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The goal of the present research is to evaluate three bivariate models of the frequency ratio, Shannon
entropy (SE) and evidential belief function in the spatial prediction of groundwater at the Sero plain
located in west Azerbaijan, Iran. In the first phase, well locations with groundwater yields >11 m?/hr
were identified (75 well locations). Ten groundwater conditioning factors affecting the occurrence of
groundwater, namely, altitude, slope degree, curvature, slope aspect, rainfall, soil, land-use, geology and
distance from the fault and the river, were selected for modelling. Finally, the groundwater potential map
results were drawn from three implemented models and they were validated using testing data by area
under the receiver operating characteristic curve (AUC). The AUCs of these models were 0.84, 81 and
85%, respectively. The results of the current study demonstrated that these models could be successfully
employed for spatial prediction modelling. Moreover, the results of the SE model demonstrated that the
most and the least important factors in groundwater occurrences in the area under study were altitude,
curvature and rainfall, respectively. The results of this study are helpful for the Regional Water Authority
of Urmia and the decision makers to comprehensively assess the groundwater exploration development
and environmental management in future planning.

Keywords. Groundwater potential; frequency ratio; Shannon entropy; evidential belief function; Sero
plain hydrology and water resource; remote sensing.

1. Introduction

Groundwater is defined as the main source of water
demand in arid and semiarid areas. In comparison
with surface water, the advantages of groundwater
are having almost constant temperature, being less
affected by drought, having better water quality
and being tapped in when necessary, to mention

but a few (Manap et al. 2013). Groundwater is
always exploited when there is inadequate sur-
face water. Nowadays, the use of groundwater is
increasing rapidly. Therefore, the identification of
a proper method for the management and predic-
tion of groundwater at the national, regional and
local levels is necessary (Vaux 2011; Le Page et al.
2012). In Iran, as a semi-arid country of which
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two-third is desert land without any green pasture,
the water demand has been satisfied using ground-
water (Bastani et al. 2010; Mehrdadi 2010; Nosrati
and Van Den Eeckhaut 2012). The life of more than
70% of the rural population in Iran, for drinking
and domestic requirements, depends on ground-
water (Rahmati et al. 2015). Thus, groundwater
potential mapping (GPM) in Iran is really neces-
sary. Complex and costly instruments and method-
ology are required to gain information regarding
groundwater resources. GPM is useful for the man-
agement of spatial groundwater resources, espe-
cially in regions with little data. The probability
of groundwater occurrence in an area is defined as
the groundwater potential (Jha et al. 2010). Tradi-
tional methods for groundwater potential identifi-
cation and exploitation were accomplished through
drilling. Moreover, geophysical methods involve
more cost and time (Todd and Mays 1980; Roscoe
1990; Israil et al. 2006; Jha et al. 2010).

Nowadays, remote sensing and geographical
information systems (GIS) are frequently used in
studies related to water resources. Thus, many
researchers have performed studies by considering
some conditioning factors such as topography and
geomorphology; drainage pattern; lineaments such
as fault, lithology and geology and soil (Prasad
et al. 2008; Chowdhury et al. 2009; Jasmin and
Mallikarjuna 2011; Deepika et al. 2013; Chen et al.
2019). GIS is a useful tool with some advan-
tages to manage huge amounts of data (Khosravi
et al. 2016). Many studies have been carried out
using the frequency ratio (FR) (Oh et al. 2011;
Ozdemir 2011a; Manap et al. 2014; Davoodi et al.
2015; Naghibi et al. 2015), weights of evidence
(Corsini et al. 2009; Lee et al. 2012; Pourtaghi and
Pourghasemi 2014), logistic regression (Ozdemir
2011b), analytical hierarchy process (Awawdeh
et al. 2014; Kaliraj et al. 2014) and evidential
belief function (EBF) (Nampak et al. 2014). The
results of all studies indicated that data-driven
models have reasonable prediction ability and can
be used in other areas to solve problems. In data-
driven models, expert opinion does not have any
impact on the results. Therefore, the results are
more reliable.

The main aims of the current study are as
follows: (i) spatial prediction of regions with high
groundwater potential and (ii) identification and
comparison of prediction abilities associated with
the FR, Shannon entropy (SE) and EBF models in
GPM. Evaluation of the GPM would be practical
to the decision makers in groundwater management
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and restoration, e.g., the Regional Water Author-
ity of Urmia (RWAU), and in determining suitable
locations for future drilling of productive wells.
However, such studies have not been carried out in
the entire province up to now. Thus, the present
research is a leading work in this research area
and plays a significant role in quick groundwater
assessment.

