cuid from the source zone to the accumula-
tion zone.
On the other hand, the distance and polarization

angle of all algorithms are similar, although
polarization amplitude, depth and shape factor for
both lJADE and MHDA are different to the oth-
ers. The shape factor for lJADE and MHDA
indicates a vertical cylinder at the near surface.
The anomaly is located in the landslide scarf which
is measured in the rainy season (Ramadhany et al.
2018). Consequently, in order to clearly under-
stand the anomaly, other geophysical methods are
needed.
Furthermore, the eAectiveness of MVDE,

lJADE, FPA and BHA is also compared in order
to generate the model parameters. MDE variants,
FPA and BHA need 500, 2000 and 6000 forward
calculations, consecutively. From these numbers, it
can be concluded that MDE variant (MVDE and
lJADE) is more eAective than BHA and FPA.

5.2 Pinggirsari anomaly, Indonesia

The SP survey anomaly was carried out in Ping-
girsari village, West Java, Indonesia, on May 24,
2016, hence the name Pinggirsari anomaly. This
anomaly was measured by crossing the fault, where
the proBle length has a separation of 10 m between
each measuring electrodes. The SP anomaly is used
to test the performance of MDE compared to whale

optimization algorithm (WOA) (Gobashy et al.
2019) and Lavenberg–Marquardt algorithm (LMA)
(Fajriani Srigutomo and Pratomo 2017).

In order to provide PDM, Pinggirsari anomaly is
inverted using MVDE and lJADE with 1000 of
NFE. As described above, MVDE and lJADE
apply 5 and 8 populations, respectively. Because
the Pinggirsari anomaly contains only one anomaly
source and the MDE solution unlikely to be trapped
in the local optimal, the MDE variant algorithm is
set to 10 process times, but the result is not different
from the minimum objective function. The best
objective function as NFE for MVDE and lJADE is
presented in Bgure 9(c). The Bgure shows that the
MDE needs 250 and 450 of NFE in lJADE and
MVDE, respectively, for reaching convergence and
Bnding the global optima. This means that the
convergence of lJADE and MDE involves 250 and
450 evaluation numbers, respectively, while in
contrast, WOA involves 1700 evaluation numbers
(Gobashy et al. 2019). Consequently, lJADE and
MVDE are 68 and 37 times less in the calculation of
evaluations (forward modelling and objective
function). The condition shows thatMVDE is faster
and more eAective for SP anomaly inversion com-
pared to WOA.

Figure 9(a) demonstrates the comparison
between calculated and observed SP anomaly from
the Pinggirsari area. Furthermore, the MVDE and
lJADE model parameters were compared with
those revealed by WOA (Gobashy et al. 2019) and
LMA (Fajriani Srigutomo and Pratomo 2017)
algorithms as in table 6, which are presented in
Bgure 9(b). It also show that the model parameter
of MVDE and lJADE match each other. Fur-
thermore, table 5 describes how the four approa-
ches present that the shallow fault is identiBed and
reinforced by narrow width as a property of the SP
anomaly. In addition, the model parameters,
except for the angle of the inclined sheet revealed
by the three methods are very similar.

Table 4. Parameter ranges used in MDE variants for Sawoo anomaly inversion and comparison of inversion results with BHA.

Parameters K (mVm) D (m) h (m) h (�) q

Ranges �1000:1000 00:30 0:100 0:180 0.1:1.9

BHA (Sungkono and Warnana 2018) 163.39 ± 75.80 12.01 ± 0.62 11.93 ± 0.85 82.07 ± 4.36 1.14 ± 0.10

FPA (Sungkono 2020) 504.99 ± 315.01 12.94 ± 2.35 15.64 ± 3.32 91.04 ± 2.19 1.29 ± 0.12

MHDA (Ramadhani and Sungkono 2019) 4.90 ± 0.15 13.03 ± 0.01 3.39 ± 0.08 90.74 ± 0.08 0.34 ± 0.00

MVDE 180.29 ± 2.37 11.87 ± 0.04 12.09 ± 0.20 81.17 ± 0.37 1.16 ± 0.00

lJADE 13.99 ± 2.45 12.36 ± 0.36 8.01 ± 0.43 86.60 ± 1.75 0.67 ± 0.04
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5.3 Neem-ka-Thana anomaly, India

