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The operational medium range rainfall forecasts of the Met Office Unified Model (UM) are evaluated over
India using the Contiguous Rainfall Area (CRA) verification technique. In the CRA method, forecast and
observed weather systems (defined by a user-specified rain threshold) are objectively matched to estimate
location, volume, and pattern errors. In this study, UM rainfall forecasts from nine (2007–2015) Indian
monsoon seasons are evaluated against 0.5◦ × 0.5◦ IMD–NCMRWF gridded observed rainfall over India
(6.5◦−38.5◦N, 66.5◦−100.5◦E). The model forecasts show a wet bias due to excessive number of rainy days
particularly of low amounts (<1 mm d−1). Verification scores consistently suggest good skill the forecasts
at threshold of 10 mm d−1, while moderate (poor) skill at thresholds of <20 mm d−1 (<40 mm d−1).
Spatial verification of rainfall forecasts is carried out for 10, 20, 40 and 80 mm d−1 CRA thresholds for
four sub-regions namely (i) northwest (NW), (ii) southwest (SW), (iii) eastern (E), and (iv) northeast
(NE) sub-region. Over the SW sub-region, the forecasts tend to underestimate rain intensity. In the SW
region, the forecast events tended to be displaced to the west and southwest of the observed position on
an average by about 1◦ distance. Over eastern India (E) forecasts of light (heavy) rainfall events, like
10 mm d−1 (20 and 40 mm d−1) tend to be displaced to the south on an average by about 1◦ (southeast
by 1−2◦). In all four regions, the relative contribution to total error due to displacement increases with
increasing CRA threshold. These findings can be useful for forecasters and for model developers with
regard to the model systematic errors associated with the monsoon rainfall over different parts of India.
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1. Introduction

The rainfall during the monsoon (June to
September, JJAS) season contributes over 75% of
the annual rainfall in most parts of the Indian
subcontinent and is the lifeline for agriculture
and economy of the entire region. Forecasting

of seasonal rainfall gets great attention due to
ensuing drought (flood) conditions. The monsoon
rainfall occurs in many sporadic weather events
having spatial scales from 100 to 1000 km. The
daily and weekly rainfall during the season poses
a significant forecasting challenge in Numerical
Weather Prediction (NWP). This is due to complex
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interactions involving topography, treatment of
synoptic scale systems, and mesoscale convective
systems (in the NWP models) and non-availability
of good quality high resolution observations over
land and neighboring seas.

Numerical weather prediction (NWP) models
have undergone significant improvements in the
last two decades and have demonstrated reason-
able success and skill in short to medium-range
weather forecasting (Kalnay et al. 1998; Simmons
and Hollingsworth 2002; Harper et al. 2007). How-
ever, the predictability of Indian summer monsoon
conditions is quite low (Goswami and Ajay Mohan
2001). Drivers of the intraseasonal variability such
as the Madden-Julian oscillation modulate the fre-
quency of occurrence of synoptic events such as
lows, depressions and tropical cyclones (Maloney
and Hartmann 2000; Goswami et al. 2003; Bessafi
and Wheeler 2006). Accurate Quantitative Precipi-
tation Forecasting (QPF) still remains a challenge,
as evidenced by the frequent large errors in the
predicted precipitation amounts and spatial distri-
bution from NWP models. Factors contributing to
these errors include errors in the initial conditions,
predicted flow (dynamics), large-scale and convec-
tive rain processes (physics), grid resolution and
representation of local land surface characteristics.
As a result, the QPFs often have large errors in pre-
dicted position of the rain system, shape and size
of the rain pattern, and magnitude or intensity of
rainfall.

