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Drought is the most frequent natural disaster in Algeria during the last century, with a severity ranging
over the territory and causing enormous damages to agriculture and economy, especially in the north-
west region of Algeria. The above issue motivated this study, which is aimed to analyse and predict
droughts using the Standardized Precipitation Index (SPI). The analysis is based on monthly rainfall data
collected during the period from 1960 to 2010 in seven plains located in the north-western Algeria. While
a drought forecast with 2 months lead-time is addressed using an artiBcial neural network (ANN) model.
Based on SPI values at different time scales (3-, 6-, 9-, and 12-months), the seven plains of north-western
Algeria are severely aAected by drought, conversely of the eastern part of the country, wherein drought
phenomena are decreased in both duration and severity. The analysis also shows that the drought
frequency changes according to the time scale. Moreover, the temporal analysis, without considering the
autocorrelation eAect on change point and monotonic trends of SPI series, depicts a negative trend with
asynchronous in change-point timing. However, this becomes less significant at 3 and 6 months’ time
scales if time series are modelled using the corrected and unbiased trend-free-pre-whitening (TFPWcu)
approach. As regards the ANN-based drought forecast in the seven plains with 2 months of lead time, the
multi-layer perceptron networks architecture with Levenberg–Marquardt calibration algorithm provides

satisfactory results with the adjusted coefBcient of determination (R2
adj) higher than 0.81 and the root-

mean-square-error (RMSE) and the mean absolute error (MAE) less than 0.41 and 0.23, respectively.
Therefore, the proposed ANN-based drought forecast model can be conveniently adopted to establish
with 2 months ahead adequate irrigation schedules in case of water stress and for optimizing agricultural
production.

Keywords. Algeria; drought forecasting; artiBcial neural networks; standardized precipitation index;
trend-free-pre-whitening.
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1. Introduction

Drought is recognized by the Intergovernmental
Panel on Climate Change (SheDeld and Wood
2008) as one of the most severe climate events that
needs to be mitigated to reduce its negative
impact. Overall, drought is considered as a pro-
longed and abnormal state of water deBcit (Palmer
1965; Wilhite and Glantz 1985; Dalezios et al.
1991). Nowadays, the identiBcation of drought
conditions is based on drought indices allowing, on
one hand, the determination of the threshold
indicating drought at different time scales and, on
the other hand, the classiBcation of conditions
according to their severity and the location (Mckee
et al. 1993). The index commonly used for droughts
is the Standardized Precipitations Index (SPI),
whose value quantiBes the deviation from the
average precipitation and allows comparing dry
and humid years or years showing deBcit or surplus
(Mckee et al. 1993). The World Meteorological
Organisation (WMO) adopted this index since
2009, as a global tool, in order to measure meteo-
rological drought in the ‘Lincoln declaration on
drought indices’ (Cancelliere et al. 2007). SPI is
used everywhere in the framework of meteorologi-
cal drought monitoring (Byun and Kim 2010;
Zhang et al. 2012; Chandramouli et al. 2017) due to
its simplicity, spatial invariance in the interpreta-
tion (Guttman 1998; Vicente-Serrano et al. 2010)
as well as for the capability to capture and repli-
cate the observed drought events measured by
others indices (Byun and Kim 2010; Maccioni et al.
2015; Khan et al. 2018). The 3-month SPI index
provides an indication of short- and medium-term
moisture conditions, precipitation estimates over a
season and this is appropriate in agricultural areas
to highlight the nature of soil moisture (WMO
2008). The 6-month SPI provides an indication of
precipitation trends over a season (Khan et al.
2008), while SPI-12 should be considered for long-
term estimations to address water resources
management (Khan et al. 2008). Overall, SPI is
assessed for a given time scale using a probability
distribution function Btting the corresponding
cumulated precipitation (Mckee et al. 1993).
Therefore, the estimated SPI-based severity of the
drought represents the deBcit or surplus over a
period at a site. However, at different locations,
SPI could not correspond to the same deBcits or
surplus of precipitation, in accordance with the
average precipitation recorded at a single site. This
means that SPI is site-dependent and an absolute

drought comparison among sites can be done
through a deepened spatial analysis (Paulo et al.
2016; Dehghani et al. 2017; Guhathakurta et al.
2017), that takes the evolution of the characteris-
tics of drought, namely: duration, severity and
intensity into account (Masud et al. 2017; Asong
et al. 2018).
In this context, SPI can be also used for drought

forecasting as support to a rigorous water resources
management by the decision makers, especially to
plan how to significantly address the agricultural
irrigation which is a priority worldwide and in
particular in Africa. For the drought forecasting,
statistical models have been applied in the last 50
yrs as the ones proposed by Gabriel and Neumann
(1962) who used the Markov chain (Lazri et al.
2015), the regression method by Torranin (1973)
and linear stochastic models including autoregres-
sive integrated moving average (ARIMA) and
seasonal autoregressive integrated moving average
(SARIMA) applied by Mishra and Desai (2005).
However, during the last two decades, artiBcial
intelligence (AI) models in hydrology, like the
artiBcial neural network (ANN), fuzzy logic (FL)
and support vector regression (SVR), have signifi-
cantly enhanced, notably for the forecasting pur-
poses (Rezaie-Balf et al. 2017; Dariane et al. 2018).
AI model is overall used for the management and
measurement of different aspects of water resour-
ces, including rainfall-runoA modelling (Shoaib
et al. 2016; Tarawneh and Khalayleh 2016; Zeroual
et al. 2016; Tongal and Booij 2017), soil loss pre-
diction in wadis (Salhi et al. 2013) and evaporation
forecasting (Abyaneh et al. 2011; Goyal et al.
2014). In particular, the adoption of this technique
for the drought forecasting based on times series of
drought indices has added a new dimension to the
planning and management of water resources
(Mishra and Desai 2006; Belayneh et al. 2014;
Masinde 2014; Bahrami et al. 2019). Several stud-
ies showed that AI models could give better results
than conventional drought modelling techniques in
semi-arid regions. As far as the comparison among
different AI approaches for hydrological and cli-
matological applications is concerned, studies have
shown that the support vector machine (SVM)
approach is more accurate than that of ANN and
FL one (He et al. 2014; Noori et al. 2015; Ghorbani
et al. 2016; Huang et al. 2017). Specifically, for
drought forecasting using SPI, the ANN model can
forecast satisfactory up to 12 months of lead-time
(Barua et al. 2010, 2012; Bari Abarghouei et al.
2013; Ali et al. 2017). Conversely, other studies
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showed that SVMmodel has enough accuracy to be
used in long-term drought forecasting compared to
ANNs (Tarawneh and Khalayleh 2016). Likewise
hybrid models can be also adopted for drought
forecasting mainly in the case of the nonstationary
hydrologic time series (Jain and Kumar 2007;
Wang et al. 2015). wavelet transform (WT) anal-
ysis and cuckoo search (CS) algorithm have been
used to improve the forecasting ability of IA
models (Jalalkamali et al. 2015). Examples of
hybrid models to drought forecast based on SPIs
times series are the wavelet support vector
machine (WSVM) (Djerbouai and Souag-Gamane
2016; Deo Ravinesh et al. 2017a, b), Wavelet-ANN
(WANN) (Belayneh et al. 2014; Zhang et al. 2017;
Soh et al. 2018), wavelet-adaptive neuro-fuzzy
inference system (WANFIS) (Shirmohammadi
et al. 2013; Belayneh et al. 2014; Shabri 2014),
wavelet extreme learning machine (W-ELM) (Deo
Ravinesh et al. 2017a, b) and cuckoo search-
support vector machine (CS-SVM) (Liang et al.
2016; Komasi et al. 2018).
Based on the above insights, this study has two

