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Current state of the art weather/climate models are representation of the fully coupled aspects of the
components of the earth system. Sea-ice is one of the most important components of these models.
Simulation of sea-ice in these models is a challenging problem. In this study, evaluation of the hind-
cast data of 14 boreal summer seasons with global coupled model HadGEMS3 in its seasonal set-up has
been performed over the Arctic region from 9th May start dates. Along with the biases of the sea-ice
variables, related atmosphere and oceanic variables have also been examined. The model evaluation is
focused on seasonal mean of sea-ice concentration, sea-ice thickness, ocean surface current, SST, ice-
drift velocity and sea-ice extent. To diagnose the sea-ice biases, atmospheric variables like, 10 m wind,
2 m air temperature, sea-level pressure and ocean sub-surface temperatures were also examined. The
sea-ice variables were compared with GIOMAS dataset. The atmospheric and the oceanic variables were
compared with the ERA Interim and the ECMWF Ocean re-analysis (ORAP5) datasets, respectively.
The model could simulate the sea-ice concentration and thickness patterns reasonably well in the Arctic
Circle. However, both sea-ice concentration and thickness in the model are underestimated compared to
observations. A positive (warm) bias is seen both in 2 m air temperature and SST, which are consistent
with the negative sea-ice bias. Biases in ocean current and related ice drift are not related to biases in
the atmospheric winds. The magnitude of the oceanic subsurface warm biases is seen to be gradually
decreasing with depth, but consistent with sea-ice biases. These analyses indicate a possibility of deeper
warm subsurface water in the western Arctic Ocean sector (Pacific and Atlantic exchanges) affecting the
negative biases in the sea-ice at the surface. The model is able to simulate reasonably well the summer
sea-ice melting process and its inter-annual variability, and has useable skill for application purpose.
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1. Introduction small changes in temperature and radiative forcing.

Sea-ice plays a significant role in regulating the
Sea-ice exists as a thin layer at the interface of global heat budget through high surface albedo,
the ocean and atmosphere, and is sensitive to insulating the ocean beneath it. Formation of

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.
ias.ac.in/Journals/Journal _of Earth_System_Science).

1


http://crossmark.crossref.org/dialog/?doi=10.1007/s12040-018-1043-z&domain=pdf
http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science
http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science

16 Page 2 of 12

sea-ice causes brine rejection and that increases
the salinity in the ocean and the melting of
sea-ice decreases the salinity which freshens the
ocean. Changes in the Arctic and Antarctic sea-
ice are one of the most direct indicators of climate
change (Feltham 2015). The extensive retreat of
sea-ice in the Arctic in the recent decades has
been a major problem and concern for our cli-
mate system. The satellite record for the past
three decades shows a sharp decreasing trend in
the sea-ice extent over the northern hemisphere
and the Arctic region with a maximum negative
trend in the month of September (Serreze et al.
2007; Parkinson and Cavalieri 2012; Serreze and
Stroeve 2015). There has not been a single monthly
record high in the Arctic since 1986. Neverthe-
less, there have been 75 record lows during the
same period (Parkinson and DiGirolamo 2016).
Comiso (2006) reported a remarkable decline of
Arctic sea-ice area and the extent in the winters
of 2005 and 2006 and he attributed the nega-
tive sea-ice anomalies to the surface temperature
anomalies and the changing wind pattern. Sea-
ice concentration is correlated to several modes of
atmospheric variability, which should be well rep-
resented in models. Liu et al. (2004) explained that
the western (eastern) Arctic is positively (nega-
tively) affected by the positive (negative) phases
of Arctic Oscillation and the El Nino Southern
Oscillation (ENSO). The decline of sea-ice in the
Arctic contributes to the Arctic amplification but
it is regulated by the Pacific Decadal Oscillation
(PDO) (Screen and Francis 2016). Deser and Teng
(2008) explained the effect of Northern Annu-
lar Mode (NAM) and atmospheric circulation on
the sea-ice concentration. Sea-ice responds to the
changes in the atmosphere and the ocean variabil-
ity and vice-versa on times scales ranging from a
few days to decade. The three potential dynamical
pathways that link Arctic amplification to mid-
latitude weather are changes in storm tracks, the
jet stream, and planetary waves and their asso-
ciated energy propagation (Cohen et al. 2014).
The changes in the Arctic have apparent relations
with the weather events occurring in the tropics
(Krishnamurti et al. 2014) and they attributed the
rapid Arctic ice melt to the high rainfall events in
association with the South Asian monsoon. Heat
released from tropical monsoon convection causes
the transport of large heat fluxes to the Canadian
Arctic. Henderson et al. (2014) studied the variabil-
ity of sea-ice with different phases of the leading
mode of atmospheric intra-seasonal variability, the
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Madden—Julian Oscillation (MJO) and found that
the MJO modulates Arctic sea-ice regionally. The
wind forcing in the Arctic Ocean increases in
the reduced sea-ice scenario, which impacts on the
ocean currents and the Arctic fresh water outflow
(Vihma 2014).