With the enhanced computing capability in
recent years, the spatial and temporal resolu-
tion of models has also increased. Verification of
high resolution forecasts using traditional metrics
often suggests poor forecast skill due to the lack
of exact matches among the forecast/observation
pairs. Several new diagnostic spatial verification
approaches have been developed recently that bet-
ter reflect the quality of the forecasts. Feature-
based methods and neighborhood verification
approaches assess the broader forecast quality
without over-penalizing the errors at grid scale.
Ebert (2008), Ebert and Gallus (2009), and Gille-
land et al. (2010) provide a detailed review and
inter-comparison of several spatial verification
methods. The Contiguous Rain Area (CRA)
method is a feature-based approach that iso-
lates systems or features of interest and evaluates
their properties, namely, location, size, intensity,
and pattern. It was one of the first methods to
measure errors in predicted location and to sep-
arate the total error into components due to

location, volume, and pattern errors (Ebert and
McBride 2000; Ebert and Gallus 2009).

The aim of the paper is to investigate and quan-
tify the rainfall forecast biases in the unified model
to better predict the Indian monsoon. The medium
range rainfall forecasts over India are evaluated
in this study to assess the model performance
during the monsoon season. The Met Office Uni-
fied Model rainfall forecasts (UM hereafter) during
the nine monsoon (JJAS) seasons from 2007 to
2015 are evaluated using traditional and CRA
verification techniques.

There have been quite a few studies reporting
rainfall forecast verification over India based on
different models (Mandal et al. 2007; Das et al.
2008; Ashrit and Mohandas 2010; Chakraborty
2010; Iyengar et al. 2011; Ashrit et al. 2015; Sharma
et al. 2015). In general, these studies indicate
that the average root mean squared error (RMSE)
of daily rainfall is high (low) in higher (lower)
rainfall regions and that RMSE increases with
lead time. Spatial distributions of various perfor-
mance metrics over Indian land regions show that
models tend to have better forecast skill over north-
ern and northwestern India (Iyengar et al. 2011).
The detailed verification of the UM forecasts and
its comparison with National Centre for Medium
Range Weather Forecasting (NCMRWF) opera-
tional forecasts highlighting the biases are reported
in a series of monsoon reports (Iyengar et al. 2011,
2014). The data and verification methodology are
described in section 2. Section 3 gives examples of
CRA method applied to rain systems over India
and discusses the results in the context of regional
performance. The summary and conclusions are
given in section 4.

2. Data and methodology

2.1 Observed rainfall data over India

Rainfall analysis based on quality controlled
observations is most crucial for benchmarking the
capabilities and performance of NWP forecasts.
The daily rainfall gridded data (over land points
only) for the period of 2007–2011 used in the
present study is obtained from India Meteorologi-
cal Department (IMD). This gridded data is pre-
pared based on the rainfall measurement obtained
from the rain gauges, which are the most trusted
information source. The interpolation method used
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Table 1. Some of the important Unified Model (UM) changes in recent years.

UM versions Configurations

2007 UM6.4 (Feb2007), UM6.5 (Jul2007) N320L50 (∼40 km in mid-latitudes)

2008 UM7.0 (Mar2008), UM7.1 (Aug2008) N320L50 (∼40 km in mid-latitudes)

2009 UM7.3 (Mar2009), UM7.4 (Aug2009) N320L70 (∼40 km in mid-latitudes) 12 min time step

2010 UM7.6 (Apr2010), UM7.1 (Aug2010) N512L70 (∼25 km in mid-latitudes) 10 min time step,

4D var data assimilation

2011 UM7.9 (Apr2011), UM8.0 (Aug2011) N512L70 (∼25 km in mid-latitudes) 10 min time step,

hybrid data assimilation

2012 UM8.2 (Apr2012), UM8.2 (September 2012)

PS30

N512L70 (∼25 km in mid-latitudes) 10 min time step,

hybrid data assimilation

2013 UM8.2 (January 2013, PS31), (April 2013,

PS32)