objectives. The Brst is to provide a comprehensive
analysis of historical droughts based on SPI anal-
ysis over the northwest Algeria. The second is to
develop always for the north-western part of
Algeria an ANN-based forecast model of drought
events 2 months in advance, addressed to irrigation
purposes. Accomplishing these two objectives may
be of paramount importance to coping with the
drought in Algeria, that during the last 50 years
experienced one of the widest variations in rainfall
regime. As regards the Brst objective, the climatic
Cuctuations in Algeria aAected not only rainfall
patterns, but they also created persistent and
pervasive droughts conditions. Historically, the
precipitation deBcit has been registering since 1973
aAecting differently the north of Algeria (Meddi
et al. 2010). The duration and the severity of this
deBcit varies across north-western part of the
country causing severe impacts on agricultural and
socio-economic features for the strong dependence
of the country’s economy on rain-fed agriculture in
the large fertile farmland (Meddi and Meddi 2009).
For the period 1970–2013, the continuous decrease
in precipitations in areas previously considered
temperate climate, caused very dry environment
conditions (Meddi et al. 2010; Zeroual et al. 2017)
with reservoir levels dropped up to 25% of their
normal level and piezometric levels decreased
below 40 m for some aquifers (Demmak 2008). This
reduction has negative impact on the water supply

of all sectors definitely. Moreover, future climate
scenarios by 2100 based on regional climate models
(RCM) showed this region more vulnerable than
the centre and the eastern part of Algeria (Zeroual
et al. 2019). Therefore for the plains of the north-
western Algeria, there is a major challenge to sus-
tainable water management practices (Medjerab
and Henia 2005). Enhance the understanding of the
spatial distribution of drought, and comparing
their severity and duration among plains is thus
required in order to establish adequate irrigation
schedules in case of water stress. An integrated
space-temporal analysis of these drought charac-
teristics in seven plains namely, Mitidja, Ghriss,
Maghnia, Sidi Bel Abbes, High, Middle and Low-
CheliA would provide valuable knowledge that is
necessary for drought forecasting, as well as for the
rational exploitation of these plains under the
future climate change. These regions are known by
their fertile farmland and during the last decades,
the water shortage created serious concerns for the
plains irrigation. Therefore, drought events are
here assessed by their duration and severity using
the SPI over various temporal scales (3, 6, 9, and
12 months) and then a comparison of the evolution
of these characteristics over the seven plains is
done. The temporal analysis is investigated ini-
tially without considering the eAect of autocorre-
lation on change point and monotonic trends of
SPIs time series, thereafter, the time series are
modelled using the corrected and unbiased trend-
free-pre-whitening (TFPWcu) approach to elimi-
nate the autocorrelation eAect on the variance of
test statistics. Major spatial and temporal patterns
of change points of drought events are then iden-
tiBed using the modiBed Pettitt test proposed by
Serinaldi and Kilsby (2016). As far as the second
objective is concerned, it attempts to coping with
the persistent water shortage by developing a
drought forecasting model to support decision
makers to mitigate the water stress resulting from
a cycle of droughts and to ensure the irrigation in
plains. Studies on the drought forecast using dif-
ferent approaches have been addressed for the
eastern and central part of Algeria (Djerbouai and
Souag-Gamane 2016; Habibi et al. 2018). It is
worth noting, however, that the plains of those
regions have not experienced the same severity of
water shortage as the west of Algeria. Therefore, to
develop a drought forecasting system for the north-
western part of Algeria is a priority to manage in a
rigorous way water resources in agricultural irri-
gation. For that, considering the uncertainty

J. Earth Syst. Sci. (2020) 129:42 Page 3 of 22 42



associated with water scarcity and climate change,
we propose an ANN-based drought forecast model
using a lead time of 2 months which can be a
valuable tool for irrigation and water resources
management, as long as the irrigation periods
starting in April until June.

2. Study zone and dataset

The Algerian northwest part spreads over 250 km
from south to north and approximately 500 km
from west to east (cf. Bgure 1). The territory is
characterized by mild climate, and relatively high
humidity. Rainfall ranges from 400 mm in the west
to 900 mm in the east.
Monthly rainfall data recorded at 20 rain-gauge

stations in the seven plains for the period
1960–2010 have been used in this study. Data are
extracted from dataset provided by the National
Meteorology ODce (ONM) and the National
Hydraulic Resources Agency (ANRH) (O.N.M:
http://www.meteo.dz/index.php, ANRH: http://
www.anrh.dz/).
For each investigated plain, the monthly areal

average precipitation was computed after deter-
mination of the weighting factor using the Thiessen
polygon method. The weighting factor speciBes the
contribution of each rain gauge station to the total

plain area (S�en 1998). In the supplementary
material, we show in Bgure 1, the polygon sur-
rounding each rain gauge using the Thiessen
method. Furthermore, in table 1, the geographic
coordinates of rain-gauges, regions of inCuence
around each rain-gauge station and their percent to
total plain area are given.
The main statistical characteristics of rainfall

are calculated for each plain after determination of
the monthly areal average precipitation for each
plain. Their results are exhibited in table 1. SPI
has been calculated on the seven plains for the
period 1960–2010 at different time scales, i.e., 3, 6,
9, and 12 months. SPI is computed for each plain
by Btting an appropriate probability density func-
tion to the frequency distribution of precipitation
cumulated over the considered time scale (3, 6, 9,
and 12 months).

