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The present study focuses on the chemical modification of a Cr-spinel from the Suru Valley ophiolitic
peridotites exposed near Trespone Village of Kargil district, Ladakh Himalaya. The Suru Valley peri-
dotite is partially serpentinised with the preservation of the spinel and relics of olivine and pyroxene.
These peridotites contain characteristic red-brown spinel grains of corroded grain boundaries. While
analysing these grains for mineral chemistry, compositional variation was observed with Cr-rich cores
rimmed by Cr-poor compositions. Secondary spinel compositions, i.e., ferritchromite and magnetite were
observed along the margins and cracks of primary Cr-spinel grains. The primary Cr-spinel cores are
identified as Cr-rich and are characterised by higher values of Cr3+# (0.5–0.6) and lower values of Al3+#
(0.42–0.54). From primary spinel cores to altered rims it was observed that Cr3+# and Fe3+# increase
while Mg2+# decreases due to Mg2+–Fe2+ and Al3+–Fe3+ exchange with surrounding silicates of
host peridotite during alteration. On the basis of present spinel mineral chemistry, metamorphic altera-
tion conditions were transitional between greenschist and lower amphibolite similar to most of the
Neo-Tethyan ophiolite peridotites.
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1. Introduction

The mineral assemblage of ophiolite peridotites
cropped out at the surface of the Earth pro-
vides imperative information regarding the
geochemical and geodynamic evolution of the
upper mantle (Dai et al. 2011, 2013; Uysal et al.
2012; Khedr et al. 2014). The compositional
variation of a chromium spinel [Cr-spinel; (Mg,
Fe2+) (Cr, Al, Fe3+)2O4] is poorly known from
these low-temperature metamorphosed ophiolite

mafic–ultramafic rocks (Sack and Ghiorso 1991;
Barnes 2000).
Primary minerals such as olivine and pyroxene

in ophiolite mantle peridotites are usually altered
to secondary low-temperature minerals (e.g., ser-
pentine, chlorite); however, the Cr-spinel is the
only preserved primary mineral even in completely
serpentinised peridotites (Arai 1994a). Therefore,
the study of its mineral chemistry is useful to
understand the petrogenetic processes of host
peridotites (Irvine 1965, 1967; Dick and Bullen
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1984; Arai 1992, 1994a, b; Ahmed et al. 2001, 2005;
Proenza et al. 2004; Farahat 2008; Aswad et al.
2011; Singh and Singh 2011; Colas et al. 2014, 2016;
Bhat et al. 2017b). During low-temperature alter-
ation, the change in chemistry of the primary Cr-
spinel results in secondary mineral formation, i.e.,
Fe–Cr spinels also called ferritchromite and/or
magnetite depends on the degree of alteration
(Arai 1978). Despite secondary origin these fer-
ritchromites actually have chemical characteristics
of primary mantle Cr-spinels (Arai et al. 2006).
The purpose of the present paper is to

describe the chemical variation of accessory
primary Cr-spinels from Suru Valley ophiolitic
peridotites and their low-temperature alteration
implications.

2. Geology and petrography

The Ladakh Himalaya, marks the northern posi-
tion in the Alpine–Himalayan Orogen, was formed
due to collision between two major continental
landmasses India on south and Eurasia on north
during Cenozoic Era (Gansser 1964, 1980; Frank
et al. 1977; Srikantia and Razdan 1980; Brookfield
and Reynolds 1981; Honegger et al. 1982; Deitrich
et al. 1983; Searle et al. 1987; Aitchison et al. 2000;
Maheo et al. 2004; Ahmad et al. 2008 and refer-
ences therein). The Neo-Tethys Ocean once sepa-
rating Indian and Eurasian landmasses during
Mesozoic start closing by the initiation of intra-
oceanic island arcs thereby collision between con-
tinental margins and created suture zones outlined
by ophiolites (Gansser 1980; Searle et al. 1987;
Aitchison et al. 2000, 2002, 2007; Clift et al. 2002;
Maheo et al. 2004, 2006; Ahmad et al. 2008;
Buckman et al. 2018). These ophiolite slices are
distributed along the Indus Suture Zone (ISZ) as
dismembered ophiolite slices and from south-east
to north-west are Nidar ophiolite sequence (Maheo
et al. 2004; Ahmad et al. 2008), Spongtang ophio-
lite (Clift et al. 2002; Maheo et al. 2004; Buckman
et al. 2018 and reference therein), Shergol ophiolitic
slice (Honegger et al. 1989; Sinha and Mishra
1992, 1994; Maheo et al. 2006; Bhat et al.
2017a, b, 2018), Suru Valley ophiolitic slice (Reu-
ber 1989; Robertson 2000; Bhat et al. 2019a) and
Dras ophiolite (Radhakrishna et al. 1984, 1987).
The Indus ophiolite belt extends westward to
Pakistan, Iraq, Iran up to Turkey and eastward to
Tibet, Nagaland-Manipur up to Indonesia (Hall
1997; Bortolotti and Principi 2005; Dilek and