N512L70 (∼25 km in mid-latitudes) 10 min time step,

hybrid data assimilation

2014 UM8.4 (February 2014, PS33) N512L70 (∼25 km in mid-latitudes) 10 min time step,

hybrid data assimilation

2014 UM8.5 (July 2015, PS34) N768L70 (grid 1536 × 1152, ∼17 km in mid-latitude)

7.5 min time step, hybrid data assimilation

2015 UM8.5 (July 2015, PS35) N768L70 (grid 1536 × 1152, ∼17 km in mid-latitude)

7.5 min time step, hybrid data assimilation

to develop this data set is Sheperd interpola-
tion (Shepard 1968), which is discussed in Rajee-
van et al. (2006) also. NCMRWF–IMD (National
Centre for Medium Range Weather Forecasting–
India Meteorological Department) Merged Satellite
Gauge (NMSG; Mitra et al. 2009) daily rainfall
analyses has been used for the period 2012–2015.
The horizontal resolution of the data (2007–2015)
is at 0.5◦ latitude × 0.5◦ longitude. NMSG rainfall
data is the merge product of near-real-time Tropi-
cal Rainfall Measuring Mission Multi-satellite Pre-
cipitation Analysis (TMPA)-3B42 and rain gauge
data from the IMD using an objective analysis
scheme. Indian monsoon rainfall represented by
rainfall analysis based on IMD rain gauge (2007–
2011) and NMSG (2012–2015) is more realistic
than any other available dataset because of the fact
that it uses additional local rain gauge observations
(Mitra et al. 2013). This analyzed rainfall product
therefore provides a better baseline for NWP model
validation and monsoon model development. The
entire observed rainfall data series (2007–2015) will
be referred as OBS hereafter.

2.2 Forecast rainfall over India

The Met Office Unified Model is the numerical
modeling system developed for the seamless predic-
tion of weather and climate systems (Davies et al.
2005; Walters et al. 2011; Brown et al. 2012). This
‘seamless’ prediction system implies that the same
model with different configuration across all tem-
poral and spatial scales is used with each designed

configuration is to best represent the processes
which have most influence on the timescale of inter-
est. For example, the use of a coupled ocean model
is essential for accurate climate predictions, while
higher resolution atmospheric model component
can be more useful than running a costly ocean
component for short to medium range weather fore-
casting. The rainfall output from the Met Office
operational medium range global model configu-
ration is used in this study. The Unified Model
(UM) is continually developed, taking advantage of
improved understanding of atmospheric processes
and steadily increasing supercomputer power. The
year to year important changes and upgrades dur-
ing 2007–2015 in the model configuration are listed
in table 1. The atmospheric component of uni-
fied model is based on non-hydrostatic dynamics
with semi-Lagrangian advection and semi-implicit
time stepping. It is a grid point model with the
ability to run with a rotated pole and variable hor-
izontal grid. A number of sub-grid scale processes
are represented, including convection (Gregory and
Rowntree 1990; Gregory and Allen 1991; Grant
2001), boundary layer turbulence (Brown et al.
2007), radiation (Edwards and Slingo 1996), cloud
microphysics and orographic drag (Webster et al.
2003). The model is initialized using a state of
the art global four-dimensional variation (4DVAR;
Rawlins et al. 2007) data assimilation technique.
During 2007–2015, the horizontal and vertical res-
olution of the global configuration improved from
about 40 km and 50 levels in 2007 to about 17
km and 85 levels in 2015. Daily rainfall forecast
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at all lead times starting from day 1 to 5 is used
for evaluation. For brevity, the results based on
the evaluation of day 1 forecast are presented. It
is found that results at lead times starting from
day 2 to 5 are consistent with that of day 1 fore-
cast. To carry out the evaluation of the model, the
rainfall forecast is interpolated at 0.5◦ × 0.5◦ same
as that of observed rainfall. The analysis has been
carried out over the land point just to focus the
model performance over land regions.

2.3 Verification methodology

2.3.1 Categorical verification approach

The forecast daily rainfall fields are verified using
standard categorical verification scores, which are
based on the component of the two by two contin-
gency table elements. This approach is frequently
used by operational forecasters. In this study, the
metrics which are calculated and evaluated are
probability of detection (POD), probability of false
detection (POFD), equitable threat score (ETS),
extreme dependence score (EDS), success ratio
(SR), and Hansen and Kuiper’s score (HK-score).
These metrics are simple and easily understood.
However, these scores are generally low for higher
rainfall thresholds. The detailed descriptions of
these scores are available in standard references on
statistical methods (e.g., Wilks 2011; Jolliffe and
Stephenson 2011).