2. Study area description

The Sero plain is located in the west Azerbaijan
province in Iran. The plain is considered as one
of the most important ones in the province upon
which people are dependent for groundwater sup-
ply for both drinking and agricultural activities.
It lies between 44°37'30"-44°43'30"E and 37°41'—
37°47'N, and covers about 52 km? (see figure 1).
Topographically, the altitude varies between 1490
and 1697 m above the sea level and the highest
and lowest slopes are 26 and 0, respectively. Based
on the reports of the RWAU, the mean annual
precipitation in the region is about 440 mm. The
most dominant soil is inceptisol soil and agricul-
tural land use covers about 94% of the study area.
Geologically, the Quaternary and Permian cover
about 58% and 18% of the study area, respec-
tively. Lithologically, most of the area is covered
by K21 (light blue to pink, thick-bedded to mas-
sive, piagic limestone with calcite veins), OPm
(ophiolite melange of ultrabasic rocks, serpentinite,
meta gabbro, berreciated volcanic, grey to red shale
and plagic limestone), Pd (sandstone and con-
glomerate), CM (tectonic mixture of serpentinised
ultramafic rocks, pillow lavas, gabbros, radiolar-
ite and pelagic limestone), CMV (tectonic mixture
mostly composed of pillow lava and sediments) and
K (alternation of sandstone, shale and limestone
at base followed by well grey limestone at the top
(probably cretaceous). Also, a fence diagram of
the study areas is shown in figure 2. Moreover,
the distribution of major ions in the groundwater
is as follows: Ca®T > Mg?T™ > Na®™ > K* and
HCO?*™ > S03™ > Cl.

3. Methodology

3.1 Groundwater well inventory

Groundwater well inventory mapping as the first
step in any spatial prediction modelling is neces-
sary to identify the correlation of the distribution
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Figure 1. Well location map with the DEM of the Sero plain, Iran.
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Figure 2. Fence diagram of the study area.

of groundwater well locations with the conditioning  According to reports of UWRA and literature
factors. Groundwater with higher potential was review, a threshold of 11 m3/hr was considered
identified through the predictions made for the for groundwater yield (Nampak et al. 2014). The
best groundwater potential (Nampak et al. 2014). groundwater yield was identified according to the
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actual pumping test. In the study area, only 75
well locations had groundwater yields >11 m?/h,
which were randomly divided into two groups of
sizes of 70% (53 well locations), as the training
dataset used to develop the model, and 30% (22
well locations), as the testing dataset used for
model validation (Nampak et al. 2014; Khosravi
et al. 2016). An extensive field survey was carried
out to identify the locations of wells with a GPS
hand hole.

3.2 Groundwater conditioning factors

In the present research, 10 conditioning factors,
namely, ground slope or slope degree, aspect, alti-
tude, curvature, distance from the fault and the
river, lithology, land use, rainfall and soil media,
were taken into consideration. The conditioning
factor selection was through reviewing the litera-
ture and using the data available (Mukherjee 1996;
Oh et al. 2011; Ozdemir 2011a; Nampak et al.
2014).

At first, the digital elevation model (DEM) for
the study area was downloaded from the ASTER
Global DEM (spatial resolution of 30m). Using
DEM, four input variables, namely, slope degree,
slope aspect, altitude and curvature maps, were
fabricated. Slope degree had a high impact on
groundwater occurrence. This factor was created
and classified into five categories, namely, 0-3.1,
3.2-5.7, 5.8-8.7, 88-12.8 and 12.9-26.7, using
quantile scheme classification (figure 3a). The slope
aspects were classified after preparation into nine
classes comprising the flat, north, northeast, east,
southeast, south, southwest, west and the north-
west (figure 3b). The third conditioning factor
was altitude, which, after preparation, was divided
into five classes, namely, 1491-1548, 1548-1573,
1573-1599, 1599-1633 and 1633-1697 m, using the
quantile method (figure 3c). The curvature map
shows the topography of the earth’s surface and
divides it into three classes, i.e., <—0.05 or concave,
from —0.05 to 0.05 or flat, and >0.05 or convex
(figure 3d) (Pham et al. 2017).