The SP survey anomaly measured in the Neem-Ka-
Thana Copper Belt, India features copper miner-
alization as a SP anomaly source (Reddi et al.
1982). Copper mineralization is mostly located in
the faults and shear planes. The copper concen-
trate in the mine varies from 0.6 to 1.2% (Biswas
2017). The SP anomaly has been analyzed by
previous authors (G€okt€urkler and Balkaya 2012;
Balkaya 2013; Biswas 2017) over the assumption
that the SP anomaly contains a main source
(simple polarized structure) using SA and their
variant (very fast SA), GA, PSO, and DE. Using
the same assumption, 2000 forward calculations
are applied in MVDE and lJADE for determining
model parameters (K, D, h, h, q) simultaneously.
As described above, both MVDE and lJADE
algorithms require 5 and 8 populations, respec-
tively. The result is presented in table 6.
Figure 10(a) demonstrates the comparison
between the observed data and the responses’
model parameters. The resulting model parameters
of MDE variants result are similar to the others. In
addition, all approaches indicate that the main
anomaly as a vertical cylinder which is presented in
Bgure 10(b).
Furthermore, the SP anomaly presents three

peaks, where there are two peaks before the main
(third negative) anomaly. The Neem-ka-Thana
anomaly has been interpreted using VFSA with
three source models (Biswas 2017). Again, to
identify the robustness of MDE variants including
MVDE and lJADE algorithms, the algorithm is
processed to invert the model parameter of the
three sources idealized bodies. Figure 10(c) vali-
dates the comparison between calculated SP data
revealed in MDE inversion and observed data with
three sources idealized bodies, while table 7 is a
comparison between MDE and VFSA results’
model parameters. The table indicates that the
position and depth of the three sources’ models of
both algorithms are alike. The shape factor of both

Figure 9. Pinggirsari anomaly result is analyzed using MDE
(Fajriani Srigutomo and Pratomo 2017); (a) measured (dots) and
calculated SP data using MVDE (black) and lJADE (red); (b)
subsurface model parameters estimated by MVDE (blue) and
lJADE (red), and (c) objective function vs. the NFE of both
algorithms.Themodel ofMVDEandlJADEare similar or identic.

Table 5. Parameter ranges used in the MDE variants inversion of Pinggirsari anomaly and comparison of MDE variants results
with parameters revealed by WOA and GN.

Methods K (mVm) D (m) a (m) h (�) h (m)

Ranges 10:60 400:600 20:60 �200:0 0:20

LM (Fajriani Srigutomo and Pratomo 2017) 41.5 478.25 34 334.52 14.63

WOA (Gobashy et al. 2019) 47.38 479.625 35.85 �149.98 15.68

MVDE 48.67 ± 1.00 481.01 ± 0.54 31.72 ± 0.78 �156.20 ± 0.30 20.00 ± 0.00

lJADE 46.85 ± 0.44 480.07 ± 0.09 33.01 ± 0.17 �156.93 ± 0.54 19.55 ± 0.72
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Table 6. Parameter ranges used in the MDE variants inversion of Neem-ka-Thana anomaly and comparison of MDE variants
results with parameters revealed by others using source assumption.

Model

Parameters

Search

space

VFSA (Biswas

2017)

Balkaya

(2003)

G€okt€urkler and Balkaya (2012)

MDE lJADEGA PSO SA

K (mVm) �100: 0 �32.2 ± 0.6 �48.50 �53.99 �49.53 �44.62 �48.38 ± 5.07 �49.93 ± 24.79

D (m) 150:200 177.8 ± 0.2 176.8 176.84 176.77 176.92 178.32 ± 2.68 176.66 ± 0.33

h (m) 00:50 10.8 ± 0.6 17.3 18.6 17.6 16.34 18.81 ± 1.31 17.91 ± 4.35

h (�) 0:180 89.6 ± 0.1 88.05 87.83 88 88.25 88.95 ± 1.65 88.06 ± 0.76

q 0:2 0.5 0.4 0.42 0.4 0.38 0.41 ± 0.02 0.41 ± 0.08

Figure 10. MDE inversion results for Neem-ka-Thana anomaly; (a) comparison between observed (dots) and calculated (solid
line) of SP anomaly using assumption as a source idealized body; (b) subsurface model parameters for a source of idealized body
using MVDE (blue) and lJADE (red); (c) comparison between observed (dots) and calculated SP anomaly using assumption
three sources of idealized bodies for MVDE (solid line) and lJADE (crosses solid line); and (d) subsurface model parameters for
three sources idealized bodies.

Table 7. Parameter ranges used in the MDE variants inversion of Neem-ka-Thana anomaly and comparison model parameters
revealed by MDE variants and others using three sources assumption.