3. Methods

3.1 Drought index

Thom (1958) found the two-parameter gamma
probability density function can Bt well precipi-
tation time series. The gamma distribution is
deBned by its frequency or probability density
function as:

Figure 1. Geographical location of the seven plains included in the study.
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g xð Þ ¼ 1

baC að Þ x
a�1e�x=b; for x[ 0; ð1Þ

where a ð[ 0Þ is a shape factor, b ð[ 0Þ is a scale
factor, and x[ 0 is the amount of precipitation.
C að Þ is the gamma function which is
deBned as:

C að Þ ¼
Z 1

0

ya�1e�ydy: ð2Þ

Edwards and McKee (1997) suggested a method
using the approximation of Thorn (1966) for
maximum likelihood to optimally estimate a and
b as follows:

â ¼ 1

4A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r !
; ð3Þ

b̂ ¼ �x

â
; ð4Þ

where

A ¼ ln �xð Þ �
P

ln xð Þ
n

; ð5Þ

n is the number of precipitation observations. The
resulting parameters are then used to infer the
cumulative probability of an observed preci-
pitation event for the given month or any other
time scale:

G xð Þ ¼
Z x

0

g xð Þdx ¼ 1

b̂âC âð Þ

Z x

0

x â�1e�x=b̂dx: ð6Þ

Letting t ¼ x=b̂, this equation becomes the
incomplete gamma function:

G xð Þ ¼ 1

C âð Þ

Z x

0

tâ�1e�tdt: ð7Þ

Since the gamma function is undeBned for x ¼ 0
and a precipitation distribution may contain zeros,
the cumulative probability becomes:

H xð Þ ¼ q þ 1� qð ÞG xð Þ; ð8Þ

where, q is the probability of zero precipitation.
The cumulative probability, H(x), is then
transformed to the standard normal random
variable Z with mean zero and variance one,
which is the value of the SPI. Following the
studies of Edwards and McKee (1997) and Lloyd-
Hughes and Saunders (2002), an approximate
conversion was used here, as provided by
Abramowitz and Stegun (1965) to convert easily
the cumulative probability to the standard normal
random variable Z or SPI:

Z ¼ SPI ¼ � t � C0 þ C1t þ C2t
2

1� d1t þ d2t2 þ d3t3

� �

for 0\H xð Þ� 0:5;

ð9Þ

and

Z ¼ SPI ¼ þ t � C0 þ C1t þ C2t
2

1� d1t þ d2t2 þ d3t3

� �

for 0:5\H xð Þ� 1:0;

ð10Þ

where

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

H xð Þð Þ2

 !vuut for 0\H xð Þ� 0:5; ð11Þ

and

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

1� H xð Þð Þ2

 !vuut for 0:5\H xð Þ� 1:0;

ð12Þ

And c0 ¼ 2:515517; c1 ¼ 0:802853; c2 ¼ 0:010328;
d1¼ 1:432788; d2¼ 0:189269; d3¼ 0:001308 (Mishra

Table 1. Statistical characteristics of annual rainfall in the studied plains.

Plain

Number of

rain-gauge

Average

(mm)

Standard

deviation

(mm)

Median

(mm)

Maximum

(mm)

Minimum

(mm)

Mitidja 6 714 156.1 706.2 1082 449

High CheliA 2 419 89.9 432.5 652 179

Middle CheliA 3 382 85.7 379.9 601 228

Low CheliA 2 349 70.2 343.2 483 209

Ghriss 2 323 76.0 308.8 549 210

Sidi Bel Abbes 3 345 84.6 360.1 562 195

Maghnia 2 298 82.7 287.8 501 174
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and Desai 2005). According to McKee et al. (1993),
drought classes of the SPI indicate near normal con-
ditions at �1\SPI\0, moderate drought at
�1.5\SPI B �1, severe drought at �1.99\SPI
B �1.5 and extreme drought at SPI B �2.

3.2 Spatio-temporal analysis of drought

3.2.1 Limitations of SPI and drought
characterization

The SPI is a standard index over a reference period.
It is obtained for a different deBcit of precipita-
tion, which corresponds to the difference between
the observed and the average of the time series.
However, this functionality does not allow SPIs to be
considered for absolute drought comparison
between stations or plains if additional information
is not available (Mishra 2010; Paulo et al. 2016).
Local time series analysis leads to missing infor-
mation on spatial characteristics; likewise, the
spatial analysis does not make it possible to follow
the dynamic evolution of the phenomenon. For the
temporal analysis, the use of precipitation series of
different lengths significantly aAects the SPI values
even if the same probability distribution is applied
(Mishra 2010; Salvi and Ghosh 2016).
For example, Salvi and Ghosh (2016) pointed out

the impact of this eAect on the frequency of meteo-
rological extreme dry and wet spells in the recent
past and in the future using general circulation
models as well as on parameters of the gamma dis-
tribution using the SPI values computing from
different precipitation record lengths over India.
To avoid these problems, a spatio-temporal

analysis based on the comparison of the evolution of
the characteristics of the drought, namely, duration,
gravity and intensity, is applied to the seven plains
studied covering the same period from 1960 to 2010.
The SPI series (3, 6, 9, and 12 months) in the

seven plains have been investigated in terms of
spatio-temporal variability. The duration (D) of a
drought event, as deBned by Mckee et al. (1993), is
the period, during which the SPI value is contin-
uously negative and reaches at least value of �1 or
less. The SPI values accumulation during this
period was used by Shiau (2006) to measure the
drought magnitude, which is also called drought
severity (S):

S ¼ �
XD
i¼1

SPIi; ð13Þ

where, D is the drought duration and S is the
drought severity. Drought intensity is deBned as
severity divided by duration (Dingman 1994; Shiau
2006; Madadgar and Moradkhani 2013).

3.2.2 Trends and shifts analysis

Once the spatial evolution variability of the time
series of SPI’s (3, 6, 9, and 12 months) in the seven
plains was analyzed, we proceeded to the temporal
variability analysis according to the two following
stages: in the Brst, the presence and timing of
abrupt changes in the SPI’s time series are checked
using the non-parametric statistical test of Pettitt
(Pettitt 1979), after their autocorrelation is veriBed
(the Brst serial correlation ‘lag-1’ coefBcient). If
‘lag-1’ serial correlation coefBcient is significant at
5% level, then the modiBed corrected and unbiased
trend free pre-whitening (TFPWcu) procedure for
Pettitt test is used. This procedure has been sug-
gested by Serinaldi and Kilsby (2016) for removing
autocorrelation eAects in the time series. Other-
wise, the original Pettitt test is applied for
detecting change point in the time series data. In
the second stage, we applied the non-parametric
original Mann–Kendall test (MK) and its above-
mentioned modiBed form MMK (Hamed and
Ramachandra Rao 1998) to assess the significance
of existing trends in the long-term variability of the
SPI’s time series.
It is worth noting that in the MK test, the data

are assumed independent and randomly ordered,
and this can lead to erroneous results if serial cor-
relation is present (Hamed and Ramachandra Rao
1998). Even in the absence of a trend in the time
series, the positive autocorrelation would increase
the chance of significant response. Various studies
have addressed this issue in order to Bnd an
appropriate approach that considers the signifi-
cance of autocorrelation in the data. Some authors
have suggested modifying the data itself using the
prewhitening procedure (Storch and Navarra
1995), trend-free-pre-whitening (TFPW) approach
(Yue et al. 2002) and corrected and unbiased trend
free pre-whitening (TFPWcu) (Serinaldi and
Kilsby 2016). Others have suggested the variance
correction of Mann–Kendal test using an empirical
formula (Hamed and Ramachandra Rao 1998) and
Monte Carlo simulations (Yue and Wang 2004).