The fault in the study area was extracted from
the fault of Iran, which was prepared using the
Geological Survey of Iran (GSI) on a scale of
1:100,000. The factors of distance from the fault
and the river were produced using the fault and
the river of the study area in ArcGIS 10.2 software,
and subsequently divided into five groups, namely,
0-100, 100-200, 200-500, 500-1000 and >1000 m
(figure 3e and f) (Khosravi et al. 2018b).
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Various lithologies have various infiltration rates;
thus, lithology plays a crucial role in the identi-
fication of the groundwater potential occurrences
(Pradhan 2009; Adiat et al. 2012; Nampak et al.
2014). This factor was prepared through the GSI.
The formation ages of lithology were the Eocene,
Middle-Eocene, Permian, Pre-Cambrian and the
Quaternary (figure 3g). Land-use map was pro-
duced using supervised image classification tech-
niques by Landsat 7 (ETM+), for which images
were downloaded from the US Geological Sur-
vey (USGS). The images were divided into three
classes, namely, irrigated land and agriculture, dry
farming and moderate rangeland (figure 3h). The
mean annual precipitation of four rain gauges in
20 yr was used to prepare the rainfall map which is
a major conditioning factor in groundwater occur-
rences. The rainfall map was prepared using the
Kriging method, due to its low RMSE, and divided
into five classes, namely, 400424, 425-446, 447—
467, 468-488 and 489-510 mm (figure 3i). The
characteristics of soil have a direct impact on water
infiltration. Therefore, the soil map of the west
Azerbaijan province with a scale of 1:50,000 was
used in the analysis. The soil map was provided by
UWRA, which was originally prepared by the Ira-
nian Water Resources Department (IWRD). The
dominant soil form in the area under study was
inceptisols, followed by rock outcrop/inceptisols
and rock outcrop/entisols (figure 3j).

3.3 Modelling of the groundwater potential
assessment

Three models, namely, FR, SE and EBF, were
applied for groundwater potential assessment and
comparison at the Sero plain.

3.3.1 FR model

FR is one of the well-known and simple geospatial
bivariate models for determining the probabilis-
tic correlation between the dependent (groundwa-
ter) and independent (conditioning) factors. The
FR method was previously utilised in various
applications, such as flood susceptibility mapping
(Tehrany et al. 2013; Khosravi et al. 2016, 2018b),
groundwater ganat potential mapping (Pourtaghi
and Pourghasemi 2014) and landslide assessment
(Youssef et al. 2015). The most important ben-
efit of the current model is its simple execu-
tion and easy-to-understand results (Gogu et al.
2001; Yalcin 2011). In the present study, the FR
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Figure 3. Conditioning factors of groundwater occurrences: (a) altitude, (b) slope angle, (c) curvature, (d) aspect,
(e) rainfall, (f) soil, (g) land-use, (h) geology, (i) distance from the fault and (j) distance from the river.
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Figure 3. (Continued.)

model was applied to evaluate the impact of each
conditioning factor used for groundwater occur-
rences (Khosravi et al. 2018b). Equations (4) and
(5) were used to calculate the FR model and
the groundwater well potential index (GWPI),
respectively (Khosravi et al. 2018b):

[Noix(SX0) / Y, SX]
= M
[Noie (X5) /25y Ny (X))
FSI = z": FR, (2)

Jj=1

where Npix(SX;) is the amount of pixels with
groundwater well within the factor variable X of
class i, Npix(X;) denotes the amount of pixels
within the factor variable Xj;, m represents the

number of classes in the parameter variable X; and
n refers to the number of factors in the whole case
study (Jaafari et al. 2014; Regmi et al. 2014).

3.3.2 Shannon entropy (SE) model

Overall, entropy shows the quantity of abnormality
between events and results or decisions on vari-
ous subjects under discussion (Wan 2009), and the
entropy index is defined as the mean difference of
the unit group to the whole system ratios (Theil
1972). SE, modified by the Boltzmann method, was
used as the information theory (Pourghasemi et al.
2012). The SE model has been applied to the map-
ping of flood susceptibility (Khosravi et al. 2018a)
and landslide susceptibility (Sharma et al. 2013)
and has led to reasonable results. The following
equations express the calculation of the weight of
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the incorporated information. V; is the value of the
parameter from the total figure (Bednarik et al.
2010), which is determined based on the following
equation:

FR
Eij = Y pa— (3)
ijl FR

where FR represents the frequency ratio and Ej;
denotes the probability density:
M;
Hj=—=> Ejlogy Eij,j=1,...,n, (4)

i=1

Hj max — 10g2 ij Mj—number of classes» (5)

Ij = (Hjmax — Hj/Hjmax) ,
12(071)7j:1)"-7 (6)
V, = I;FR, (7)

where H; and Hjnyax denote the entropy values, I;
the information coefficient and M denotes the num-
ber of classes. Moreover, V; represents the attained
total weight value of the factor ranging between 0
and 1, where closer values to 1 indicate a higher
disorder and imbalance (Khosravi et al. 2018a).