Methods Sources K (mVm) D (m) h (m) h (�) q

Search spaces 1 �100:0 50:100 0:50 0:180 0:2

2 �200:0 100:150 0:50 0:180 0:2

3 �300:0 150:200 0:50 0:180 0:2

VFSA (Biswas 2017) 1 �28.5 69.20 18.80 88.40 0.50

2 �140.0 138.10 10.20 87.90 1.00

3 �81.4 174.60 16.40 82.40 0.50

MVDE 1 �77.81 ± 16.13 82.70 ± 4,24 8.90 ± 1.75 147.88 ± 27.02 0.89 ± 0.02

2 �98.55 ± 110.38 137.92 ± 24.92 23.38 ± 41.39 129.11 ± 52.29 1.5 ± 0.48

3 �33.41 ± 2.25 176.40 ± 0.43 14.21 ± 0.74 88.70 ± 0.04 0.32 ± 0.01

lJADE 1 �100 ± 0.00 81.03 ± 0.56 16.23 ± 2.09 126.16 ± 2.51 0.77 ± 0.02

2 �199.4 ± 1.83 145.62 ± 1.09 7.56 ± 0.18 179.99 ± 0.03 1.092 ± 0.03

3 �164.40 ± 2.90 172.21 ± 0.47 28.14 ± 1.30 81.55 ± 1.06 0.59 ± 0.00
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MDE and lJADE formed results showed as vertical
cylinder for the last anomaly, in agreement with
Biswas (2017). This also happened in the second
anomaly. However, the shape factor for the Brst
anomaly of both MVDE and VFSA is different, but
type anomaly of VFSA for the Brst anomaly is
possibly similar with lJADE results, where the
algorithms interpreted the shapes as horizontal and
vertical cylinders, respectively. Furthermore, the
electrical dipole moment and polarization phase for
the Brst and second anomaly in the both algorithms
are quite different. The difference might be caused
by self-potential ambiguity and negative correlation
between the electrical dipole moment and polariza-
tion angle (Biswas and Sharma 2015).
Tables 6, 7, and Bgure 10(b and d) show that the

main anomaly resulted by MDE variants are a
semi-inBnite vertical cylinder. The results are also
supported by other algorithms (tables 6 and 7).
However, in the present work, the Neem-ka-Thana
anomaly in the main anomaly was also analyzed
using standard DE with more than 5226 evaluation
number (Balkaya 2013), while using MDE variants
only requires 2000 forward computation. Further-
more, in order to interpret the multiple anomalies,
MDE variants require 10,000 evaluation numbers,
while VFSA requires 1 billion forward computa-
tions (Biswas 2017). Last but not least, MDE is
more eAective than VFSA for inverting SP data in
the forward computations.

5.4 LUSI embankment anomaly, Indonesia

LUSI embankment protects the residential area
from a local mud eruption in the Sidoarjo district,
East Java, Indonesia. Assessment of LUSI
embankment is acquired using several geophysical
techniques such as Rayleigh wave dispersion,
resistivity, and very low frequency methods
(Sungkono et al. 2018). In addition, Husein et al.
(2014) used ground penetrating radar to identify
subsidence (vertical deformation) and crack in the
embankment. Stability of the embankment is dis-
tressed by deformation, which are two faults
through the embankment, Cuid seepage, etc.
(Sungkono et al. 2014, 2018).
SP data in the LUSI embankment has been

interpreted using several approach including BHA
(Sungkono and Warnana 2018) and WOA (Abde-
lazeem et al. 2019). Sungkono and Warnana (2018)
consider the SP data to contain four sources with
different positions. The efBciency and robustness of

MDE variants are evaluated by analyzing SP data
in the LUSI embankment anomaly with four
sources (20 parameters) using 5 and 8 populations
for MVDE and lJADE algorithms, respectively,
where the process for both algorithms is set to stop
when the NFE reaches 3000. It means that the
algorithm can be used to determine the number of
parameters which are higher than the MDE pop-
ulation. The anomaly has been analyzed and
computed using 20 parameters from BHA (Sung-
kono and Warnana 2018), WOA (Abdelazeem
et al. 2019) and FPA (Sungkono 2020). The algo-
rithms are processed using 10 independent runs to
provide PDM. Several model parameters with
objective function below 0.2 are utilized as PDM
candidate.
Figure 13 shows a comparison between the