Furnes 2009) and these ophiolites are classified as
Tethyan type ophiolites by Moores et al. (2000).
Based on the radiometric age data and fossil record
these ophiolitic slices are Mesozoic in age (Reuber
et al. 1990; Aitchison et al. 2000; Maheo et al.
2004; Ahmad et al. 2008; Buckman et al. 2018).
A supra-subduction zone setting of these ophiolites
is commonly recognised based on the bulk rock
geochemistry and mineral chemistry (Robertson
2000; Sachan 2001; Maheo et al. 2004, 2006;
Ahmad et al. 2008; Buckman et al. 2018; Bhat et al.
2019a).
The regional geology of the study area is

described in detail in our published papers (Bhat
et al. 2017a, b, 2018, 2019a, b and references
therein), here we explain the geological setup of the
Suru Valley ophiolitic slice. The present peridotite
samples were obtained from the Suru Valley ophi-
olitic slice along ISZ, outcropped at Trespone vil-
lage of Kargil district Ladakh Himalaya (figure 1).
The Suru Valley ophiolitic slice is mainly composed
of peridotite of mantle origin serpentinised to
various degrees and shows affinity towards alpine-
type peridotites as compared to layered-igneous
complexes (Bhat et al. 2019a).
These ophiolitic peridotites contain serpentine

pseudomorphs after olivine, bastites after pyroxene
(figure 2a) and subhedral–anhedral primary spinel
grains (figure 2b). They show pseudomorphic
and interpenetrating textures besides, mesh and
hourglass texture were also observed. The serpentine
pseudomorph after olivine is mainly chrysotile and/
or lizardite in studied serpentinised peridotites
(figure 2a). The presence of the bastite pseudo-
morph after orthopyroxene reflects harzburgite as
protolith (Arai et al. 2006) which is also confirmed
by their major and trace element geochemistry
(Bhat et al. 2019a). Also the anhedral shape of the
Cr-spinel and the stout shape of bastites reflect
proto-granular texture of the protolith. Serpentine
and magnetite are the main metamorphic byprod-
ucts after primary silicates (figure 2a). The primary
red-brown Cr-spinels are characterised by zoning
with darker cores of low reflectance compared to a
light grey outer rim with high reflectance
(figure 2c). The Cr-spinel polished surfaces under a
scanning electron microscope (SEM) show two dif-
ferent reflectivities with a sharp optical boundary;
the core region has low reflectivity while the rim
region has high reflectivity (figure 2c and d). These
secondary spinels with high reflectivity not only
rim the primary Cr-spinel grains but also fill their
cracks (figure 2d).

188 Page 2 of 14 J. Earth Syst. Sci. (2019) 128:188



3. Analytical technique

A total of 18 thin sections from 10 samples of Suru
Valley ophiolitic peridotites were examined under a
polarising light microscope equipped with a digital
camera at the department of Earth Sciences,
University of Kashmir, Srinagar. A total of 36 min-
eral chemical analyses (three to four analyses from
each sample) of the Cr-spinel were performed using
an electron probe micro analyser (EPMA) CAMECA
SX-Five instrument at the Banaras Hindu Univer-
sity, Varanasi, India. The CAMECA SX-Five
Instrument was operating on a 15 kV accelerating
voltage and 10–20 nA probe beam current at a
diameter of 1 lm. Quality control was maintained by
analysing well calibrated natural mineral standards
(chromite for Cr, haematite for Fe and NiO for Ni)
during each electron microprobe session. The pro-
portion of ferrous and ferric iron in spinels was cal-
culated by assuming spinel stoichiometry. Routine
X-ray spectral analysis (calibration, acquisition and
quantification) and data processing were carried out
using SxSAB version 6.1 and SX-Results software of
CAMECA and replicate analyses of individual points
show an analytical error of\2%.

4. Results

Electron microprobe data of the secondary spinel
minerals i.e., ferritchromite and magnetite from
the Suru Valley ophiolitic peridotites are given in
tables 1 and 2, respectively. For the primary Cr-
spinel composition we have used our published
data from Bhat et al. (2019a). In accessory spinel
grains from studied peridotites, three different
compositional zones from the core to rim were
observed by EPMA studies, which are: (i) core
zones of primary chromite (i.e., Cr-spinel) compo-
sition, (ii) the intermediate ferritchromite (or fer-
rian chromite) zone and (iii) the rim of magnetite
(figure 2). These zones from the core to rim are
characterised by a significant increase in Fe3+ and
Fe2+, and a decrease in Mg and Al. The Cr-spinel
core composition of the studied peridotites is
characterised by high Cr2O3 (35.11–43.43 wt%),
low Al2O3 (22.42–30.41 wt%), FeO (14.33–19.83
wt%) and MgO (9.28–13.51 wt%). Their Cr num-
ber [Cr3+#: cationic ratio of Cr3+/(Cr3+ + Al3+)],
Mg number [Mg2+#: cationic ratio of Mg2+/
(Mg2+ + Fe2+)] and Al number [Al3+#: cationic
ratio of Al3+/(Cr3+ + Al3+ + Fe3+)] ranges from