3.3.3 EBF model

The EBF model is developed based on the
Dempster—Shafer theory of evidence. In the EBF
model, evidential data estimation relates to a
proposition (Shafer 1976; Dempster 2008). The
EBF model consists of four parts, i.e., degrees
of belief (Bel), disbelief (Dis), uncertainty (Unc)
and plausibility (Pls), ranging between 0 and 1
(Carranza et al. 2005). The mapping of ground-
water potential is performed based on the EBF
model through the following equation (Shafer 1976;
Dempster 2008):

\(Tp) Eij = N/D = [N (LN Ej;) /N (L)]
/[N (Eij) — N (LN Ej;)
/(N (A) = N (L))], (8)
Bel =\ (Tp) Ei;/ <ZX (T'p) Ez‘j) - (9)

In this equation, N (LN E;;) represents the num-
ber of groundwater well pixels in each class, N(L)
the total number of groundwater wells, N (E;;) the
number of pixels of each class, N(A) the total
number of pixels and N and D represent the
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ratio of well location areas and the proportion of
non-well areas, respectively. Similarly, Dis values
are obtained by equations (10 and 11):

B K
~(Tp) Eij = Vi

= [(N (L) = N (LN Ejj)) /N (L)]
/IN(A) = N (L) - N (Ej;)

+N (LN Ej;) /(N (A) — N (L)),
(10)

Dis =\ (T'p) Eij/ (Z ~ (T'p) Eij) , (11

where K denotes the non-occurring well locations
ratio and H the non-occurring well areas propor-
tion in the attributes of the class.

Uncertainty and plausibility are calculated as
follows:

Unc = (1 — Bel — Dis),
Pls = (1 — Dis).

4. Results

4.1 Results of the FR model

In the FR model, a higher frequency ratio shows
the significant spatial relationship of condition-
ing factors with the occurrences of groundwater
(Tehrany et al. 2013); the values >1 show a strong
relationship and those smaller than 1 represent
a weak relationship. This model was utilised to
identify the relationship between each class of con-
ditioning factors and groundwater occurrences and
the results are presented in table 1.

The results indicate that in the study area, a
lower altitude has a higher impact on groundwa-
ter occurrence. Therefore, the classes of 14911548
and 1548-1573 m with FRs of 2.2 and 1, respec-
tively, have the highest impacts on the occurrences
of groundwater. Moreover, the slopes of 0-3.1
and 8.6-12.7 with FRs of 1.49 and 1.45, respec-
tively, have the highest impacts on groundwater
occurrences. Thus, the results show that there is
no specific pattern for the relationship between
groundwater occurrences and the slope factor.
With regard to curvature, in the area under study,
the flat curvatures (2.59) have a strong impact
on groundwater occurrence, which is in accor-
dance with the nature of groundwater occurrences.
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Table 1. Spatial relationship between well conditioning factors and well locations using the FR and SE models.

No. of pixels Percentage  No. of  Percentage
in the domain of domain wells of floods FR Eij; Hj I; V;