MVDE and lJADE results calculated from the
parameters (table 10) and observed the SP anom-
aly. Table 10 shows a comparison between MDE
variants and other methods, which demonstrate
that entire anomaly parameters (except polariza-
tion magnitudes) from MDE variants are in good
agreement with those found using BHA and WOA.
Furthermore, entire algorithms discovered that the
shape factors of the four anomalies are approxi-
mately equal to one, which represent horizontal
cylindrical structures as sources at the different
depths and distances. The horizontal structures are
expected to be lateral cracking in the embankment
body, which are specifically sourced from anoma-
lies number 1 and 2.
Moreover, the eDciency of several algorithms

(MDE variants, WOA, and BHA) are evaluated in
terms of forward modelling calculation numbers.
MVDE, lJADE, WOA and BHA each require
15,000, 24,000, 120,000, and more than 300,000
times for the calculation of both forward modelling
and objective function, respectively. This indicates
that the MDE variants are 5–12.5 times faster than
others, yet with similar results (table 10).

5.5 KTB anomaly, Germany

Figures 11 and 12 show the KTB anomaly Beld
(marked with dots) which was observed near the
KTB-boreholes, drilled during the German Conti-
nental Deep Drilling Program (Stoll et al. 1995).
The anomaly contains two negative peak anomalies
at different amplitudes (–400 and –600 mV) pro-
duced by graphitic shear zones, which identify the
position of the subsurface structure model. The SP
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data was analyzed using two assumptions which
are simple polarized and inclined sheet using sev-
eral approaches as in tables 8 and 9, respectively.
In order to compare with previous approaches,
data has been digitized from Biswas (2017) and Di
Maio et al. (2019) for inclined sheet and simple

polarized assumptions, respectively. The anomaly
is then simultaneously processed using MDE vari-
ants. In this inversion, the population numbers 5
and 7 are used on MVDE for simple polarized and
inclined sheet model assumption, respectively,
while 8 populations are applied for both assump-
tions in lJADE algorithm. Both algorithms are
processed using 10,000 and 10,500 of NFE
for simple polarized and inclined sheet models,
respectively.
MDE variants are processed to invert the KTB

anomaly with simple polarized and inclined sheet
model. In each algorithm, 10 independent process
runs are used to reveal the subsurface model in
accordance with the geological study and reliable
model parameter (especially for the inclined sheet
model). The selected model parameter is not only
based on the best objective functions (the inversion
results from several process times correlated to the
lowest objective is selected to be applied as the
threshold for the objective to provide PDM), but
also based on the geological condition.
Figure 8 presents the comparison between

observed and calculated data of MVDE and
lJADE inversion using simple polarized assump-
tion. The Bgure explains that the calculated data
Bts well with the Beld data from MDE results
(table 8). In table 8, the model parameters and
their uncertainty resulted by MDE variants is
compared with other algorithms including GPA
(Di Maio et al. 2019) and Gauss Newton algorithm
(GNA) (Mehanee 2015). The model parameter
results of lJADE are comparable with other
approaches (table 8). Furthermore, MVDE results
are similar to other algorithms’ outputs especially
for distance, polarized angle, and shape factor,
whereas other parameters are dissimilar, which is
caused by SP model properties (Biswas and
Sharma 2015). As noted, the difference in negative
signs between GPA and other approaches is caused
by a different sign in the depth of equation (1).
Based on the shape factor resulted through inver-
sion using several approaches, it can be recognized
that two sources represent the responsible struc-
ture (a fault). Consequently, several authors (Bis-
was 2017; Gobashy et al. 2019) applied inclined
sheet in the inversion process.
In addition, for the second source MDE algo-

rithm generates lower depth (h) and electrical
dipole moment (K) values than those revealed
using other methods. It is mainly caused by the
dipole moment that has a positive correlation with
depth (Biswas and Sharma 2015). Hence, if K

Figure 11. Field SP data from the KTB anomaly (Stoll et al.
1995), Germany, inversed using MDE with the sources derived
by two sources of idealized bodies; (a) Beld data (dots) and
model response represents solid line and cross solid line for
MVDE and lJADE, (b) objective function with NFE.

Figure 12. Field SP data from the KTB anomaly (Stoll et al.
1995), Germany, inversed using MVDE and lJADE with the
sources derived by inclined sheet; (a) Beld data represents
dots, while model response of MVDE and lJADE indicates
solid line and crosses solid line, respectively; (b) subsurface
structure for multiple bodies revealed by MVDE (red) and
lJADE (blue).
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Table 8. Parameter ranges used in the MDE variants inversion of KTB anomaly and comparison model parameters estimated by
MDE variants and others using simple polarized as source.