Figure 1. Geological map of Kargil district, NWHimalaya after Reuber (1989) showing location of the study area.
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0.5 to 0.6, 0.4 to 0.5 and 0.5 to 0.6, respectively
(Bhat et al. 2019a). Also, the Al2O3 concentration
ranges from 1.01 to 1.75 whereas TiO2 is\0.06
wt% (Bhat et al. 2019a).
In the studied peridotites, the relic olivine grains

range in composition fromFo90–Fo92 andare similar to
the primary olivine relics of ophiolitic peridotites
(meta-ultramafics) from the south Eastern Desert
(SED), Egypt (Fo89–96 after Khudeir 1995; Khalil and
Azer 2007; Khedr and Arai 2013; Obeid et al. 2016),
Fawakhir area of Central Eastern Desert (CED),
Egypt (Fo89–92 after Abdel-Karim et al. 2018) and
Spongtang ophiolite peridotites (Fo87–92 after Jon-
nalagadda et al. 2019). This olivine chemistry corre-
sponds to chrysotile and/or forsterite composition
(DickandBullen1984).Also, theMgnumber [Mg2+#:
cationic ratio of Mg2+/(Mg2+ + Fe2+)] of olivine is
high and ranges from 0.90–0.92 (Bhat et al. 2019a).
The relic orthopyroxene of enstatite composition

(En91–93Fs7–9) is highly magnesian in nature with
Mg2+# varies from 0.91 to 0.93 similar to Spongtang
peridotites (En89–90, Fs9–10 after Jonnalagadda et al.
2019).
The studied Cr-spinel compositions from the

Suru Valley peridotites when plotted in the
Al3+–Cr3+–Fe3+ ternary diagram characterise
three compositional varieties i.e., Cr-spinel,
ferritchromite and magnetite (figure 3). The
ferritchromite and magnetite rims mantling the
Cr-spinel cores are the alteration/metamorphic
products of primary Cr-spinel and are highly
depleted in Mg2+ and Al3+ as compared to Cr-
spinel cores. Similarly, relative to Cr-spinel core
composition, ferritchromite has slight depletion
of Cr3+ compared with that of magnetite which
shows more depletion. The only cations i.e., Fe2+

and Fe3+ are significantly enriched at the rim
(i.e., magnetite) compared to the unaltered core

Figure 2. Photomicrograph and back-scattered electron (BSE) images of Suru Valley ophiolitic peridotites, western Ladakh
Himalaya: (a) photomicrograph (under crossed polarised light) showing serpentine after primary olivine, orthopyroxene bastite,
accessory spinels and secondary magnetite; (b) photomicrograph (under reflected light) showing serpentine after olivine and
fractured subhedral spinel grain; (c) BSE-image showing zoned Cr-spinel grain with a low-reflectance core of Cr-spinel
composition and high-reflectance rim of magnetite composition; and (d) BSE-image showing partly altered primary Cr-spinel
grain with a metamorphic spinel of ferritchromite composition.
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(i.e., Cr-spinel). Also relative to the Cr-spinel
core and magnetite rim, Mn and Si show
enrichment in ferritchromite (table 1). These
compositional discrepancies reflect diffusion of
Al, Mg and Cr and infusion of Fe, Mn and Si with
respect to the Cr-spinel core composition during
alteration. This chemical variability in studied
spinels further reflects the existence of two com-
positional miscibility gaps, one between the Cr-
spinel core and ferritchromite zone and other
between the ferritchromite zone and magnetite
rim (figure 3).
The extensive Mg2+–Fe2+ divalent exchange

between the coexisting spinel and silicate phases
(e.g., olivine) in mantle peridotites results in
decreasing Mg2+# from the Cr-spinel core
through the ferritchromite to magnetite rim
(figure 4a). Whereas due to Al3+ loss and Fe3+

enrichment during alteration of mantle peri-
dotites, Fe3+# [cationic ratio of Fe3+/(Fe3+

+ Cr3+ + Al3+)] increases with decreasing Mg2+#

from the Cr-spinel core to the magnetite rim
(figure 4b).
The Cr-spinel in the studied peridotites has

higher Cr3+# ([40) akin to that of ophiolitic
peridotites of Bela, Muslimbagh-Zhob and
Waziristan from Pakistan (Arif and Jan 2006),
SED and CED from Egypt (Farahat et al. 2011;
Ahmed et al. 2012; Abdel-Karim et al. 2016;
Obeid et al. 2016) and Spongtang ophiolite from
Ladakh Himalaya (Jonnalagadda et al. 2019).
However, the Cr-spinel has lower Cr3+ than
Tidding Suture Zone serpentinites from eastern
Himalaya (Singh and Singh 2011) and higher
than Manipur ophiolitic peridotites from Indo-
Myanmar orogenic belt (Singh 2009), Shergol
ophiolitic peridotites from western Ladakh (Bhat
et al. 2017b) and Kamyaran ophiolitic peridotites
from Iran (Veisinia et al. 2018). Also, the studied
Cr-spinel TiO2 and Al2O3 contents are compa-
rable with supra-subduction zone peridotites and
overlap with Spongtang and Nidar ophiolitic

Table 1. Representative electron-microprobe analyses of ferritchromite (rim composition) from Suru Valley peridotites along
ISZ, NW Ladakh Himalaya (calculation based on 32 oxygen).