There have been numerous investigations on the
Arctic sea-ice variability and its effects on regional
as well global atmospheric changes and vice-versa,
using coupled ocean—atmosphere—cryosphere/earth
system models. Rinke et al. (2013) used the cou-
pled regional climate model HIRHAM-NAOSIM
and investigated the atmospheric feedbacks asso-
ciated with the late summer sea-ice anomalies
in the Arctic and suggested that the feedbacks
depend on regional as well as decadal variations
in the coupled atmosphere—ocean—sea-ice system.
Cassano et al. (2014) conducted a series of numer-
ical experiment in order to study the atmospheric
responses of reduced sea-ice cover and concluded
that the observed atmospheric circulation anoma-
lies was driven partly by the changes in the sea-ice
in some seasons. Rae et al. (2014) conducted sen-
sitivity study of the sea-ice using the HadGEM3
(Hadley Centre Global Environment Model version
3) model and reported that an increased atmo-
spheric resolution reduces the sea-ice extent due
to an increased pole ward heat transport. Petrie
et al. (2015) investigated the large scale atmo-
spheric circulation response to the large decline
of arctic sea-ice since 2007, in the ERA-Interim
re-analysis and HadGEMS3 climate model experi-
ments. Day et al. (2016) presents the description of
the datasets for the Arctic from a coordinated set
of idealised initial-value predictability experiments
with seven general circulation models. Pemberton
et al. (2017) conducted a 45 year long hind-cast of
the sea-ice cover in the Baltic Sea, using NEMO-
LIM3.6 ocean—sea-ice model and reported that the
simulated sea-ice variables, like sea-ice concentra-
tion and thickness, are comparable with the best
available datasets.

Recognizing these key aspects, a better repre-
sentation of sea-ice in the weather/climate models
is very important. The sea-ice variables such as
thickness, extent, concentration, volume, and ice
drift velocity are dependent on the forcing by the
atmosphere from above and also by the ocean from
below. The model should comprehend the govern-
ing dynamics and thermodynamic properties of the
sea-ice as part of coupled system. Among the first
generation coupled models, Hadley Centre cou-
pled model (HadCM3) (Gordon et al. 2000) could
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produce stable and realistic simulations of sea-ice
variables, even though the sea-ice was modelled in
relatively simple manner. The sea-ice component
in the HadGEM1 (Johns et al. 2006) was more
complex than that in the HadCM3. In HadGEM1,
the sea-ice thermodynamics as well as dynamics
were improved by absorbing the components of Los
Alamos National Laboratory sea-ice model (CICE)
(McLaren et al. 2006; Hunke and Lipscomb 2010).
HadGEM1 resolved the sub-grid scale ice thick-
ness distribution (ITD). The evolution of ITD
was being determined by thermodynamic growth/
melt, advection, and redistribution by ridging
(Thorndike et al. 1975). HadGEM3 (Hewitt et al.
2011; Keen et al. 2013) employs a fully coupled
atmosphere, ocean and sea-ice models, the Met
Office Unified Model atmosphere component, the
NEMO (Nucleus for European Modelling of the
Ocean) (Madec 2008) ocean model and the Los
Alamos sea-ice model (CICE) using the OASIS
coupler. For continuous model development, it is
important to evaluate the model skill in the Arctic
for the sea-ice related parameters (Tietsche et al.
2014, 2017).