Pettitt test. The non-parametric Pettitt change
point test is applied for detecting change point in
the time series (Pettitt 1979). This test has been
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widely applied to detect a single change-point in
hydrological and climate series with continuous
data (Yue et al. 2002).
The Pettitt test considers that a time series of

a sequence of random variables Xt with t ¼
1; 2; . . . ;T ; has a change point at time step s if the
values of Xt for t ¼ 1; 2; . . . ; s have the cumulative
density function (CDF) F1 xð Þ, and the values of Xt

for t ¼ sþ 1; sþ 2; . . . ;T have the CDF F2 xð Þ and
F1 xð Þ 6¼ F2 xð Þ; with the single assumption that the
two CDFs are continuous.
The null hypothesis H0, which assumes there is

no change in the Xt time series, is tested against
the alternative hypothesis (H1) of change point
using the non-parametric statistic deBned as:

KT ¼ max Ut;T

�� ��; ð14Þ

where Ut;T is deBned as the sign (sgn) function
between the difference of each pair of value of the
two sequences Xi and Xj :

Ut;T ¼
Xt
i¼1

XT
j¼iþ1

sgn Xi � Xj

� �
; ð15Þ

with the sign function: sgn(y) = 1 if y[ 0, 0 if
y = 0, �1 if y\ 0.
The change-point of the series is located at KT ,

provided that the non-parametric statistic is
significant.
The significance probability (p) associated with

the value KT is approximately given by:

p ’ 2 exp
�6K2

T

T3 þ T2

� �
; ð16Þ

when p is smaller than the speciBc significance
probability, for example, p = 0.05 in this study, the
null hypothesis is rejected.

TFPWcu adapted for the Pettitt test. To
redress the Pettitt test problem in the case of
presence of serial dependence in the chronological
series, Serinaldi and Kilsby (2016) have suggested
the corrected and unbiased TFPWcu procedure for
Pettitt test. The objective of this approach is to
remove the autocorrelation eAect. The determina-
tion of change point by this algorithm requires the
following steps as it is mentioned in Serinaldi and
Kilsby (2016):

1. If the value of the KT obtained by Pettitt test
using original data is significant, then, the
position s of the possible change point is used
to split the time series in two sub-series (before

and after s). The difference of the medians or
means, l̂b and l̂a, of the two sub-series is
computed as D ¼ l̂b � l̂a, and used to remove
the step change as follows:

xt ¼ yt � D � 1 t[ sgf : ð17Þ

Here 1 t[ sgf is the indicator function, xt and yt are
data after step change removal and original data
before step change removal, respectively, at time
t in the time series.

The value of the lag-1 autocorrelation q̂ of xt is
estimated and corrected for bias using two stage
bias corrections. At the Brst stage, it is corrected
for autocorrelation of fractional Gaussian noise
(fGn) process or Hurst–Kolmogorov process as
follows (Koutsoyiannis 2003):

q�K ¼ q̂ 1� 1

T 0

� �
þ 1

T 0 ; ð18Þ

where T 0 is eAective sample size for the Brst-order
autoregressive [AR(1)] process andmay be obtained
as follows (Koutsoyiannis and Montanari 2007):

T 0 ¼ T
1� qð Þ2

1� q2ð Þ � 2q 1� qTð Þ=T : ð19Þ

The computation for second stage bias
correction may be carried out similar to Marriott
and Pope (1954), but using following generalized
formulae suggested by Mudelsee (2001):

E q̂½ � ’ E q̂½ �W

¼ 1� 2

n
þ 4

n2
� 2

n3

� �
qþ 2

n2
q3 þ 2

n2
q5

for q\0:88:

ð20Þ

E q̂½ � ’ E q̂½ �M ¼ q� 2q
n � 1ð Þ þ

2

n � 1ð Þ2
q� q2n�1ð Þ
1� q2ð Þ

for q� 0:88: ð21Þ

After getting the bias corrected lag-1
autocorrelation coefBcient q̂�, AR(1) structure is
removed to get uncorrelated series e0t of residuals as
follows:

e0t ¼ xt � q̂�xt�1: ð22Þ

Finally, a pre-whitened series x 00t is obtained by
combining uncorrelated series of residuals and step
change. The following pre-whitened series is used
for examining the significance of change point
using Pettitt test.
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x 00t ¼ D � 1 t[ sgf þ e0t
1� q̂�

: ð23Þ

ModiBed Mann–Kendall test (MMK). The
Mann–Kendall test (Mann 1945; Kendall 1975) is a
commonly used non-parametric trend test. However,
the null hypothesis corresponds to the case where the
data are independent and random. Hamed and
Ramachandra Rao (1998) revealed that the serial
correlation falsiBed trends in auto-correlated time
series. The existence of positive autocorrelation in
the data increases the probability of detecting trend
when actually it does not exist, while a negative
autocorrelation decreases theprobability of detecting
significant trend. Therefore, to eliminate the
inCuence of the serial correlation, Hamed and
Ramachandra Rao (1998) derived an empirical
formula to modify the Mann–Kendall test.

3.3 ArtiBcial neural networks

ArtiBcial neural networks (ANNs) are non-linear
mathematical models of ‘black-box’ type. In prac-
tice, this approach is used to deBne a deterministic
relationship between process variables when no
a priori known about the physical nature of its
generating (Govindaraju 2000). This is particularly
useful for drought forecasting, where the phe-
nomenon is a stochastic and little is understood
about the processes that may cause it (Mishra and
Desai 2005). In this paper, the multilayer percep-
tron (MLP) feed-forward network was used to
forecast the SPI at 2 months lead-time at different
time scales (3, 6, 9, and 12 months). This type is
the simplest and most commonly used artiBcial
neural network design in the water resources vari-
ables and hydrological domains. Moreover, most
studies have shown that MLP can perform better
than conventional approaches in modelling and
forecasting non-linear and non-stationary time
series (Kim and Vald�es 2003; Mishra and Desai
2005; Belayneh and Adamowski 2012; Aher et al.
2017). Here, a MLP feed-forward network of three-
layer is used for drought SPI forecast. The MLP
calculates a single output such as the forecasted
SPI up to 2 months ahead. This one depends on the
number of previous SPIs over time (t�n) received
by Brst layer as input variables (n is the number of
time lag in month and varies between 1 and 12
months) and the number of nodes in each hidden
layer (N).
The output SPI (t) is obtained by forming a

linear combination between input (previous SPIs

over time (t�n)) and their weight values Wij. The
result computes the hidden layer output through
some non-linear activation function. Beyond that,
this operation is repeated for the output neuron.
These two processes are explicitly given in
equation (24).