Points P-286 P-287 P-288 P-301 P-203 P-208 P-237 P-247 P-249 P-252

SiO2 0.03 0.03 0.06 0.07 0.16 0.85 0.02 0.11 0.41 0.07

TiO2 0.22 0.21 0.22 0.23 0.01 0.02 0.39 0.36 0.37 0.30

Al2O3 1.73 2.35 2.78 1.19 2.00 2.66 1.24 1.21 1.85 1.51

Cr2O3 22.46 21.49 21.13 20.53 27.68 26.21 28.53 24.40 29.45 28.32

Fe2O3 44.10 43.98 43.48 46.29 37.90 37.17 37.22 42.17 34.74 37.29

FeO 29.81 29.60 29.48 29.47 27.07 28.49 25.76 27.51 26.67 24.95

MnO 1.77 1.83 1.79 1.87 3.90 3.64 4.37 4.03 4.07 3.97

MgO 0.21 0.11 0.34 0.22 0.52 0.45 0.86 0.29 0.76 1.54

CaO 0.09 0.27 0.11 0.12 0.01 0.03 0.10 0.12 0.23 0.11

ZnO 0.06 0.05 0.04 0.06 0.00 0.03 0.02 0.02 0.09 0.08

Total 100.48 99.91 99.45 100.05 99.27 99.54 98.51 100.23 98.64 98.14

Si4+ 0.01 0.01 0.02 0.02 0.05 0.25 0.01 0.03 0.13 0.02

Ti4+ 0.05 0.05 0.05 0.05 0.00 0.00 0.09 0.08 0.08 0.07

Al3+ 0.61 0.83 0.99 0.42 0.71 0.94 0.44 0.43 0.66 0.54

Cr3+ 5.32 5.11 5.03 4.90 6.59 6.19 6.85 5.80 7.03 6.78

Fe3+ 9.95 9.95 9.85 10.52 8.59 8.36 8.51 9.54 7.89 8.50

Fe2+ 7.47 7.44 7.42 7.45 6.82 7.12 6.54 6.92 6.73 6.32

Mn2+ 0.45 0.46 0.46 0.48 1.00 0.92 1.12 1.03 1.04 1.02

Mg2+ 0.09 0.05 0.15 0.10 0.23 0.20 0.39 0.13 0.34 0.69

Ca2+ 0.03 0.09 0.04 0.04 0.00 0.01 0.03 0.04 0.07 0.04

Zn2+ 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.02 0.02

Mg2+# 0.01 0.01 0.02 0.01 0.03 0.03 0.06 0.02 0.05 0.1

Cr3+# 0.90 0.86 0.84 0.92 0.90 0.87 0.94 0.93 0.91 0.93

Al3+# 0.04 0.05 0.06 0.03 0.05 0.06 0.03 0.03 0.04 0.03

Fe3+# 0.63 0.63 0.62 0.66 0.54 0.54 0.54 0.61 0.51 0.54

Fe2+# 0.99 0.99 0.98 0.99 0.97 0.97 0.94 0.98 0.95 0.90

Mg2+#: cationic ratio of Mg2+/(Mg2++Fe2+); Cr3+#: cationic ratio of Cr3+/(Cr3++Al3+); Al3+#: cationic ratio of Al3+/
(Cr3++Al3++Fe3+); Fe3+#: cationic ratio of Fe3+/(Fe3++Cr3++Al3+) and Fe2+#: cationic ratio of Fe2+/(Fe2++ Mg2+).
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peridotites of Ladakh Himalaya (Maheo et al.
2004; Jonnalagadda et al. 2019) and Izu–Mariana
arcs (Kamenetsky et al. 2001).

5. Discussion and conclusion

5.1 Geochemical consequences due to alteration

The Suru Valley ophiolitic peridotites from west-
ern Ladakh Himalaya have experienced serpentin-
isation – a low-grade hydrothermal metamorphism
in the presence of serpentine and magnetite as a
secondary mineral assemblage (Bhat et al. 2019a).
Despite mineralogical modifications due to the
serpentinisation process of mantle peridotites,
geochemical studies on global peridotites show
insignificant changes in the major elements (except
for Ca, Na, K and to some extent Mg) at the hand-
specimen scale (Mevel 2003; Niu 2004; Deschamps
et al. 2010, 2013). Similarly, serpentinised peri-
dotites specify insignificant modifications in the
trace element compositions except Rb, Ba, U, Pb
and Sr (Niu 2004; Paulick et al. 2006; Deschamps
et al. 2013). Recently, Bhat et al. (2019a) reported
5–8 wt% MgO loss, the mobility of Fe, Ca, Na, K,
Rb, Ba, U, Pb, Sr, etc., the pristine characters
of Si, Al, Ti and highly incompatible rare earth

Table 2. Representative electron-microprobe analyses of magnetite (rim composition) from Suru Valley peridotites along ISZ,
NW Ladakh Himalaya (calculation based on 32 oxygen).