Altitude (m)
1491-1548 13,164 18.30 22 41.51 2.27 0.52 1.71 0.27 0.23
1548-1573 24,492 34.05 18 33.96 1.00 0.23
1573-1599 20,000 27.80 12 22.64 0.81 0.18
1599-1633 10,080 14.01 0 0.00 0.00 0.00
1633-1697 4196 5.83 1 1.89 0.32 0.07
Slope degree
0-3.1 19,992 27.79 22 41.51 1.49 0.35 1.88 0.19 0.16
3.1-5.7 24,805 34.48 16 30.19 0.88 0.20
5.7-8.6 16,459 22.88 6 11.32 0.49 0.11
8.6-12.7 8406 11.69 9 16.98 1.45 0.34
12.7-26.6 2270 3.16 0 0.00 0.00 0.00
Curvature
Convex 31,125 43.27 17 32.08 0.74 0.18 1.31 0.17 0.23
Flat 9970 13.86 19 35.85 2.59 0.63
Concave 30,837 42.87 17 32.08 0.75 0.18
Aspect
Flat 128 0.18 0 0.00 0.00 0.00 2.84 0.105357 0.09
North 10,609 14.75 15 28.30 1.92 0.24
Northeast 10,931 15.20 2 3.77 0.25 0.03
East 10,408 14.47 8 15.09 1.04 0.13
Southeast 8901 12.37 6 11.32 0.91 0.11
South 8577 11.92 6 11.32 0.95 0.12
Southwest 7550 10.50 8 15.09 1.44 0.18
West 7166 9.96 4 7.55 0.76 0.09
Northwest 7662 10.65 4 7.55 0.71  0.09
Rainfall (mm)
400-423 5845 8.13 4 7.55 0.93 0.20 2.29 0.01 0.01
423-446 5977 8.32 4 7.55 0.91 0.19
446-467 22,188 30.87 21 39.62 1.28 0.27
467-487 25,923 36.06 18 33.96 0.94 0.20
487-509 11,948 16.62 6 11.32 0.68 0.14
Soil
Rock outcrops/ 1083 1.51 0 0.00 0.00 0.00 0.00 1.00 0.35

entisols
Rock outcrops/ 2116 2.94 0 0.00 0.00 0.00

inceptisols
Inceptisols 68,682 95.48 53 100.00 1.05 1.00
Land-use
Dry farming 1317 1.83 0 0.00 0.00 0.00 0.50 0.69 0.48
Moderate rangeland 2906 4.04 0 0.00 0.00 0.00
Agriculture 67,658 94.13 53 100.00 1.06 0.50
Geology (age)
Quaternary 41,724 58.05 28 52.83 0.91 0.27 1.48 0.36 0.24
Eocene 1770 2.46 0 0.00 0.00 0.00
Pre-Cambrian 14,871 20.69 8 15.09 0.73 0.22
Middle Eocene 117 0.16 0 0.00 0.00 0.00
Permian 13,399 18.64 17 32.08 1.72  0.51
Distance from the fault (m)
0-100 4611 6.41 11 20.75 324 044 206 0.11 0.17
100-200 4493 6.25 4 7.55 1.21 0.16

200-500 12,910 17.96 13 24.53 1.37 0.19
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Table 1. (Continued.)
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No. of pixels Percentage No. of Percentage
in the domain of domain wells of floods FR E;i; H; 1; V;
500-1000 18,262 25.41 14 26.42 1.04 0.14
>1000 31,605 43.97 11 20.75 0.47 0.06
Distance from the river (m)
0-100 7369 10.25 13 24.53 2.39 0.41 2.13 0.08 0.09
100-200 6850 9.53 5 9.43 0.99 0.17
200-500 16,216 22.56 14 26.42 1.17 0.20
500-1000 13,254 18.44 6 11.32 0.61 0.10
>1000 28,192 39.22 15 28.30 0.72 0.12

Therefore, in a flat area, the runoff infiltrates more
than other areas do. In the case of slope aspects,
the north has a high influence on groundwater
occurrences (1.9) as it receives sunlight less than
other slope aspects do; it is followed by the south-
west (1.44) and the east (1.04). The result of the
relationship between rainfall and groundwater by
the FR model shows that a rainfall amount of
446-467 mm has a high impact on groundwater
occurrences (1.28). In the case of soil type, the
results of the FR model show that inceptisols have
high impacts on groundwater occurrences, as the
total wells are located in the inceptisols. It is worth
mentioning that the area is mostly covered by the
aforementioned soil. For land-use, results show that
agricultural land-use has a high impact on ground-
water occurrences (1.06), as the whole wells are
located in the agricultural land and this land-use
covers about 94% of the study area (the major
crops are both irrigated- and dry farming wheat
alongside with a School and Community Assistance
for Recycling and Composting Education garden).
For the conditioning factor of geology (age), the
Permian age has a high impact on groundwater
occurrences (1.72), as 52% of the wells are located
in the Quaternary age. However, a large part of the
area does not have enough FR. With regard to the
distance from the fault, the FR results show that
only the classes of >1000 m do not affect ground-
water occurrences and the distances between 0
and 1000 m have a high impact on groundwater
occurrences; the first class, i.e., 0-100m (3.24),
has the most significant effect on the occurrences
of groundwater and the more the distance from
fault, the lower will be the impact on groundwa-
ter occurrences. The results of distance from the
fault show that the first class, i.e., 0-100m, has
the highest effect on the occurrences of ground-
water (2.39), followed by the class of 200-500m
(1.17).