2.3.2 CRA verification method

The traditional verification scores indeed provide
useful quantification of model performances. How-
ever, when we evaluate the skill of high-resolution
NWP models, these metrics seem inadequate.
These scores are severely affected by the very well
known ‘double penalty’ problem, which is asso-
ciated with errors in the predicted location of
weather features (Ebert et al. 2013). Hence, an
intuitively better forecast may score worse than
an apparently worse forecast (Roebber et al. 2004;
Rossa et al. 2008). Also, traditional verification
score do not give any hint about the sources of the
errors in the forecast. To address some of the short-
comings of the traditional verification scores, Ebert
and McBride (2000) developed a feature based
spatial verification method called as Contiguous
Rain Areas (CRA) method. The CRA method
quantifies the forecast rainfall location errors and
also decomposes the total error into components

due to errors in (i) location, (ii) volume, and (iii)
pattern. The location errors in the model forecasts
suggest issues with predicted flow and the model
dynamics. The volume and pattern errors possibly
emanate from physics and thermodynamics. The
steps involved in the CRA technique are described
in Ebert and Gallus (2009). A brief summary of
the procedure is given here.

A CRA is defined for an observation/forecast
pair based on a user specified isohyet (rain rate
contour) in the forecast and/or the observations. It
is the union of the forecast and observed rain enti-
ties as illustrated in figure 1. This simple approach
is used to match a forecast rain system with
an observed rain system under the assumption
that they are associated with a common synop-
tic situation, which is reasonable for monsoon rain
events. During the monsoon season, large parts
of India regularly receive rainfall in the range up
to 10 mm d−1. It was found that choice of 1, 2,
and 5 mm d−1 contour frequently spread the CRA
across large geographical areas, merging unrelated
rain systems. CRAs defined by higher thresholds of
10, 20, 40 and 80 mm d−1 were used to better iso-
late the heavy rain events of interest in this study.

Firstly, the CRA objects are identified in obser-
vation and forecast pair for a threshold (e.g.,
10 mmday−1). In the next step a pattern match-
ing technique is used for estimating the location
error. Here the forecast field is horizontally trans-
lated over the observed field until the best match
is obtained. The geometric distance between the
centers of gravity (COG) in the observed and esti-
mated fields forms the location error or vector
displacement. The best match between the two
entities can be determined either by (a) maximiz-
ing the correlation coefficient, (b) minimizing the
total squared error, (c) maximizing the overlap of
the two entities, or by (d) overlaying the centers
of gravity of the two entities. For a good forecast,

Figure 1. CRA formed by overlap of forecast and observa-
tions.
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Figure 2. Verification of forecast (left) rainfall over India valid for 17th June, 2013. Observed rainfall and the skill scores
(using a 1 mm d−1 threshold) are also shown.

all of the methods will give very similar location
errors. In the present study, the best match is
determined by maximizing the correlation, as was
also done by Ebert and Gallus (2009). The mean
squared error (MSE) and its decomposition (loca-
tion error, volume error and pattern error) are
computed as shown below (see Grams et al. 2006,
for details of the derivation).

MSETotal = MSEDisplacement + MSEVolume

+MSEPattern, (1)

where the component errors are estimated as

MSEDisplacement = 2SFSO (rOPT − r),

MSEVolume = (F ′ − O′),

MSEPattern = 2SFSO (1 − rOPT) + (SF − SO)2.
(2)

In the above expressions F ′ and O′ are the
mean forecast and observed precipitation values
after shifting the forecast to obtain the best match,
SF and SO are the standard deviations of the
forecast and observed precipitation, respectively,
before shifting. The spatial correlation between the
original forecast and observed features (r) increases

to an optimum value (rOPT) in the process of
correcting the location via pattern matching. The
number of ‘good matches’ corresponds to the
number of forecasts that matched well with obser-
vations when the optimum correlation (rOPT) was
(statistically) significantly greater than zero
(accessed via two tailed t-test).