Points P-112 P-119 P-296 P-300 P-181 P-182 P-24 P-55 P-199 P-200

SiO2 0.22 0.63 0.05 0.78 0.59 0.45 0.06 0.29 0.56 0.09

TiO2 0.04 0.05 0.19 0.18 0.04 0.03 0.14 0.16 0.13 0.14

Al2O3 0.07 0.03 0.08 0.18 1.05 1.01 0.20 0.11 0.13 0.06

Cr2O3 1.16 1.31 1.01 1.66 0.05 0.06 1.06 1.17 0.16 0.23

Fe2O3 68.19 65.74 67.86 65.41 66.75 66.80 67.70 66.32 66.57 67.70

FeO 30.24 31.28 31.07 32.18 30.86 30.97 31.22 30.89 30.57 30.61

MnO 0.17 0.07 0.15 0.12 0.02 0.07 0.00 0.00 0.03 0.02

MgO 0.75 0.05 0.07 0.04 0.71 0.36 0.10 0.15 0.45 0.11

CaO 0.05 0.03 0.11 0.13 0.09 0.12 0.05 0.13 0.21 0.19

ZnO 0.08 0.38 0.03 0.00 0.02 0.09 0.03 0.15 0.02 0.03

Total 100.95 99.57 100.62 100.69 100.17 99.96 100.56 99.37 98.83 99.18

Si4+ 0.07 0.19 0.02 0.24 0.18 0.14 0.02 0.09 0.17 0.03

Ti4+ 0.01 0.01 0.04 0.04 0.01 0.01 0.03 0.04 0.03 0.03

Al3+ 0.02 0.01 0.03 0.07 0.38 0.36 0.07 0.04 0.05 0.02

Cr3+ 0.28 0.32 0.24 0.40 0.01 0.01 0.26 0.29 0.04 0.06

Fe3+ 15.55 15.26 15.61 14.98 15.24 15.33 15.57 15.42 15.51 15.80

Fe2+ 7.66 8.07 7.94 8.19 7.83 7.90 7.98 7.98 7.91 7.94

Mn2+ 0.04 0.02 0.04 0.03 0.00 0.02 0.00 0.00 0.01 0.01

Mg2+ 0.34 0.02 0.03 0.02 0.32 0.17 0.04 0.07 0.21 0.05

Ca2+ 0.02 0.01 0.04 0.04 0.03 0.04 0.02 0.04 0.07 0.06

Zn2+ 0.02 0.09 0.01 0.00 0.00 0.02 0.01 0.03 0.00 0.01

Mg2+# 0.04 0.03 0.01 0.02 0.04 0.02 0.01 0.01 0.03 0.01

Cr3+# 0.92 0.96 0.92 0.96 0.96 0.90 0.92 0.92 0.92 0.96

Al3+# 0.002 0.001 0.002 0.001 0.001 0.002 0.003 0.003 0.002 0.001

Fe3+# 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.97 0.97

Fe2+# 0.96 1.00 1.00 1.00 0.96 0.98 0.99 0.99 0.97 0.99

Figure 3. Triangular trivalent cation classification diagram
showing the compositional variation of spinel grains from the
Suru Valley ophiolitic peridotites, Ladakh Himalaya.
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and high-field strength elements in Suru Valley
serpentinised with peridotites on the basis of
bulk-rock major and trace element geochemistry.
Generally, in ophiolite peridotites the serpen-

tinisation process leads to the alteration of a pri-
mary silicate mineral assemblage (Khudeir et al.
1992; Khalil and Azer 2007). Primary minerals like
olivine and pyroxene may completely alter to ser-
pentine, whereas the spinel is the only primary
mineral that can preserve its composition even in
completely serpentinised peridotites and may show
zoning from the core to rim depending on the
extent of the serpentinisation process and post-
serpentinisation metamorphism (Arai et al. 2006).
According to Arai (1994b), the Cr3+# of the spinel
in mantle peridotites appears to remain unchanged
during the sub-solidus stage. Chromite alteration
caused by fluid infiltration along cracks and grain
boundaries during low-temperature metamorphism
leads to the growth of Fe-enriched chromite i.e.,
ferritchromite (Barnes 2000; Farahat 2008). Fur-
ther at higher temperature, fluid entrance gives rise
to extensive magnetite replacement of chromite
(Barnes 2000). In figure 3 the magnetite plots
along the line joining Cr3+–Fe3+ closer to Fe3+

apex reflect Fe2O3 increase and loss of Cr2O3 and
Al2O3 during alteration. Their high-ferric iron (i.e.,
Fe3+) reflects oxidation conditions during alter-
ation (Anzil et al. 2012). The ferritchromites pre-
serve high Cr2O3 (21–29 wt%) close to those of
unaltered Cr-spinel cores but have lower Mg2+#
(0.01–0.1).
The secondary alteration/metamorphism typi-

cally imposes a chemical zoning on the primary
spinel grains in the Suru Valley peridotites. The
alteration of Cr-spinel composition (represented by
1–10 profile points in figure 2d) to ferritchromite