4.2 Results of the SE model

The SE model has been applied to determine the
correlation between each conditioning factor and
groundwater well location (table 1). The weights
of the conditioning factors of plan aspect, slope
angle, altitude and curvature are equal to 0.09,
0.16, 0.23 and 0.23, respectively. This shows that
altitude and curvature, among all topographical
factors, have the highest impact, and the next are
slope angle and slope aspect. The weight of rain-
fall, as a hydrological factor, is 0.01. The estimated
weights of SE for other conditioning factors are as
follows: soil (0.35), land-use (0.48), geology (0.24),
distance from the fault (0.17) and distance from
the river (0.09). Generally, the most and the least
important factors for groundwater occurrences in
the study area are altitude, curvature and rainfall,
respectively.

4.3 Results of the EBF model

The correlation results for the well locations and
each conditioning factor were achieved through the
EBF model (Bel, Dis, Unc and Pls) and are pre-
sented in table 2. Nampak et al. (2014) stated
that an important weakness of the EBF model
was that if there was no value for Bel in a given
class, there would be no well occurrence in the same
class.

The spatial correlation between the location
of the well and altitude with the EBF model
demonstrates that the highest Bel values (0.515
and 0.226) belong to two classes of 1491-1548 m
and 1458-1573 m, implying that the groundwater
occurrence probability for these classes of altitude
is higher than that for the other classes. The 1599-
1633 m class has the lowest Bel (0). That is, there is
no well location in this class of altitudes. In the case
of slope degree, the slopes of 0-3.1 have the high-
est impact (0.346), followed by 8.6-12.7 (0.337).
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Table 2. Spatial relationship between well conditioning factors and well locations using the EBF

model.

Percentage Percentage

of domain of wells Bel Dis Unc Pls
Altitude (m)
1491-1548 41.51 18.30 0.515 0.143 0.341 0.857
1548-1573 33.96 34.05 0.226 0.201 0.573 0.799
1573-1599 22.64 27.80 0.185 0.215 0.601 0.785
1599-1633 0.00 14.01 0.000 0.233 0.767 0.767
1633-1697 1.89 5.83 0.073 0.209 0.718 0.791
Slope degree
0-3.1 41.51 27.79 0.346 0.162 0.492 0.838
3.1-5.7 30.19 34.48 0.203 0.213 0.584 0.787
5.7-8.6 11.32 22.88 0.115 0.230 0.655 0.770
8.6-12.7 16.98 11.69 0.337 0.188 0.475 0.812
12.7-26.6 0.00 3.16 0.000 0.207 0.793 0.793
Curvature
Convex 32.08 43.27 0.182 0.382 0.436 0.618
Flat 35.85 13.86 0.635 0.238 0.127 0.762
Concave 32.08 42.87 0.183 0.380 0.437 0.620
Aspect
Flat 0.00 0.18 0.000 0.111 0.889 0.889
North 28.30 14.75 0.241 0.093 0.666 0.907
Northeast 3.77 15.20 0.031 0.126 0.843 0.874
East 15.09 14.47 0.131 0.110 0.759 0.890
Southeast 11.32 12.37 0.115 0.112 0.773 0.888
South 11.32 11.92 0.119 0.112 0.769 0.888
Southwest 15.09 10.50 0.180 0.105 0.714 0.895
West 7.55 9.96 0.095 0.114 0.791 0.886
Northwest 7.55 10.65 0.089 0.115 0.796 0.885
Rainfall (mm)
400-423 7.55 8.13 0.196 0.202 0.603 0.798
423-446 7.55 8.32 0.191 0.202 0.607 0.798
446-467 39.62 30.87 0.271 0.175 0.554 0.825
467-487 33.96 36.06 0.199 0.207 0.595 0.793
487-509 11.32 16.62 0.144 0.213 0.643 0.787
Soil
Rock outcrops/entisols 0.00 1.51 0.000 0.496 0.504 0.504
Rock outcrops/inceptisols 0.00 2.94 0.000 0.504 0.496 0.496
Inceptisols 100.00 95.48 1.000 0.000 0.000 1.000
Land-use
Dry farming 0.00 1.83 0.000 0.494 0.506 0.506
Moderate rangeland 0.00 4.04 0.000 0.506 0.494 0.494
Agriculture 100.00 94.13 1.000 0.000 0.000 1.000
Geology
Quaternary 52.83 58.05 0.271 0.222 0.507 0.778
Eocene 0.00 2.46 0.000 0.203 0.797 0.797
Pre-Cambrian 15.09 20.69 0.217 0.212 0.571 0.788
Middle Eocene 0.00 0.16 0.000 0.198 0.802 0.802
Permian 32.08 18.64 0.512 0.165 0.323 0.835
Distance from fault (m)
0-100 20.75 6.41 0.442 0.164 0.393 0.836
100200 7.55 6.25 0.165 0.191 0.644 0.809
200-500 24.53 17.96 0.186 0.178 0.635 0.822
500-1000 26.42 25.41 0.142 0.191 0.667 0.809