In this study, we analyse the sea-ice variables
and related ocean and atmospheric components
over the Arctic Ocean from coupled hind-cast runs
performed at NCMRWF, India in collaboration
with Met Office UK. The seasonal runs were made
for 14 northern summer monsoon seasons dur-
ing 1996-2009 with a version of HadGEM3 in
the seasonal set-up. The seasonal mean of sea-
ice concentration, sea-ice thickness, sea-ice drift
velocity, SST, sub-surface temperature, 2 m atmo-
spheric temperature, mean sea-level pressure and
10 m winds for the months of July, August and
September (JAS), which is the peak sea-ice melting
season, for the entire period of simulation is being
compared with that of the observed/re-analysis
variables.

2. Coupled model set-up and data used

The coupled model set-up at the National Centre
for Medium Range Weather Forecasting (NCM-
RWF') was similar to the GloSea4 system of UKMO
(Arribas et al. 2011; Hewitt et al. 2015). The
exact details of the implementation is given in
Mitra et al. (2013). This model is being further
jointly studied/developed for monsoon prediction
for South Asia region. The core model is the
version of coupled UKMO (HadGEM3), which
includes a range of specific model configurations
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incorporating different levels of complexity, but
with a common physical framework. In the
HadGEM3 (Hewitt et al. 2011; Peterson et al.
2015) model framework, the UM atmospheric
model, NEMO ocean model and the CICE sea-ice
models are being coupled through the OASIS cou-
pler. The coupled model at the NCMRWF employs
the atmosphere model with a spatial resolution of
1.875 x 1.25° in the horizontal, having 85 layers in
the vertical (50 levels are below 18 km), the NEMO
ocean model in the ORCA tri-polar grid configu-
ration, which has 1 x 1° horizontal resolution in
mid-latitudes and enhanced meridional resolution
near the equator (0.33° at the equator), giving 75
layers in the vertical with a very fine resolution in
the upper ocean (1 m resolution near the ocean
surface. The CICE (version 4.1) model (Lipscomb
and Hunke 2004) configuration used is based on the
zero-layer approximation of (Semtner 1976), which
has five ice thickness categories. The sub-grid scale
ITD is simulated in such a way that the ice pack
in the each grid cell is divided into five thickness
categories. Even though the standard CICE model
employs multilayer ice model (Bitz and Lipscomb
1999), in HadGEM3 the growth and melting of sea-
ice are calculated by using the zero-layer thermo-
dynamic model of (Semtner 1976) with one layer of
snow and one layer of ice in the vertical. The devel-
opment of global sea-ice 6.0 configuration for the
Met Office global coupled model GC2.0 is explained
by Rae et al. (2015). Here the start date for our
coupled model runs is 9 May, and we did hind-
cast runs in NCMRWF HPC system from 1996 to
2009. The coupled NCUM was integrated for six
months stretching up to October for each of the
above-mentioned years. Results for July, August
and September (JAS) period are discussed in this
study.

The monthly mean sea-ice concentration data is
taken from the Met Office Hadley Centre’s sea-
ice dataset HadISST1 (Rayner et al. 2003) which
is having 1 x 1° spatial resolution. The monthly
mean sea-ice thickness and sea-ice motion vec-
tors data are taken from the GIOMAS dataset
(Zhang and Rothrock 2003), having a spatial reso-
lution of 1 x 1°. Apart from the sea-ice variables,
the atmospheric variables, 2 m temperature, sea
level pressure, atmospheric vertical temperature
and atmospheric 10 m winds were taken from the
ERA INTERIM dataset having a spatial resolu-
tion of ~1 x 1° (Dee et al. 2011). The monthly
mean sea surface temperature (SST) is taken from
the Reynolds’s SST (Reynolds et al. 2007) datasets