(represented by 11–20 profile points in figure 2d)
is characterised by a progressive enrichment in
the total iron content (Fe3+ + Fe2+) and Mn
(figure 5). However, the alterations are charac-
terised by a strong depletion in Al, Cr and Mg as
compared with the relic Cr-spinel cores (figure 5a)
and a negligible change in Ti (figure 5b). Similarly,
the magnetite rims (represented by 21–30 profile
points in figure 2d) show a strong systematic
enrichment in Fe3+ and Fe2+ (figure 5a), whereas
strong depletion in Al, Cr, Mg and Mn with respect
to ferritchromite (figure 5). Therefore, composi-
tional profiling across the studied spinel grains
proves chemical variation from the core to rim as
observed in other global peridotite spinels (e.g.,
Proenza et al. 2004; Karipi et al. 2007; Farahat
2008; Aswad et al. 2011; Singh and Singh 2011;
Colas et al. 2014; Bhat et al. 2017b).

5.2 Low-temperature metamorphic implications
on spinel composition

The compositional heterogeneity of the Cr-spinel is
a function of the fluid-rock ratio and metamorphic
grade (Barnes 2000; Farahat 2008). Therefore,
post-magmatic hydrothermal metamorphism of
host peridotites may cause chemical inconsistency
in spinel mineral composition (Barnes 2000; Fara-
hat 2008; Aswad et al. 2011). The Cr-spinel is the
only reliable petrogenetic indicator in altered
peridotites where all primary silicates were altered
due to metamorphism (Ahmed et al. 2001, 2005).
The alteration of the primary Cr-spinel results in
the modification of its mineral chemistry in relation
to the alteration of surrounding silicate minerals
(Barnes 2000). The Cr-spinel in altered peridotites

Figure 4. Suru Valley peridotite spinel composition plotted in (a) Cr3+/(Cr3+ + Al3+) against Mg2+/(Mg2+ + Fe2+) and
(b) Fe3+/(Fe3+ + Al3+ + Cr3+) against Mg2+/(Mg2+ + Fe2+).
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enhances its Cr3+# as well as magnetite compo-
nent (both Fe2+ and Fe3+) to become so-called
ferritchromite (Arai et al. 2006). This secondary
spinel with high Cr3+# and low Fe3+# can be
achieved by the removal of Al without Fe addition
(Barnes 2000; Arai et al. 2006).
As described, the studied spinel grains show

systematic compositional variation along their rims
or through cracks from the Cr-spinel to ferrit-
chromite or from the Cr-spinel to magnetite.
However, the ferritchromite is the most common
alteration phase observed in spinels elsewhere
(Kimball 1990; Barnes 2000; Proenza et al. 2004;
Farahat 2008; Aswad et al. 2011; Gervilla et al.
2012; Colas et al. 2014, 2016; Bhat et al. 2017b).
Based on the earlier studies, the origin of fer-
ritchromite is related to metamorphic and/or
hydrothermal processes. According to Bliss and
MacLean (1975) and Barnes (2000) ferritchromite
is produced by the reaction of pristine spinel cores
with magnetite rims during prograde metamor-
phism of the host serpentinised ultramafic rocks.

Likewise, Evans and Frost (1975) concluded that
the Cr content of spinels increases with an increase
in grade of the amphibolite facies. On the other
hand, the results obtained by Burkhard (1993)
suggest the opposite trend, and Roeder (1994),
Gervilla et al. (2012) and Colas et al. (2014)
showed ferritchromite to be the product of a reac-
tion between Cr-spinels and chlorite from host
rocks. Hence, the origin of ferritchromite remains
an unsolved problem, the resolution of which is
beyond the scope of this paper. However, both the
models discretely assume that the Cr-spinel cores
represent relic primary chromite that remained
unaffected by the metamorphism.
Magnetite formation along fractures and rims

(figure 2c and d) is the result of Mg2+ and Fe2+

cation exchange between spinels and coexisting
silicates, particularly olivine (Barnes 2000; Karipi
et al. 2007; Farahat 2008) which in turn changes
into serpentine (Bhat et al. 2019a). In studied
peridotites, the olivine and pyroxene minerals
are highly magnesian i.e., Fo90–92 and En91–93,