>1000 20.75 43.97 0.064 0.274 0.661 0.726
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Table 2. (Continued.)
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Percentage Percentage
of domain of wells Bel Dis Unc Pls
Distance from river (m)
0-100 24.53 10.25 0.407 0.166 0.427 0.834
100-200 9.43 9.53 0.168 0.198 0.634 0.802
200-500 26.42 22.56 0.199 0.188 0.613 0.812
500-1000 11.32 18.44 0.104 0.215 0.681 0.785
>1000 28.30 39.22 0.122 0.233 0.644 0.767
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Figure 4. Integrated EBF model parameter: (a) Bel, (b) Dis, (c) Unc and (d) Pls.

In contrast, the last slope class, i.e., 12.7-26.6,
has the lowest impact on groundwater occurrences
(Bel = 0). Regarding curvature, the flat regions
have higher Bel (0.635) than other curvatures. In
terms of slope aspect, the north aspect has the
highest value of Bel (0.241) and the lowest Bel

belongs to flat (0) areas. Results of the relation-
ship between rainfall and groundwater well location
show that the 446-467 mm class has the highest
Bel (0.271). The highest (Bel) and lowest (Dis)
probabilities of the occurrence of groundwater
well are for the regions covered by inceptisols
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with values of 1 and 0, respectively. The highest
Bel (1) belongs to the areas with agricultural
land-use, and the dry-farming and moderate range-
lands have the lowest Bel (0). In terms of geological
(age) conditions, the highest (0.512) and the low-
est (0) values of Bel belong to the Permian, and
the Eocene and middle Eocene, respectively. Con-
sidering the distance from the fault, the highest
Bel value as well as the lowest Dis value is in
the distance between 0 and 100 m. It reveals
that the probability of groundwater well occur-
rences decreases with the increase in the dis-
tance from the fault. In terms of the distance
from the river, the highest Bel belongs to the
0-100m class, i.e., the lower the distance from
the river, the higher will be the Bel value and the
more the impact on groundwater occurrences.

The integrated results of the EBF model are
depicted in figure 4(a—d). The Bel (figure 4a) and
Dis (figure 4b) maps have been compared with
each other. The results of the comparison show
high Bel values in regions with low Dis and vice
versa. Hence, these two maps are in contrast to
each other. Overall, high groundwater well poten-
tial occurrences belong to the areas with high Bel
degrees and low Dis degrees. Moreover, low Unc
values belong to the areas with high Bel degrees.
As aresult, the areas with high potential of ground-
water occurrence have a low uncertainty. The Pls
map results show that the values of Pls are high in
regions with high Bel values and low Unc values.
The results of the current research are in accor-
dance with those of Nampak et al. (2014) and
Pourghasemi and Beheshtirad (2015). According
to Althuwaynee et al. (2014), the main benefit of
the EBF mode is the modelling of the uncertainty
degree (Dis) along with the predictive mapping of
zones.

The calculated GPI indices were classified into
five different classes of low, moderate, high and
very high potential based on a natural break clas-
sification scheme (Zare et al. 2013). The results are
shown in figure 5(a—c).