ŷk ¼ uo

Xm
j¼1

wjk � uh

Xn
i¼1

xi � wij þ bjo

 !
þ bko

" #
;

ð24Þ

where uh and uo are the activation functions of the
hidden neuron and the output neuron, respectively;
wij and wjk are the vector of weights connecting the
neurons between the input layer hhiii and the hidden
layer hhjii and between the hidden layer hhjii and
output layer hhkii, respectively; bjo and bko are the
bias for the jth hidden neuron and kth output
neuron, respectively; andn and m are the number of
neurons in the input layer and the hidden layer,
respectively. The most commonly used form of u :ð Þ
in (1) is the sigmoid function, given as:

u tð Þ ¼ 1

1þ e�t
: ð25Þ

3.3.1 Data preparation

In order to forecast the SPIi (t) 2 months ahead
(i = 3, 6, 9, and 12 months), various combinations
of antecedent SPI (t�n) can be used as model
input. Each of SPI series has been standardized
and centred, to avoid any saturation eAect that
may be caused by the use of sigmoid function,
before being divided into two sets (Mishra and
Desai 2005). Training data of about 70%
(1960–1996) are used for calibration of the vector of
weights ðwjk;wijÞ of the ANN with a selection of
neuron number in the hidden layer (N) and acti-
vation function. The resulting ANN is then evalu-
ated on independent validation data (1997–2010).
Several models of ANN have been designed and

examined, based on the variation of the number of
input and neurons in hidden layer (N) in order to
optimize and reBne the non-linearity existing
between input and output variables. For each SPI
series at different time scales for the seven plains,
nine ANN designs were selected based on the dif-
ferent combination of variables of the temporal
series of SPI before the time (t�2). The nine ANN
designs are constructed as table 2 shows. In the
supplementary material, we illustrate in Bgure 2,
the schematization of input and output data to
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forecast SPI-3 2 months lead time with 3 inputs
and 3 neurons in hidden layer (3-3-1 ANN
architecture).
To determine the optimum input combinations

that should be included in the model and the
number of neurons (N) in the hidden layer, a trial
and error procedure is used (Hirose et al. 1991;
Mishra and Desai 2006; Choi et al. 2008; Trenn
2008; Sheela and Deepa 2013; Zeroual et al. 2016)
during the calibration and testing phases of the
ANN model. Nodes in hidden layer also allow
taking the presence of non-stationary in the series
into account, such as trends and seasonal varia-
tions (Maier and Dandy 1996). The two activation
functions used are as follows: sigmoid function in
hidden layer and a linear function in output layer.
Previous studies showed that both functions allow
approaching the existing non-linear relationship
between SPIs (Bari Abarghouei et al. 2011). After
construction of the nine ANN designs presented in
table 2, the Levenberg–Marquardt (LM) back-
propagation (BP) algorithm is used for the MLP
feed-forward network calibration. Details on the
algorithm can be found in Zeroual et al. (2016).

3.3.2 Model performance criteria

Once the lag is adopted, data collection for
validation has been provided to the network. This
time, only the input vectors have been transmitted
to the model. Model performances are evaluated
through several indicators, as the adjusted coefB-

cient of determination (R2
adj), root-mean-square-

error (RMSE) and the mean absolute error (MAE)
between SPIs observed and SPIs forecasted by
ANN model.

R2 ¼ 1�
Pn

i¼1 SPIi obsð Þ � SPIi simð Þ
� �2

Pn
i¼1 SPIi obsð Þ � SPI meanð Þ
� �2 ; ð27Þ

R2
adj ¼ 1� 1�R2ð Þ n � 1ð Þ

n � p� 1
; ð28Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn
i¼1

SPIi obsð Þ � SPIi simð Þ
� �2

s
; ð29Þ

MAE ¼ 1

N

Xn
i¼1

SPIi obsð Þ � SPIi simð Þ
� ��� ��; ð30Þ

in which SPIi obsð Þ, SPIi simð Þ, SPI meanð Þ represent,
respectively, the observed, forecasted and mean
standardized precipitation index; n is the total num-
ber of SPI data, p is the number of regression coefB-

cients andR2 is the determination coefBcient. A good
model should have a lower RMSE and MAE which
indicates low accumulated errors (Willmott and
Matsuura 2005; Chai and Draxler 2014; Tian et al.
2018) andR2

adj close to the unity. The latter has been

suggested to judge goodness of model when several
input variables are used. Adjusted R2 penalizes the
adding variables that do not improve model.

4. Results

Results are presented in two levels showing: (1) the
spatio-temporal characterization and comparison
of drought episodes over the seven studied plains at
different time scales during the period 1960–2010
and (2) the assessment of artiBcial neural network
(ANN) in drought prediction at 2 months ahead
based on the SPI.

4.1 Spatio-temporal comparison of drought

4.1.1 Spatio-temporal variability

The SPI are computed for the 3-, 6-, 9-, and
12-month time steps using monthly precipitation

Table 2. Structures of drought forecasting models.

Design no. Input structure Output

1 SPI (t) SPI (t+2)

2 SPI (t), SPI (t�1). SPI (t+2)

3 SPI (t), SPI (t�1), SPI (t�2). SPI (t+2)

4 SPI (t), SPI (t�1), SPI (t�2), SPI (t�3). SPI (t+2)

5 SPI (t), SPI (t�1), SPI (t�2), SPI (t�3), SPI (t�4). SPI (t+2)

6 SPI (t), SPI (t�1), SPI (t�2), SPI (t�3), SPI (t�4), SPI (t�5). SPI (t+2)

7 SPI (t), SPI (t�1), SPI (t�2), SPI (t�3), SPI (t�4), SPI (t�5), SPI (t�6). SPI (t+2)

8 SPI (t), SPI (t�1), SPI (t�2), SPI (t�3), SPI (t�4), SPI (t�5), SPI (t�6), SPI (t�7) SPI (t+2)

9 SPI (t), SPI (t�1), SPI (t�2), SPI (t�3), SPI (t�4), SPI (t�5), SPI (t�6), SPI (t�7), SPI (t�8) SPI (t+2)
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data from the seven studied plains for the period
1960–2010. To do end, the cumulated precipitation
at the different temporal scales is Btted to the
gamma probability distribution. We note that all
of the time series are well Btted by a gamma dis-
tribution at the 5% level of significance. Several
recent studies have found similar results (Maccioni
et al. 2015).
In Bgure 2, we compare the SPI drought index in

the seven plains (1960–2010) at various time scales
(3, 6, 9, and 12 months). As can be seen, the time
series reveal a situation mostly dominated by
drought (negative SPI) on the seven plains. The
temporal analysis of SPI allows ascertaining that
‘extreme drought’ character is not dominant for
the whole area and for different scales.
Inspecting Bgure 2, and referring to computed