Methods Sources K (mVm) D (m) h (m) h (�) q

Search spaces 1 200:9000 1100:1500 1:200 �30:180 0.01:2

2 200:9000 1400:3000 1:200 �30:180 0.01:2

GNA (Mehanee 2015) 1 484.00 – 134.00 �99 0.50

2 517.00 – 119.00 �79 0.50

GPA (Di Miao et al. 2019) 1 4669.00 1305.00 145.00 96.00 0.75

2 1664.00 1967.00 111.00 79.00 0.64

MVDE 1 902.12 ± 869.00 1294.88 ± 2.55 96.85 ± 14.62 �99.34 ± 2.28 0.60 ± 0.10

2 395.43 ± 6.09 1975.5 ± 4.80 76.73 ± 16.77 �80.09 ± 1.48 0.49 ± 0.00

lJADE 1 4078.24 ± 330.07 1308.41 ± 11.55 167.56 ± 24.49 �98.37 ± 2.87 0.73 ± 0.01

2 2194.95 ± 5608.97 1969.38 ± 3.01 96.41 ± 33.85 �80.54 ± 2.46 0.67 ± 0.24

Table 9. Parameter ranges used in the MDE variants inversion of KTB anomaly and comparison model parameters estimated by
MDE variants and others using inclined sheet as source.

Algorithms Sources K (mVm) D (m) h (m) a (m) h (�)

Search spaces 1 10:200 800:1100 10:500 10:2000 40:80

2 10:200 1300:1800 10:500 10:2000 60:180

VFSA (Biswas 2017) 1 73.50 998.60 371.80 524.60 139.60

2 79.00 1472.10 298.20 394.80 134.20

WOA (Gobashy et al. 2019) 1 58.63 632.70 468.54 739.25 40.02

2 54.53 1173.56 308.21 655.92 153.76

MVDE 1 74.98 ± 21.05 505.52 ± 2.98 447.09 ± 56.80 429.13 ± 61.95 79.11 ± 1.64

2 120.06 ± 5.39 1224.99 ± 6.82 134.82 ± 58.10 128.86 ± 8.67 103.95 ± 61.95

lJADE 1 67.08 ± 1.44 500.00 ± 0.01 556.99 ± 18.13 530.23 ± 13.48 80.00 ± 0.00

2 91.67 ± 4.93 1271.08 ± 10.45 154.15 ± 11.34 149.84 ± 18.20 117.76 ± 1.84

Table 10. Parameter ranges used in the MDE variants inversion of LUSI embankment SP anomaly, and comparison MDE
variants inversion results with parameters revealed by several researchers (Sungkono and Warnana 2018; Abdelazeem et al. 2019).

Parameter Sources K (mVm) D (m) h (m) h (�) q

Search space 1 �600:�100 0:75 00:30 0.125 0.3:1.6

2 �600:�100 75:110 00:30 0.125 0.3:1.6

3 100:600 150:215 00:30 0.125 0.3:1.6

4 �600:�100 200:300 00:30 0.125 0.3:1.6

BHA (Sungkono and

Warnana 2018)

1 �412.99 ± 4.47 46.46 ± 0.60 16.16 ± 0.35 104.07 ± 1.85 1.06 ± 0.00

2 �386.59 ± 11.10 99.69 ± 0.39 15.76 ± 0.59 85.88 ± 2.88 1.14 ± 0.01

3 480.60 ± 27.95 154.93 ± 0.76 25.61 ± 0.36 140.23 ± 2.02 1.01 ± 0.01

4 �563.42 ± 10.49 268.04 ± 2.10 18.93 ± 0.43 103.75 ± 6.47 1.10 ± 0.00

WOA (Abdelazeem

et al. 2019)