5. Validation of the achieved maps for
groundwater potential

Validation of the achieved maps by different mod-
els is a very important phase in any modelling,
without which the results of modelling lose their
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Figure 6. Validation of the GPM in the Sero plain: (a) the success rate curve and (b) the prediction rate curve.

scientific significance (Chung and Fabbri 2003).
The training dataset was overlaid with final maps
and, finally, the receiver operating characteristic
curves (ROC curves) were plotted as the success-
rate curves. The area under the ROC curve (AUC)
was quantitatively calculated as the result of the
prediction capability of the model in the SPSS 18
software (Akgun 2012; Mohammady et al. 2012;
Pourghasemi et al. 2012). The ROC curve is a
graphical plot demonstrating the diagnostic capa-
bility of a binary classifier system. In the ROC
plot, X-axis and Y-axis are false positive rate
and true positive rate, respectively. The range of
AUC is between 0.5 and 1, and higher AUC val-
ues exhibit more prediction ability of the model.
This range was classified as: 0.5-0.6, poor; 0.61-0.7,
average; 0.71-0.8, good; 0.81-0.9, very good and
finally, 0.9-1, excellent (Yesilnacar 2005). As the
success rate curve was calculated with the train-
ing dataset, which was used for modelling, it could
not be utilised as the result of model validation
and it only showed how much the model built was
useful in GPM. The prediction rate curve, which
was attained using the final groundwater potential
maps and testing dataset, revealed how efficient the
built model was for GPM. Thus, its AUC was used
as the model’s prediction capability. The AUC suc-
cess rate values of FR, SE and EBF models are
equal to 0.888, 0.847 and 0.897, respectively, which
correspond to 88, 84 and 89% modelling accuracy
rates (figure 6a and table 3). The AUC values of the
prediction rate for the FR, SE and EBF models are
0.84, 0.81 and 0.85, which correspond to 0.84, 81
and 85% of the prediction accuracy rates (figure 6b
and table 3).

Table 3. AUC results of the used models.

AUC success AUC prediction

Models rate rate

FR 0.88 0.84
SE 0.84 0.81
EBF 0.89 0.85

Based on the results, the FR, SE and EBF bivari-
ate models can be applied as a practical and simple
tool to evaluate and manage groundwater. The
advantages of the bivariate models are (i) simple
implementation, (ii) reasonable accuracy in spatial
prediction, and (iii) the ability to identify the fac-
tors or combinations of factors in the assessment
(Van Westen et al. 2003).

6. Conclusion

As groundwater resources have an increasingly
important role in water supplies all over the world,
the evaluation of groundwater potential zonation
has turned into a hot topic for those holding
responsible positions in authority in governments,
groundwater resources managers and private and
land-use planners. In the present paper, three data-
driven models, namely, FR, SE and EBF, were
successfully applied to delineate the groundwa-
ter potential of the Sero plain in west Azerbaijan
province, Iran, as one of the principal regions in
the province for agricultural activities. In the first
step, 75 well locations with groundwater yields
>11m3/h were identified and divided into two
categories with the sizes of 70% (53 locations)
to develop the model and 30% (22 locations) to
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validate the model. Afterwards, 10 groundwater
conditioning factors were selected for modelling.
Finally, using the above-mentioned three models,
three groundwater potential maps were produced.
The results of model validation showed that the
AU-success rate and AU-prediction rate curves of
FR, SE and EBF were equal to 88, 84 and 89%
and 0.84, 81 and 85%, respectively, and, accord-
ing to ROC classification, their accuracy was very
good. The results revealed that the EBF model
was the best model for groundwater assessment
of the Sero plain in both training and validation
phases; the next models were FR and SE. One of
the major benefits of EBF was that it allowed for
(i) the predictive mapping of favourable zones and
(ii) modelling of the uncertainty degree in predic-
tion. Based on the results of the SE model, the
most and the least important factors of groundwa-
ter occurrences in the study area were altitude and
curvature and rainfall, respectively.

Overall, the achievements of the current study
revealed that the models investigated could be
applied successfully in spatial prediction modelling.
The results of this study are helpful for related
agencies in Iran, e.g., the RWAU and the Bureau of
Soils and Water Management, and decision makers
in comprehensive assessment of the development of
groundwater exploration and environmental man-
agement in future planning. The bivariate models
provided rapid, accurate and cost-effective results.
In future work, the water quality of the case study,
especially in areas with high groundwater occur-
rence potential, may be investigated and classified
according to its usability in drinking and agricul-
ture for better management of the groundwater
resources.
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