SPI for 3 months (i.e., SPI3), the values vary in the
range [�1.5, +4.6]. The smallest negative values
are observed in the Lower CheliA plain during the
period 1987 and 1988 and in the Ghriss plain for
2006 and 2007; while the maximal positive value of
SPIs are observed in Mitidja plain during the per-
iod 1974 and 1975. For SPI6, values vary between
[�2, +4.3]; the minimum value is observed in the
plain of Low CheliA during the period 2005–2006,
while the maximum positive SPI is observed in the
Ghriss plain during the period 1964–1965. For
SPI9, values were included between [�2.6, +3.7];
the lower value was recorded for the period
1982–1983 at Sidi Bel-Abb�es plain, while the higher
positive value was noted in Ghriss plain during the
period 1964–1965.
For SPI12, values were included between [�2.9,

+3.9]; the lowest negative values of SPI were found
in the Sidi Bel-Abb�es plain in the period (1982,
1983), while the higher positive value of SPI has
been recorded in Mitidja plain during the period
(1972, 1973). Therefore, it is evident that the time
scale of SPI unfolds a key role in identifying the
frequency of drought, such as also found in Spain
by Vicente-Serrano et al. (2010), who showed that
the drought frequency changed according to the
time scale. Based on these results, it is noted that
plains of Lower CheliA, Sidi Bel-Abb�es and Ghriss
are the most aAected by drought during the study
period regardless the SPI time scale adopted, and
the 1983 recorded a classiBcation of extreme
drought in Sidi Bel-Abb�es plain.
Figure 3 shows a comparison of the severity

expressed by equation (13) of all of the drought
events that occurred for each time scale for the
seven plains within the study period 1960–2010,

where the horizontal lines length represents the
duration in months. We distinguish a high vul-
nerability to drought in both Sidi Bel-Abb�es and
Maghnia plains during the decade 1980–1990.
These two plains are located in the extreme west of
Algeria, which was severely aAected by drought
events during this decade.
The Sidi Bel-Abb�es plain experienced the most

severe drought episodes in each 3-, 6- and
12-month time scales. They are characterized by
maximum severities of 11.8, 19.6, 61.4 and maxi-
mum duration of 11, 22, 59 months, respectively.
While at 9 months time scale, Maghnia plain has
known the most severe drought with a maximum
duration of 43 months.
At 6- and 12-month time scales, drought

episodes have decreased in both duration and
severity passing from Sidi Bel-Abb�es plain, which
represents the most aAected region, and shifting
to Maghnia, Low CheliA, Ghriss, Middle CheliA
and Mitidja plains, respectively. Finally, the
Upper CheliA plain is the slightly aAected area by
such events. This plain is characterized by a col-
lection of mountains, which plays the role
of a barrier between the Mediterranean Sea and
the highlands, and by high precipitation exceeding
the mean values. Furthermore, we notice that the
drought events distribution is similar in severity
at 3 months time scale to that at 6 and 12
months.

4.1.2 Trends and shifts analysis

The previous survey shows that the seven plains
have been subjected to a persistent drought over
the last Bve decades, although the intensity of this
drought changes from one plain to the next. In
what follows, we check the occurrence of breaks
and trends in the average values of SPI to explain
the persistence of this drought. The different time
series of SPI (3, 6, 9, and 12 months) in the seven
plains have been checked for autocorrelation before
applying trend and break tests. The lag-1 serial
correlation coefBcient for all SPIs series were
computed for the study period and results of lag-1
autocorrelation coefBcients (q̂) are shown in
Bgure 4. Thus, all SPI time series are found to be
auto-correlated at lag-1 at 5% level (for all
p-values\ 0.05).
Firstly, we identify change points in the different

time scale using original Pettitt’s test. In table 3,
we present the results of test statistic KT, p-value
and the year where the change point was found.
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Without removing the eAects of autocorrelation,
the change point was identiBed at 5% significance
level at the end of the 1970s and the early 1980s for
all SPI time scales except for the Mitidja plain
where the change point occurred in the second half
of the 1980s decade. To remove the eAect of auto-
correlation in the time series, we applied modiBed
Pettitt’s test after prewhitening SPI series using
TFPWcu technique. For Pettitt test using
TFPWcu as suggested by Serinaldi and Kilsby
(2016), auto-correlated SPI time series at 3, 6, 9,
and 12 months’ time scales were divided into two

sub-series based on possible change point identiBed
from original Pettitt’s test. The difference of mean
(D), lag-1 autocorrelation ðq̂) after elimination of
shift, Brst phase corrected (q�k) and second phase
corrected ðq̂�) lag-1 autocorrelation coefBcients are
exhibited in table 3.
After removal autocorrelation, it can be seen in

table 3 that the autocorrelation coefBcient consid-
erably decreased. Then the corrected SPI series
were tested for change point by using Pettitt’s test.
Results of Pettitt’s test applied at 5% significance
were changed compared with results applied on the

Figure 3. Drought occurrence from 1960 to 2010 in the seven plains based on SPI at various time scales (3, 6, 9, and 12 months).

Figure 4. Lag-1 autocorrelation coefBcients (q̂) for SPI series in the seven plains (1960–2010) at various time scales (3, 6, 9, and
12 months).
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original SPI series where KT values are decreased
while the p-values are increased. For the new SPI
series, the change points are observed only at the
9- and 12-months scales at the end of the 1970s
and the beginning of the 1980s.
For example, for 12 months, the Ghriss plain has

Brstly recorded a shift at the SPIApr–Feb 1976. The
Sidi Bel-Abb�es and the Low, Middle and High
CheliA SPI series have all identiBed a shift in the
same period from November to October 1979.
After, the SPI Maghnia series has shown the
change point in SPIDec–Nov 1980 and Bnally Mitidja
plain in the SPIDec–Nov 1986.
We note that, after the change point, the SPI

series tend significantly to dry conditions (negative
trends) as shown in Bgure 2 where the drought
events duration have increased and became more
severe starting with the Sidi Bel-Abb�es and
Maghnia plain in 1980. For the time series that
have not spotted a change point (3 and 6 months’
time scale), the tendency towards dry conditions
using MMK is not significant at 5% significance
level (cf. Bgure 5).