16 Page 4 of 12

(a) Observed (b)

i
)

0 0.1 0.2 0.3 0.4 0:5 0.6 0.7 0.8
Sea ice fraction

Model (c)

J. Earth Syst. Sci. (2019) 128:16

Bias

0.9 1 04 -02 0 02 04

Sea ice fraction

Figure 1. Mean sea-ice concentration (JAS) during 1996-2009.

with a spatial resolution of 0.25 x 0.25° and the
monthly mean ocean vertical temperature is taken
from the ECMWEF Ocean Reanalysis (ORAP5)
datasets (Balmaseda et al. 2013) having a spatial
resolution of 0.25x0.25°. All the variables are inter-
polated to a common spatial resolution of 1 x 1°
before computing the biases.

3. Results and discussion

For the Arctic region sea-ice related variables
will be discussed for the July—September (JAS)
3 months period. The peak summer for the north-
ern polar region is associated with this JAS months,
during which the sea-ice extent and concentra-
tion is usually minimum. This period covers the
complex melting and related decreasing of sea-
ice extent which has to be examined in coupled
model simulations. Any bias during the period will
reveal the weakness of the model in simulating
sea-ice related processes. Sea-ice concentration is
an important variable to study in model simu-
lations. In the model grid box the relative area
within the grid (ice fraction) represented indicates
the sea-ice concentration. Similar quantities are
also available from sea-ice observations in HadISST
data (Rayner et al 2003). Figure 1 shows the
mean Arctic summer seasonal (JAS) sea-ice con-
centration in fraction expressed in a scale of 0-1
during the simulation period. In observations, the
sea-ice is mostly confined to the Arctic Circle. A
wide-spread of 0.8-1 fraction sea-ice concentration
is seen in the observation off Greenland through
the Lincoln Sea reaching the southern part of the
Beaufort Sea with a northern extent reaching till

the center of the Arctic Circle. The model also
produces a similar pattern of sea-ice concentra-
tion covering very similar regions as seen in the
observations. However, its northern extent is lim-
ited to the Lincoln Sea and not reaching to the
center of the Arctic Circle as seen in the observa-
tion. The model could simulate the sea-ice concen-
tration reasonably well in the Arctic Circle. One
region of negative bias seen is in the east of Green-
land and the north of Barents and Kara Sea. The
model is underestimating the sea-ice concentration
by around 20-60%.

Figure 2 shows the seasonal (JAS) mean sea-ice
thickness over the Arctic Ocean during the simula-
tion period. The sea-ice thickness is seen to go up
to 4 m. In the observation, there are two regions
with maximum ice thickness distributions. One is
off Greenland and the other is off Queen Elizabeth
islands. There is a spread of 2 m thick sea-ice all
the way from the south eastern Arctic Circle, off
Greenland, through the Lincoln Sea to the Beau-
fort Sea and a 1 m thick sea-ice spread all over the
Arctic Circle southwards. The sea-ice thickness in
the model shows a maximum value of 2 m around
the same regions, where a maximum was seen in
observations. Another patch of 1 m thick sea-ice
is seen from the southwestern Arctic Circle to the
southern Beaufort Sea. The difference between the
model and the observation shows a large negative
bias all over the Arctic Circle. The maximum neg-
ative bias of 3 m is seen off Greenland. A negative
bias of 1-2 m is spread all over the Southern Arc-
tic Ocean to the South West Arctic Ocean, in the
Lincoln Sea and a negative bias of 1 m all over the
Arctic Ocean.
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Figure 2. Mean sea-ice thickness (JAS) during 1996-2009.