1 �197.47 32.65 18.68 63.17 0.9

2 �460.80 102.56 14.22 104.4 1.18

3 264.56 152.29 30.21 139.06 0.88

4 �498.57 262.59 28.66 77.53 1.05

MVDE 1 �653.22 ± 61.91 41.35 ± 1.38 18.25 ± 1.34 81.89 ± 3.26 1.13 ± 0.02

2 �595.84 ± 39.32 92.03 ± 1.86 13.27 ± 1.46 39.04 ± 10.10 1.28 ± 0.06

3 850.07 ± 54.66 150.59 ± 0.87 22.51 ± 2.24 127.46 ± 3.05 1.11 ± 0.01

4 �303.87 ± 72.05 267.85 ± 1.86 19.37 ± 1.29 103.00 ± 7.47 0.98 ± 0.04

lJADE 1 �655.59 ± 14.73 48.07 ± 0.08 14.62 ± 0.21 114.04 ± 0.059 1.18 ± 0.00

2 �675.71 ± 12.81 109.85 ± 0.05 15.31 ± 0.81 134.25 ± 2.73 1.23 ± 0.00

3 894.65 ± 4.97 152.40 ± 2.68 28.05 ± 1.86 136.00 ± 4.62 1.10 ± 0.01

4 �674.09 ± 14.03 281.05 ± 0.29 20.25 ± 0.38 141.63 ± 1.18 1.07 ± 0.00
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decreases, h will also decreases. Furthermore, the
number of evaluations in MDE is evaluated and
compared using GPA and GNA. The number of
evaluations for MDE variants and GPA are 10,000
and 50 million, correspondingly. It can be seen that
MDE variants require lesser evaluation number
compared to GPA.
Furthermore, Bgure 9 is a well Btted curve of the

observed KTB anomaly and the calculated model
using inclined sheet approach with misBt equal to
1.72%and 2.03% forMVDEandlJADE (better than
WOA which has 4.62%), respectively, while table 8
shows the model parameters and its uncertainty
revealed by limit acceptability approach with MDE
variants. The results is compared with several
approaches includingVFSA(Biswas2017) andWOA
(Gobashy et al. 2019).TheMVDEandlJADEmodel
parameter results show that electric dipole moment,
the horizontals and the depths of sheet centers are
comparable to VFSA, while other parameters fall
quite far. In addition, WOA results for source 2 is
irrelevant to the geological model because the model
parameter is reliable when h[ a sin h (Biswas and
Sharma 2014b).Meanwhile, about 10,500 numbers of
evaluations are needed for both MVDE and lJADE
algorithm.On the contrary,WOAandVFSArequire
350,000 and 1 billion evaluation numbers making
them slower than MDE variants.

5.6 Vilarelho da Raia anomaly, Portugal

SP anomaly from the Vilarelho da Raia Beld data is
characterized by a natural spring ofCO2-richmineral
water which is controlled and connected with the
Hercynian Fault systems. Monteiro Santos et al.
(2002) suggest that the SP anomaly contains frac-
tures correlated to the upCow of water in the thermal
hot springs area, white aquifer, at a depth between 50
and 150 m. Therefore, several researchers (Monteiro
Santos 2010; DiMaio et al. 2019) use multiple simple
polarized structure model as sources for the SP
anomaly inversion, while others (Biswas and Sharma
2014b; Di Maio et al. 2019) applied a multiple sheet
type structure for forward modelling.
Figures 11 and 12(a) show two proBles that are

measured at the Vilarelho da Raia area, Portugal
(Monteiro Santos et al. 2002). The SP anomaly was
analyzed using PSO (Monteiro Santos 2010) and
GPA (Di Maio et al. 2019) with the assumption
that the anomaly contains two polarized struc-
tures. Recently, the Vilarelho da Raia SP anomaly
has been also inverted using VFSA (Biswas and
Sharma 2014b) and GPA (Di Maio et al. 2019) via

four sheet-type structures as causative sources.
Furthermore, MDE variants processes use two
polarized structures and four sheet-type structures
in order to give a decent Bt between observed and
calculated SP anomalies. In this process, 7 and 8
populations are applied for MVDE and lJADE
algorithms which use 10,500 of NFE each.
Figure 14 represents the DE inversion response

for Vilarelho da Raia Beld anomaly, which shows a
quite worthy Bt with the data as a sign for the
parameters of the MDE variants inversion model
and considered suitable for recovering the SP data.
The MDE results are presented in table 11, which
show that the sources in MDE variants are also
compared with sources revealed by PSO and GPA.
Table 11 establishes that for almost every param-
eter except for depths and polarization amplitudes,
the SP parameters are in a good agreement. The
two values resulted by MDE variants are generally
higher than GPA results, this is generally caused
by the depth of anomaly sources which have higher
positive correlation with the polarization ampli-
tude (Biswas and Sharma 2015). Although the
shape factors of MDE results have a major differ-
ence in value with the others, the entire shape
factors for all sources and entire algorithms indi-
cate as semi-inBnite vertical cylinder for both
structures. Subsequently, MDE results using mul-
tiple polarized structures are supported with the
interpretation by previous authors (Monteiro
Santos 2010; Di Maio et al. 2019).