Figure 5. Compositional profile of electron-microprobe data across a compositionally zoned accessory Cr-spinel grain in Suru
Valley peridotites: (a) Cr2O3, Fe2O3, FeO, Al2O3 and MgO chemical variation along profile and (b) MnO and TiO2 chemical
variation along profile.
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respectively (Bhat et al. 2019a); therefore, limited
amounts of Fe are released on their hydration. The
activity of the low-fluid-rock ratio during meta-
morphism may be inferred because of the common
preservation of Cr-spinel core compositions in the
studied peridotites. By the diffusive replacement of
Mg2+ with Fe2+ in the spinel structure, the fer-
ritchromite and magnetite in studied peridotites
show higher Cr3+# and Fe3+# but lower Mg2+#
as compared to Cr-spinel core compositions
(figure 4). This chemical discrepancy is due to
preferential retention of Cr in unaltered Cr-spinel
cores while its alteration provides Mg for second-
ary spinels (Kimball 1990; Karipi et al. 2007).
Although the compositional differences between
the primary Cr-spinel and secondary spinel, i.e.,
ferritchromite are small (figure 3) their prominent
optical/chemical boundary advocates are con-
trolled by a miscibility gap (Barnes 2000; Proenza
et al. 2004; Arai et al. 2006; Farahat 2008).
The possibility of alteration of the primary spinel

composition of the mantle origin is believed to be
recognised easily by their marked increase of Fe3+#
(Arai et al. 2006). In the present study, the primary
Cr-spinels are characterised byCr3+# (0.5–0.6) and
Fe3+# (0.01–0.13), whereas secondary spinels i.e.,
ferritchromite have Cr3+# (0.8–0.9) and Fe3+#
(0.5–0.6). These secondary spinels have chemical
composition within the range of spinels frommantle
peridotites and podiform chromites (Arai and
Yurimoto 1994; Roeder 1994). With respect to the
global Cr–Al spinel trends, their compositions plot
at the high Cr3+# and low Mg2+# ends in Mg2+#

vs. Cr3+# and Mg2+# vs. Fe3+# spaces (figure 4),
respectively (Barnes and Roeder 2001). The same
results were observed by Arai et al. (2006) while
studying Cr-spinels of serpentinised harzburgites
and chromitites from Rayat area of northeastern
Iraq. Thus, the present study suggests that while
interpreting high Cr3+# Cr-spinels of mantle
composition in altered rocks, caution is needed
because for petrogenetic interpretation only
primary Cr-spinels give paramount results.
Metamorphism of greenschist to lower amphi-

bolite facies substantially modifies the primary
spinel composition through infiltrating metamor-
phic fluids (Wylie et al. 1987; Barnes 2000). In
spinels, the Cr-spinel core compositions equili-
brated with ferritchromite and/or magnetite are
usually attributed to greenschist compared to
lower amphibolite facies metamorphism (Barnes
2000; Kapsiotis et al. 2007; Farahat 2008; Aswad
et al. 2011). The relative proportion of trivalent
ions i.e., Cr3+, Al3+ and Fe3+ in spinels is not
modified up to lower amphibolite metamorphic
grade and therefore can be used to estimate the
metamorphic grade experienced by the host peri-
dotites (Barnes 2000). Barnes (2000) also sug-
gested that the metamorphism effectively controls
Mg2+# of spinels. Peridotites experienced green-
schist to lower amphibolite facies metamorphism
possess spinels with Mg2+# ranging from 0.4
to 0.7; however, higher amphibolite grade rocks
have Mg2+#\0.35 (Barnes 2000; Farahat 2008).
Mg2+# in the studied Cr-spinel ranges from 0.5 to
0.6, reflecting green schist grade of metamorphism.

Figure 6. Compositional changes in spinels from Suru Valley peridotites (Cr-spinel, ferritchromite and magnetite) expressed in a
triangular Cr3+–Fe3+–Al3+ plot after Barnes (2000): (a) studied spinel compositions compared with spinel stability fields after
Sack and Ghiorso (1991) and (b) studied spinel compositions compared with spinel compositional fields from different
metamorphic facies after Evans and Frost (1975).
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Also, the primary Cr-content is retained in
Cr-spinels equilibrated below *500–550�C stabil-
ity limit but their Mg2+# is substantially lowered
by Fe2+–Mg2+ exchange with surrounding silicates
(Farahat 2008). The chemical composition of
analysed spinels (i.e., Cr-spinel, ferritchromite
and magnetite) from Suru Valley peridotites in
relation to metamorphic temperature conditions is
plotted on a triangular Fe3+–Cr3+–Al3+ diagram
(figure 6a). In this diagram the Cr-spinel core
composition plots outside these stability limits
reflecting primary spinel compositions not being
affected by metamorphism; however, ferrit-
chromite and magnetite plots below 600�C stability
limit indicate secondary compositions. Along grain
boundaries and through cracks, magnetite was
formed at lower temperature because of the readily
exchange of Fe from host peridotite silicates e.g.,
olivine during serpentinisation (Gahlan et al.
2006). In mantle peridotites pure magnetite rims
with limited Cr solubility, implying magnetite
growth well below 500�C (Barnes 2000). The
studied magnetite rims have substantial amounts
of Cr concentration (0.05–1.66 wt%; table 2) and
thus reflecting magnetite growth well below 500�C
stability limit as shown in figure 6(a).
Also, the analysed spinel chemical composition is