2.3.3 Example of CRA verification over India

The rainfall within the monsoon season is generally
associated with low pressure systems and monsoon
depressions. These depressions and low pressure
systems sometimes interact with mid-latitude west-
erly trough and produce copious rainfall leading
to flooding (Dube et al. 2014). The evaluation of
such rainfall systems is of special interest, includ-
ing their displacement, volume and pattern errors.
We consider an example of a very heavy rain lead-
ing to flooding situation over state Uttarakhand in
India on 17th June, 2013. The heavy rainfall over
Uttarakhand was associated with a monsoon low
pressure system, which originate in Bay of Ben-
gal and starts moving northwestwards with large
amount of moisture. When the moist air from Bay
of Bengal interacted with mid-latitude westerly
trough, strong low level convergence were devel-
oped which led to deep convention over Uttarak-
hand (Dube et al. 2014; Joseph et al. 2014; Rajesh
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Figure 3. CRA verification results for forecast rainfall over Uttarakhand state of India valid for 17th June, 2013. The CRA
is defined using a 40 mm d−1 threshold.

et al. 2016). Figure 2 shows the rainfall verification
statistics with several commonly used quantita-
tive precipitation forecast (QPF) on the national
scale for day 1 forecast valid on 17th June 2013
from UM rainfall forecast. The detailed definitions
of the statistics shown in figure 2 are available
in Wilks (2011). The UM day 1 forecast valid
for 17th June 2013 indicates that the forecast (as
compared to observation) has larger number of
raining grids 698 (479), lower average rain rate of
∼28 mm d−1 (40 mm d−1) and lower maximum rain
rate 105 mm d−1 (248 mmd−1). The spatial corre-
lation of 0.66 and the categorical skill scores for
rain exceeding 1 mm (equitable threat score of 0.28,
Hanssen and Kuipers score of 0.51) indicate moder-
ate skill at predicting the location of the rain. Also,
the value of mean absolute error is about 9 mm d−1

and the root mean square error (RMSE) is about
17 mm d−1. This is mainly due to the observed rain-
fall over Uttarakhand, parts of Gujarat and the
west coast of India being severely underestimated
by the model. The value of false alarm ratio is 0.48,

probability of detection is 0.75 and the bias score is
1.45. This is because the model predicts low rain-
fall amounts over Gujarat region as well as west
coast, while excessive widespread light rains (1–5
and 5−10 mm d−1) over eastern India.

The errors can be further quantified in the rain-
fall distribution using CRA technique. Figure 3
shows the CRA verification using a 40 mm d−1 rain-
fall threshold to isolate the heavy rainfall over
Uttarakhand. The CRA is bounded by the domain
26

◦−31.5
◦
N and 77

◦−85◦E. The observed and
forecast rainfall with the 40 mm d−1 contour (in
bold) is shown in spatial map. The scatter dia-
gram on the right indicates the correspondence
between observed and forecast rainfall after shift-
ing the forecast rainfall slightly in south to correct
the location error. The numbers shown below the
scatter plot are (i) number of grids with rainfall
excess of 40 mm d−1 (ii) the average rain rate
(mmd−1) (iii) the maximum rain (mm d−1) and
(iv) the rain volume (km3) in the observations
and forecasts. In the forecasts, the number of grids
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Figure 4. Observed (upper left) and forecast (day 1, 3 and 5) mean JJAS rainfall (mm d−1) over India during 2007–2015.

Figure 5. Observed and UKMO day 1 forecast number of rainy days (rainfall >1 mm/day) during JJAS 2012. The boxes
show four domains that are used to investigate regional variation in forecast performance.

with rainfall exceeding 40 mm d−1 in the forecasts
is 59 as against 66 in observations. The maximum
rain (highest rain amount) is lower (105 mm d−1)

than the observed value (248 mmd−1), the forecast
average rain rate and volume in the CRA are
53 mmd−1 and 13 km3 as against observed values of
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Figure 6. Rainfall forecast verification scores for day 1 forecasts verified against observed rainfall: (a) probability of detection
(POD), (b) success ratio (SR), (c) probability of false detection (POFD), (d) frequency bias (BIAS), (e) equitable threat
score (ETS), and (f) Hanssen and Kuipers score (HK score).