Figure 13. Field SP data from the LUSI anomaly (Sungkono
and Warnana 2018), Indonesia, inversed using MDE with the
sources determined by using simple polarization structures;
(a) comparison between Beld data and model response from
inversion results using MVDE and lJADE; (b) subsurface
structure for multiple bodies revealed by MVDE (blue) and
lJADE (red).
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Recently, the Vilarelho da Raia SP anomaly
has also been interpreted by some authors (Biswas

and Sharma 2014b; Di Maio et al. 2019) using
GOM. The anomaly is considered to contain four

inclined sheet structures in order to give better
characterization of the SP anomaly. Thus, MDE

variants have been analyzed using the assumption
where the SP response from MVDE and lJADE

results (table 12 and Bgure 15b) is close to the
observed SP anomaly (the objective function is

0.06 and 0.05 for MVDE and lJADE, respec-
tively) (Bgure 15a). Table 12 shows inversion

results of MDE and other algorithms including
VFSA and GPA. The results show that the

locations of the central sources for anomalies 2
and 3 are in a good agreement with those revealed

by previous researchers (Monteiro Santos et al.
2002; Monteiro Santos 2010; Biswas and Sharma

Table 11. Parameter ranges used in the MDE variants inversion of Vilarelho da Raia anomaly and comparison model parameters
estimated by MDE variants and others using simple polarized as source.

Methods Sources K (mVm) D (m) h (m) h (�) q

Ranges 1 �500:500 �500:�250 0.5:150 5:180 0.01:1.5
2 �1200:50 �260:0 0.5:150 5:150 0.01:1.5

PSO (Monteiro Santos 2010) 1 461.70 �383.50 20.00 95.03 0.10
2 �1200.00 �133.30 3.70 89.49 0.10

GPA (Di Maio et al. 2019) 1 �13.49 �340.34 18.06 110.33 0.36
2 �6.05 �120.50 38.14 91.59 0.15

MVDE 1 �475.04 ± 10.91 �312.11 ± 3.78 53.26 ± 5.95 178.95 ± 2.31 0.81 ± 0.01
2 �30.8 ± 1.90 �136.07 ± 5.94 134.48 ± 10.83 102.67 ± 2.47 0.41 ± 0.00

lJADE 1 �499.89 ± 1.11 �335.66 ± 63.90 110.92 ± 15.09 141.36 ± 35.15 0.70 ± 0.01
2 �1199.98 ± 0.61 �157.90 ± 61.63 143.27 ± 2.36 72.48 ± 29.99 0.77 ± 0.05

Figure 14. Comparison between observed SP data from the
Vilarelho da Raia anomaly (Northern Portugal) (Monteiro
Santos et al. 2002) and calculated of SP data using MVDE and
lJADE with two sources derived by simple polarized structure.

Table 12. Parameter ranges used in the MDE variants inversion of Vilarelho da Raia anomaly and comparison model parameters
estimated by MDE variants and others using inclined sheet as source.

Algorithms Sources K (mVm) D (m) h (m) a (m) h (�)

Search spaces 1 0:40 �500:�400 10:150 20:100 5:180
2 0:40 �400:�300 10:150 20:100 5:180
3 0:40 �200:�34 10:150 20:100 5:180
4 0:50 �24:300 10:150 20:100 5:180

VFSA (Biswas and
Sharma 2014b)

1 31.4 �467.23 122.29 51.38 76.78
2 13.4 �389.71 60.66 40.34 122.92
3 13.2 �115.66 111.39 37.42 77.92
4 2.9 150.56 31.57 73.6 5.29

GPA (Di Maio
et al. 2019)

1 26.38 �488.00 122.71 62.8 86.06
2 13.68 �349.02 98.34 69.16 85.36
3 17.87 �112.43 119.53 69.64 77.82
4 18.25 116.57 69.51 16.48 24.84

MVDE 1 48.06 ± 3.31 �491.06 ± 13.14 142.63 ± 9.93 81.62 ± 7.95 38.11 ± 2.30
2 18.46 ± 2.37 �350.35 ± 25.45 124.84 ± 27.66 91.55 ± 9.63 62.39 ± 12.72
3 17.06 ± 8.24 �186.33 ± 13.32 65.52 ± 12.47 45.79 ± 22.59 29.54 ± 12.19
4 11.97 ± 3.10 47.34 ± 27.42 141.69 ± 10.62 157.40 ± 6.61 88.82 ± 18.64

lJADE 1 32.84 ± 10.73 �455.09 ± 45.47 149.44 ± 3.98 64.42 ± 19.45 106.55 ± 25.51
2 17.50 ± 5.60 �350.77 ± 38.03 123.08 ± 28.82 63.30 ± 22.48 89.03 ± 12.13
3 17.84 ± 3.87 �113.34 ± 31.02 95.22 ± 23.53 50.14 ± 13.81 105.76 ± 10.08
4 15.41 ± 3.21 87.27 ± 21.35 134.27 ± 28.32 45.95 ± 14.56 139.12 ± 8.74
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2014b; Di Maio et al. 2019) and also comparable
with table 11. Furthermore, through comparison
between Bgures 14 and 15(a), it can be seen that
multiple inclined sheet structure is suitable for the
Vilarelho da Raia SP curves interpretation.
In order to appraise the eDciency of MDE