plotted on a triangular Fe3+–Cr3+–Al3+ diagram,
together with the spinel compositional fields from
different metamorphic facies (figure 6b), where
spinel compositional changes have been recorded
with increasing metamorphic grade (Evans and
Frost 1975; Frost 1991; Barnes and Roeder 2001).
In this diagram, the altered spinel compositions

characterised by lower Al content plot along the
Cr–Fe3+ joint and are typical of spinels altered at
lower temperatures (Roeder 1994; Proenza et al.
2004). As shown in figure 6(b), the altered spinel
compositions lie outside the upper-amphibolite to
granulite facies spinel compositional field; however,
the plot within the lower-amphibolite to the
greenschist facies compositional field is similar to
peridotites that have experienced low-PT meta-
morphism (Proenza et al. 2004; Colas et al. 2014;
Bhat et al. 2017b). This interpretation is also
favoured by the chemical composition of relic pri-
mary Cr-spinels and the whole-rock chondrite
normalised rare earth element distribution pat-
terns of the host peridotites (Bhat et al. 2019a).
Similar geochemical characteristics have been
observed in other Tethyan ophiolites that have not
experienced eclogite facies metamorphism e.g., Iti
and Kallidromon (Pindos) ophiolite, central Greece
(Karipi et al. 2007), ophiolites of CED of Egypt
(Farahat 2008), Serpentinites of Tidding Suture
Zone, eastern Himalaya (Singh and Singh 2011)
and Shergol ophiolitic peridotites, western Ladakh
(Bhat et al. 2017b).
According to Barnes (2000) and Kapsiotis et al.

(2007), due to greenschist to lower amphibolite
grade metamorphism, Cr-spinels of mantle peri-
dotites alter to magnetite and/or ferritchromite
along grain margins and fractures as these are
the only sites for metamorphic fluid interaction.
The complete replacement of primary Cr-spinel
grains with magnetite commonly occurs at mid to
higher amphibolite grade metamorphism of host
peridotites (Farahat 2008). In studied peridotites,

Figure 7. Schematic illustration of chemical changes in the primary Cr-spinel of Suru Valley peridotites during secondary
alteration and metamorphism. The extent of element exchange is noted with arrows.
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the primary Cr-spinel composition is mantled by
magnetite rims and/or ferritchromite, thus pro-
vides the textural indication for transitional
greenschist to lower amphibolite facies metamor-
phism experienced by the host peridotites. The
higher metamorphic conditions such as mid-
amphibolite or granulite grade have not been
achieved by the host peridotites because of the
absence of complete replacement of Cr-spinel
grains with magnetite compositions. Therefore, on
the basis of the present spinel mineral chemistry
the metamorphic conditions experienced by Suru
Valley ophiolite peridotites are transitional green-
schist to lower amphibolite facies consistent with
an estimated metamorphic equilibration tempera-
ture of *500–600�C (figure 6a). Further, in a high-
pressure metamorphic environment, the degree of
fluid–rock interaction is not pervasive (Cartwright
and Barnicoat 1999). Also, the high-pressure
metamorphism induces a local fluid flow at low
water–rock ratios, therefore displays a closed-
system behaviour (Fruh-Green et al. 2001).
Accordingly, we hesitantly suggest that under
high-pressure conditions there is no resetting of the
primary igneous composition of Cr-spinels. There-
fore, the main alteration products observed in the
Suru Valley peridotite spinels are the consequences
of a low-P and T metamorphic alteration.
The chemical changes in primary Cr-spinel

grains of Suru Valley peridotites during metamor-
phism with element exchange noted with arrows
are shown in figure 7. The compositional data show
that Fe and to a less extent Mn are introduced
into the Cr-spinel, whereas Al, Mg and Cr of the
Cr-spinel show outward diffusion during meta-
morphism. This results in a decrease in Mg/
(Mg + Fe2+) and an increase in Cr/(Cr + Al) of
the magnetite compared to the unaltered Cr-spinel
core. Although, Mn2+ usually follows Fe2+, the

ionic radius of Mn2+ (0.91 �A) is much larger than

that of Fe2+ (0.83 �A) and Mg2+ (0.78 �A), its ionic
potential is relatively low and hence it is more
susceptible to leaching by weakly acidic solutions
(Economou-Elipoulos 2003). The studied ferrit-
chromite with high-Mn content (MnO ranges
from 1.77 to 4.37 wt%) is due to the ability of the
Cr-spinel to act as a favourable Mn-receptor during
metamorphism as the secondary silicates (e.g.,
serpentine) accommodate less Mn than their
igneous precursors (Deer et al. 1992). Therefore,
the availability of Mn2+ in solution may be the
major controlling factor for the incorporation of

Mn in the lattice of ferritchromite and to some
extent Cr-spinel (Sack and Ghiorso 1991; Farahat
2008). This is the reason for the significant Mn
enrichment up to 4.37 and 2.23 wt%, respectively,
in ferritchromite and the Cr-spinel in the Suru
Valley ophiolite peridotites. Similar explanation
was given by Singh and Singh (2011) for the spinels
from the Tidding Suture Zone, eastern Himalaya.
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