The observed seasonal mean ocean surface
currents (figure 3) in the Arctic Ocean depict the
main circulation features. The clockwise Beaufort
Gyre and the transpolar drift are seen clearly. The
model is also able to simulate the main features
seen in observations. There are biases seen over
the Greenland Sea and the Arctic Ocean. There is
an anticlockwise pattern in the bias, which dimin-
ishes the intensity of the Beaufort Gyre in the
model. The biases in the surface circulation reflect
in the seasonal mean ice drift as well (figure 4). The
transpolar drift which pushes the sea-ice towards
Greenland helps form thick multi-year ice. The
observed sea-ice drift shows a strong drift towards
Greenland and also towards the Queen Elizabeth
islands, which helps for the formation of multiyear
sea-ice whereas in the model, there is an ice drift
away from Greenland coastal seas, which could be
one reason for the negative bias in the sea-ice thick-
ness in the model related to possible absence of
multiyear ice. A weakened transpolar drift results
in a weak ice drift towards the Greenland region
and hence that could restrict the formation of the
multiyear ice in the model. Similar results have
been reported from a model inter-comparison study
of four global coupled climate models (Tietsche
et al. 2014), which indicate that the biases of sea-
ice in coastal regions are linked to sea-ice drift
errors. The ice drift is closely related to the ocean
currents. The observed ice drift and current data
used here is from GIOMAS, which could be hav-
ing some uncertainty in Fram Straight region.
Better re-analysis data is required for the polar
regions.

Next, we examine the biases in the 2 m air
temperature in model simulations (figure 5). There
is a positive (warm) bias of 2°C in the mean air
temperature at 2 m seen in the same regions as the
sea-ice thickness biases off Greenland extending up
to the southern extend of Beaufort Gyre. This pos-
itive 2 m air temperature bias is consistent with the
negative sea-ice thickness bias in the region. The
larger atmospheric wind pattern at 10 m height
over the entire Arctic (figure 6) shows an organized
anti-cyclonic (vertically sinking motion) bias in the
model in the eastern Arctic extending from the cen-
tral to the Laptev Sea, which is indeed associated
with a positive bias in mean sea level pressure in
the same region (figure 7). It is seen from the biases
of 10 m winds and the surface ocean currents, that
the biases in currents are not directly related to the
biases in winds. Usually, the atmospheric forcing
like winds and fluxes driving the ocean model pro-
duces the biases in upper-ocean. Biases in ocean
current (related ice drift) is not similar to wind
biases. Therefore, it is possibly that other processes
like sea-level gradient, thermohaline gradient and
the remote forcing could be other sources related
to surface current biases.

The mean sea surface temperature (figure 8)
gives a positive model bias in the same region,
where a negative bias in the sea-ice concentration
was seen. The similar biases are found in the sub-
surface temperature in the 12 m depth (figure 9)
and also in the 30 m (figure 10). The magnitude
of the sub-surface biases is seen to be gradually
decreasing, which is consistent with sea-ice biases
in upper layers. The maximum positive sea-surface
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Figure 4. Mean sea-ice drift (JAS) during 1996-2009.

temperature bias at surface agrees with negative
sea-ice concentration bias there. Therefore, from
the sub-surface temperature biases at 12 and 30 m,
it is not possible to conclude if the negative sea-ice
bias is related to the sub-surface warm biases com-
ing from deeper waters. To examine further, we
looked at deeper sub-surface temperature biases
up to 500 m in model (figure 11). The Arctic
Ocean region is divided into western (0-180°W,
60-90°N) and eastern (0-180°E, 60-90°N) sectors
for analysis purposes. There is a positive warm
bias in the entire first 50 m of the upper ocean
(figure 11a and b) in both the sectors of Arctic
Ocean. Below 200 m, the deeper sub-surface biases

show a positive warm one in western sector and a
mild positive warm bias in the eastern sector. This
shows that there is a possibility of deeper warm
sub-surface water in western sector (Pacific and
Atlantic exchanges), which could be affecting the
negative biases in the sea-ice at surface.