compared with VFSA and GPA, forward mod-
elling is required for each algorithm to be evalu-
ated. Based on several researchers (Biswas and
Sharma 2014b; Di Maio et al. 2019), the number
of forward computations for the inversion of
Vilarelho da Raia anomaly is known, where VFSA
and GPA need 1 and 50 million forward compu-
tations, individually, while MVDE and lJADE
require 10,500 and 1,200, respectively. Thus, it
can be seen that MDE is much more eDcient than
GPA and VFSA.

5.7 Karakoc� creek, Turkey

The SP data was acquired from southwest of the

C��ubukludag‘ graben, southwest of Îzmir, western
Turkey. The observed SP data is for an alluvial
aquifer study in September 2006 by G€okt€urkler
et al. (2008). The observed SP data in line 4
(Bgure 16) is analyzed using simple polarized
approach with the assumption that the observed
data contain four anomalies; however, the

last anomaly remains incomplete. Consequently,
analyzed data in this line takes in consideration of
three anomalies. The SP anomalies are caused by
near surface Cuid Cow phenomena. Consequently,
table 13 is used as a search space in the inversion
process.
In order to Bnd PDM in the SP model, lJADE

and MVDE algorithms are processed through
20,000 numbers of evaluation for each algorithms

Figure 15. Field SP data from the Vilarelho da Raia anomaly (Monteiro Santos et al. 2002) inversed using MDE variants with
fourth sources determined using inclined sheet structures; (a) comparison between Beld data and model response resulted by
MVDE and lJADE, (b) subsurface structure for multiple bodies revealed by MVDE (blue) and lJADE (red).

Figure 16. Comparison between observed SP data from the
Karakoc� creek anomaly (G€okt€urkler et al. 2008) and calcu-
lated data through inversed process using MDE and lJADE
using consideration three simple polarized anomalies.
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with 8 and 5 population size, respectively. The
algorithm is executed to 10 independent runs to be
then selected to Bnd the lowest objective function.
The best Bt of both algorithms is presented in
Bgure 16. The Bgures show a good Bt between
observed and calculated SP data from lJADE and
MVDE, except in the last anomaly because the
data is considered incomplete.
Furthermore, the limit acceptability method, or

the objective function threshold can be applied to
generate PDM. It means that the model parame-
ters of the objective function lower than the
threshold value become PDM. In the inversion,
0.15 is set as the threshold value. The median
and their uncertainty of the PDM acquired from
the threshold are presented in table 13. The
table indicates that the anomalies located by both
lJADE and MVDE algorithm are similar about
62–72, 186–189 and 268–275 m in distance and
17.5–25 m in depth. The inversion result is sup-
ported by inversion of 2D resistivity results which
indicate that the aquifer in the alluvial is located
above 20 m (G€okt€urkler et al. 2008). Furthermore,
the second and third anomalies of SP data are
correlated with low resistivity zones.

6. Conclusion

A recently proposed micro-differential evolution
(MDE) variant has been implemented to provide
quantitative interpretation of mono and multiple
SP anomalies with simple geometry namely simple
polarized and inclined sheet. MDE is a differential
evolution with micro-population, which is robust
and fast to reach convergence while requiring little
populations, and produces reliable results in the
inversion of single and multiple anomalies of SP
data. Both MDE variants, namely MVDE and

lJADE have been tested over synthetics and Belds
of SP anomalies for showing the performance of the
algorithm. The Belds of SP anomaly from landslide
and ground water investigations, embankment
stability identiBcation, mineral exploration, and
tracing shear zones demonstrated that MDE
results are generally faster compared to the results
revealed by the most common global optimization
algorithms, namely GA, PSO, standard DE, GPA,
WOA, BHA, and VFSA. MDE variants for SP
data inversion commonly generate the model
parameters which appropriate the availability of
geological information of the survey area. Finally,
it can be concluded that the MDE variants are able
to determine 10–20 model parameters of synthetic
and Beld SP data using 5–8 populations, a task
impossible to be solved by standard DE.
The discovery of MDE will provide new chances
for imaging high-dimensional model (2D or 3D
subsurface) from geophysical data.
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