4.2 Drought forecasting by artiBcial neural
networks (ANN)

After the input and output variables selection
across each of the seven plains, we examined the
nine ANN designs indicated in table 2 to Bnd the
best model structure that can capture the non-
stationarity and non-linearity in the SPI series and
can be used to forecast SPI (t) 2 months ahead. To
this end, the sigmoid activation function was used
as the transfer function. During the calibration of a
three-layer model, connexion coefBcients (weight)
between different layers are computed in such a
way that model outputs are as close as possible to
the desired outputs.
The goal of optimization during calibration

phase is to minimize error between forecasted and

observed outputs, by modifying iteratively the
weight matrices W and bias vectors according to
the gradient of cost function. The gradient is esti-
mated by a method speciBc to neurons network:
back propagation (BP) of errors by the use of
Levenberg–Marquardt (LM) algorithm. For each
testing model, the number of neurons (N) is taken
between 2 and 25, and thereafter the optimum was
found by using the trial and error methods.
Results of the best ANN design in terms of

statistics performance (R2
adj, RMSE and MAE) at

each plain and at different time scales are shown in
table 4. Considering calibration results, it can be
observed that the best model ANN design was
found to vary from one plain to another and from
one-time scale to another. Similar results were
found for the optimal number of hidden neurons
(N). Over all plains and at different time scales, the
number of hidden neurons (N) was found in
accordance with the laws 2n and 2n + 1. These
results were advocated by Lippmann (1987), Wong
(1991), and Tang and Fishwick (1993) in the case
of a Multilayer Perceptron neural network where
n is the number of inputs.
As shown in table 4, RMSE and MAE for the

validation phase of the best ANN design range
from 0.22 to 0.41 and 0.12 to 0.23, respectively.
The lowest value of RMSE was for the GHRISS
plain at 12-month time scale and the highest for
the Low CheliA and GHRISs plains at 3-month
time scale, while the adjusted coefBcient of deter-

mination (R2
adj) values obtained during validation

phase range from 0.81 to 0.94.
Initially, for SPI3 (table 4) with 5 inputs and

9 neurons in hidden layer, results showed that R2
adj

of Maghnia plain is the highest compared with

those of other plains, with an R2
adj equal to 0.934,

RMSE value of 0.22 and MAE equal to 0.159.

The R2
adj for Maghnia plain is also the highest

value (0.934) for SPI9 with 6 inputs and 12

Figure 5. Z scores derived from the MMK method for SPIs series in the seven plains (1960–2010) at various time scales (3, 6, 9,
and 12 months). The two red lines represent the theoretical critical n values of the MMK test at the 5% probability level.

42 Page 14 of 22 J. Earth Syst. Sci. (2020) 129:42



neurons in hidden layer, and the RMSE and
MAE values is 0.21 and 0.145, respectively (cf.
table 4). However, for SPI6, the high CheliA with
5 inputs and 12 neurons in hidden layer and the
Sidi Bel-Abb�es plains 6 inputs and 9 neurons in

hidden layer showed better results with R2
adj

values equal to 0.89 and RMSE values equal to
0.29 and to 0.31, respectively. Finally, for SPI12
(table 4), the highest values of R2

adj, RMSE and

MAE equal to 0.943, 0.23 and to 0.142, respec-
tively, have been recorded for the plain of Low
CheliA with 8 inputs and 15 neurons in the
hidden layer.
In addition, we note that, comparing ANN

models performance in all time scales, the highest

value of R2
adj and lowest value of RMSE and MAE

was found for SPI12. The good agreement between
SPIs and observed at plains and those predicted by
ANN at different time scales can be inferred

through the box-plot shown in Bgure 6. The
agreement at 12 months time scale between the
values of SPI observed and the values forecasted by
ANN clearly appears also in Bgure 7. The same
agreement was found at 3-, 6- and 9-month time-
scale. This was exhibited in Bgures S3, S4 and S5
(supplementary material).
The foregoing clearly shows the powerful ability

of ANNs regarding 2 months early drought pre-
diction despite the high spatial and temporal
variability of SPI in such area located in the
transitional climate between arid (in the south)
and Mediterranean (in the north). This variability
was captured in modelling by the use of different
designs and structures of the neural network. Thus,
the mentioned models and their structure can be
used for water resources planning and management
and its use is also recommended for the neigh-
bouring regions characterized with very limited
availability of water resources.

Table 4. Statistical measures of the ANN performance for 2 month lead time in the seven
plains at different time scales.

Plains Time scale

Network

architecture R2
adj RMSE MAE

Mitidja SPI 3 3–08–1 0.862 0.38 0.2218

High CheliA 4–08–1 0.849 0.39 0.2233

Middle CheliA 4–09–1 0.885 0.35 0.1999

Low CheliA 3–07–1 0.850 0.41 0.2303

Ghriss 5–10–1 0.827 0.41 0.2345

Sidi Bel Abbes 3–06–1 0.878 0.33 0.1965

Maghnia 5–09–1 0.934 0.22 0.1593

Mitidja SPI 6 4–08–1 0.868 0.35 0.1737

High CheliA 5–12–1 0.896 0.29 0.1886

Middle CheliA 5–11–1 0.862 0.35 0.2044

Low CheliA 5–10–1 0.874 0.34 0.2152

Ghriss 6–13–1 0.850 0.32 0.2091

Sidi Bel Abbes 6–09–1 0.895 0.31 0.2187

Maghnia 5–10–1 0.849 0.34 0.2171

Mitidja SPI 9 4–09–1 0.818 0.37 0.1661

High CheliA 5–10–1 0.824 0.37 0.1772

Middle CheliA 5–11–1 0.892 0.30 0.169

Low CheliA 5–12–1 0.901 0.30 0.1682

Ghriss 7–13–1 0.868 0.28 0.1647

Sidi Bel Abbes 6–13–1 0.888 0.30 0.1462

Maghnia 6–12–1 0.934 0.21 0.1453

Mitidja SPI 12 4–08–1 0.848 0.26 0.1297

High CheliA 6–13–1 0.908 0.23 0.1373

Middle CheliA 7–12–1 0.926 0.23 0.1520

Low CheliA 8–15–1 0.940 0.23 0.1425

Ghriss 7–14–1 0.894 0.21 0.1404

Sidi Bel Abbes 3–06–1 0.923 0.24 0.1549

Maghnia 4–08–1 0.904 0.25 0.1711
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5. Discussion

Drought forecasting and spatio-temporal variabil-
ity analysis over the seven plains using SPIs series
and their characteristics, namely drought severity
and duration at 3, 6, 9, and 12-month scale has
shown three major significant results:

1. As regards spatio-temporal drought character-
ization, drought events have further occurred
and are characterized by severity and duration
rises for all studied plains during the end of
1970s, early 1980s and end of 1980s decade,
except for the Ghriss and Sidi Bel-Abb�es plains
rising in the Brst half-decade of 2000. These
drought spells have been conBrmed where crop
yields are decreased and the minimum water
level in dams has been recorded especially in the
west of the country. During the mentioned
periods of SPIs at different time scales, the
driest phase was located in the extreme west of
Algeria: plains of Maghnia, Ghriss and Sidi Bel-
Abb�es. They have experienced a large rainfall
deBcit and required sustained irrigation to
support agricultural production. These regions
are known by their fertility and productivity.
Baali and Amine (2015) found same results in
the North of Morocco (Sa€ıss plain). According
to the 5th IPCC report (Dai et al. 2004; Stocker
et al. 2013), the increase in droughts frequency
and severity in the area surrounding the
Mediterranean Sea was due to the climate
change that involves warmer temperatures,
altered precipitation patterns and increased

climatic variability. Moreover, these observa-
tions have been conBrmed by the temporal
variability of drought analysis, through SPI,
using many statistical tests have shown, for all
time scales and all plains, the increase in the
number and the intensiBcation of dry conditions
as well. The results also revealed the inCuence of
serial correlation in time series on detecting
trends and change point. Where the trends to
dry conditions when the pre-whitened SPI time
series on the different time scales become
significant only at 9- and 12-month scales.
The same for the change points, where they
have been reproduced on the pre-whitened SPI
series only in 9- and 12-month scale series with a
slight change, whether precede or pursue the
primary change-point. These results are thus
conBrmed with existing studies (Onyutha 2016;
Piyoosh and Ghosh 2017) where serial correla-
tion is recognized for having impact on trends
detection in auto-correlated time series, which
may falsify the tests for detecting trends and
change points.

The change points have pointed out that the rise
of drought events was significant only for the sec-
ond half of 1970s, early 1980s and end of 1980s
decade at 9 and 12 months scales. These results are
coherent with previous studies showing an increase
in drought frequency, duration and severity in
the southern part of the Mediterranean basin in the
second half of the 20th century (Peñuelas et al.
2001; Hoerling et al. 2012; Ramadan et al. 2013;
Tramblay et al. 2013; Spinoni et al. 2014).

Figure 6. Box plot for observed and predicted SPI values for the seven studied plains (1997–2010) at different SPI time scales
(red colour line: median; box: Brst and third quartiles; whiskers: 99% conBdence interval; + marker: outlier).
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Likewise, Hoerling et al. (2012) have reported the
change in cold-season precipitation of Mediter-
ranean region during 1902–2010 period and the
intensiBcation of this trend towards drier condi-
tions with raised drought frequency after 1970.
Moreover, Mariotti (2010) found that the
Mediterranean region has experienced 10 of the 12
driest winters since 1902, just in the last 20 years.
Similar results were obtained separately for local
studies in the Mediterranean region and other
semi-arid regions like Raymond et al. (2016) for
north Algeria, Maccioni et al. (2015) and Abenavoli
et al. (2016) in Italy, Dabanlı et al. (2017) in Tur-
key, Estrela and Vargas (2012) in Spain and Bari
Abarghouei et al. (2011) in Iran.

2. As far as the spatial distribution is con-
cerned, the severity of drought events ampli-
Bes from east to west and this is more
marked at 9 months and annual scale. These
eAects can be explained by the geographical
location of the plains, i.e., the extreme west
of the Mediterranean Basin inCuenced by

Atlantic variations and Azores anticyclones,
where the Maghnia, Sidi Bel-Abb�es and
Ghriss plains are located. This atmospheric
circulations produce generally a peaceful cli-
matic weather and dry condition (Xoplaki
et al. 2004). The CheliA plains and Mitidja
plain are positioned amid the western and
eastern Mediterranean Basin that are inCu-
enced by El Niño-Southern Oscillation (ENSO)
revealed in previous studies (Meddi et al. 2010;
Zeroual et al. 2017).

3. As SPIs chronological series are autoregressive
of order 1, we opted for prediction from 2
months ahead. Moreover, the choice for predic-
tion by artiBcial neural networks is set on the
forecast ability of this technique in the cases of
non-stationary time-series (Allende et al. 2002).
The neural network models with different
designs give satisfying results despite the
non-stationary of SPIs time-series.

Thus, the mentioned models can be used for
water resources planning and management in order

Figure 7. Comparison of observed and forecasted SPI12 during the validation phase for the seven studied plains.
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to adjust 2 months earlier the agricultural activi-
ties demand according to the spatial patterns of
drought trend. Two months ahead are sufBcient
as long as the rainy months are from November
to March in this area and the agriculture demand
is in the spring season (April to June).
Therefore, we consider that 2 months forward

are satisfactory to develop a drought warning sys-
tem in the seven plains based on meteorological
information for the best management of irrigation
processes, by SPI3 evaluation and water resources,
by SPI6, SPI9, SPI12, respectively. Results obtained
for the forecast are a decision-making tool for water
resources management and especially for irrigation
in the investigated plains.

6. Conclusions

The vast and fertile plains of north-western
Algeria are known by their important contribution
to the self-sufBciency of the country in terms of
food-processing production. In recent decades, the
ampliBcation of drought events and the increase of
rainfall deBcit caused drastic impacts on water
supply and agriculture in this area. Frequent
occurrence of droughts will further intensify local
imbalance between supply and demand of water
resources. Thus, the investigation of meteorological
drought variability and drought prediction
approaches are necessary to more sustainable
water resource management in the context of
drought monitoring.
This work, by analysing the spatial and temporal

variability of meteorological drought based on the
standardized precipitation index ‘SPI’ series at
different time scales during the period 1960–2010,
has shown a well identiBed dry trend in the whole
study zone in terms of severity and duration rising
from east to west especially after about 1976 and
1981. As a consequence, we expected that signifi-
cant persistence of drought events in the near
future may be enduring.
Finally, a feed-forward three-layer ANN models

were used for prediction of drought 2 months
ahead using the SPI series at different time scales
(3, 6, 9, 12 months). The best performance of
ANN models for drought forecasting was acquired
based on the analysis of the adjusted coefBcient of

determination (R2
adj), the root-mean-square-error

(RMSE) and the mean absolute error (MAE).
Results indicate that ANN models provided a
satisfactory forecast outcome and the best design

of ANN model is examined with different input
structures and has been validated against the
seven studied plains. Hence, the best Levenberg–
Marquardt back propagation networks design was
found different from a plain to another and among
the time scales.
Based on measures of performance evaluation,

we found that the ArtiBcial Neural Network
models can represent an eAective tool for pre-
dicting monthly SPI and an accurate drought
warning system with 2 months lead-time based on
meteorological drought information. These Bnd-
ings may be helpful for decision makers in order
to establish adequate irrigation schedules in case
of water stress and for optimizing agricultural
production.
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