Since the model set up was for seasonal scale
simulation, we examined the skill of the model in
capturing the inter-annual sea-ice extent variabil-
ity in model and observations. Figure 12(a) shows
a reasonably good simulation of the sea-ice extent
in the model. The model is able to capture the
summer sea-ice melting well. The correlation for
the study period compared to observation is 0.94,
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Figure 5. Mean air temperature at 2 m (JAS) during 1996-2009.
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Figure 6. Mean 10 m wind (JAS) during 1996-2009.

which is a good skill. Figure 12(b) shows the skill of
the model in capturing the sea-ice extent anomaly
(departure from the respective mean) for the JAS
season for the simulation period. The model is able
to capture the inter-annual variability of the sea-ice
extent anomaly. In most of the years the sign of the
anomaly is in correct direction. Hence potentially,
this model is useful in extended/seasonal predic-
tion of sea-ice extent for Arctic in JAS season.

4. Summary and future works

Coupled weather/climate models have to include
a realistic sea-ice module to take care of the

interactions with the polar regions. In this study,
the seasonal set up (GloSead) of the HadGEM3
global coupled model was used to produce sea-
sonal hind-cast data for northern summer. Sea-ice
related variables were studied for the Arctic region
from the model simulations. Along with the biases
of the sea-ice variables, related atmosphere and
oceanic variables were also examined. Seasonal
mean/biases of sea-ice concentration, sea-ice thick-
ness, Arctic Ocean current, SST, ice-drift velocity
and sea-ice extent were studied. Atmospheric vari-
ables like, 10 m wind, 2 m air temperature, sea-level
pressure and ocean sub-surface temperatures were
also examined to diagnose the sea-ice biases. The
model could simulate the sea-ice concentration and
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Figure 9. Mean sub-surface temperature at 12 m (JAS) during 1996-2009.
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Figure 10. Mean sub-surface temperature at 30 m (JAS) during 1996-2009.
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Figure 11. Mean vertical upper ocean (up to 500 m) temperature (JAS) during 1996-2009.

thickness reasonably well, although both sea-ice
concentration and thickness in model are under-
estimated. A positive (warm) bias is seen both
in 2 m air temperature and SST, consistent with

the negative sea-ice bias. The magnitude of the
oceanic sub-surface warm biases is seen to be grad-
ually decreasing with depth, but consistent with
surface sea-ice biases. These analyses indicate a
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possibility of deeper warm sub-surface water in
western Arctic Ocean sector (Pacific and Atlantic
exchanges) affecting the negative biases in the sea-
ice at surface. Biases in ocean surface currents and
related ice drifts are not related to atmospheric
winds biases. The model is able to simulate reason-
ably well the summer sea-ice melting process and
its inter-annual variability, and has useable skill for
application purpose.

Inter-comparison of sea-ice related parameters
from ocean re-analysis and satellite data indicate
some uncertainty about sea-ice concentration in
observations (Saheed et al. 2016; Tietsche et al.
2017). There could as well be uncertainty in model
simulations, coming from uncertainty in initial con-
ditions, model formulation and representation of
the physical processes in the model. Figure S1 (sup-
plementary figure) shows the bias in model for
sea-ice concentration compared to NSIDC observed
dataset. The nature of bias is similar, but the mag-
nitude is slightly different. In future model runs
with few ensemble members will indicate the uncer-
tainty in simulations. As the models are improving
gradually, the re-analysis products are becoming
better. At the Met Office, UK, new version of sea-
ice, coupled model and its seasonal forecast version

have been recently implemented (Maclachlan et al.

2015; Rae et al. 2015; Williams et al. 2015). It
will be interesting to examine the polar sea-ice
representation and related processes in these mod-
els. New types of matrices have been identified
to diagnose the three dimensional sea-ice biases
in models, which will reveal the deficiencies and
links in the processes of Arctic (Dukhovskoy et al.
2015). A coordinated modeling experiment has
been proposed to study the climate response func-
tion (Marshall et al. 2017) for the Arctic Ocean
across a number of Arctic models, which will give
better insight into the impact of model resolution,
formulation and parameterization.
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