64 mm d−1 and 16 km3, respectively. The forecast
has a RMSE of 48 mm d−1, which is mainly con-
tributed by errors in pattern (86%).

Thus, CRA method can be effectively used to
diagnose and quantify the rainfall forecast errors
and its components for different individual cases of
rainfall events. Statistics of error components based
on large number of rainfall events can be used to
establish the robust behavior of the models and
nature of the biases. Following section provides a
detailed discussion of verification results based on
long record observations and forecasts.

3. Results of rainfall forecast verification

In this section, verification results of UM
rainfall forecasts over India during nine (2007–
2015) monsoon seasons are presented. First, the
results of traditional verification metrics are briefly
discussed in sections 3.1 and 3.2 to indicate overall

forecast performances and biases over India. This
is followed by detailed discussion on the results of
CRA verification method in section 3.3.

3.1 Mean monsoon rainfall during 2007–2015:
Observations and forecast

The long period average of seasonal mean rainfall
distribution over India monsoon region is a good
measure of model’s basic performance. Figure 4
shows the seasonal mean rainfall (JJAS) over the
Indian monsoon region averaged over 2007–2015
from observed rainfall and UM model forecasts.
The panels compare the observed mean rainfall
amounts and distribution with day 1, 3 and 5
forecasts. The domain average rainfall values pre-
sented at top right of the each panel suggest that
the model has a tendency of wet bias. Model
forecasts are able to capture large scale char-
acteristics of rainfall maxima along the Western
Ghats, Arakan-Yoma mountain chains (Myanmar



J. Earth Syst. Sci. (2019) 128:4 Page 9 of 17 4

Figure 7. Forecast vs. observed mean rain intensity over four regions of India (NE, SW, E and NE) for three different CRA
thresholds.

coast) and northeastern India up to day 5. The
forecasts also successfully capture the rainfall
minima over eastern peninsula and over north-
west India. The longitudinal (west to east) gradient
in rainfall amount is quite realistic over penin-
sula and northern parts of India. Large rainfall
biases (wet) are also observed over northern India
and Indo-Gangetic plains. This feature is quite
common during each monsoon season up to 2013
(Iyengar et al. 2011). One of the possible reason
behind is that the low level winds (850 hPa; not
shown) over the Gangetic plains typically show
strong easterly bias (Iyengar et al. 2011). How-
ever, there is a considerable reduction in easterly

bias (and rainfall wet bias) during the monsoon
season of 2014 and 2015 (figure not shown). Some
of these improvements in the forecast rainfall dur-
ing recent years may be attributed to the increased
horizontal resolution (∼17 km), a new dynamical
core (ENDGame) and a revised physics package
(GA6.1) (Prakash et al. 2016; Rakhi et al. 2016).

The spatial distribution of average rainy day
counts (>1 mm d−1) over Indian region (land points
only) during the nine monsoon seasons of 2007–
2015 is presented in figure 5. The panels (i) and
(ii) show the observed and forecast count of rainy
days. It was found that model features high num-
ber of rainy days as compared to observations.
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Figure 8. Same as in figure 7, but for maximum rain intensity.

The difference between the two is striking with the
forecasts having a higher number of rainy days, in
nearly all parts of India. The forecasts have an
excessive number of rainy days, throughout the
SW, E and NE regions of India. Even over most
of the dry region of NW the model predicts a rela-
tively higher number of rainy days.

The wet bias indicated by the domain aver-
aged rainfall amounts in figure 4 could be partly
attributed to excessive number of rainy days pre-
dicted in the model, particularly over dry regions
of India. This is likely to result in large num-
ber of false alarms, particularly for low rainfall
thresholds, that can affect the skill scores, as will
be shown in the next section.

3.2 Categorical verification scores

The categorical verification scores for the UM day
1 forecasts over India are summarized using Box
and Whisker plots in figure 6. Scores are computed
for each rainfall threshold based on all the obser-
vation/forecast pairs of each day during the nine
monsoon seasons and represent the grid scale QPF
performance that may be expected on any given
day.

The panels in the top row (figure 6a and b)
show the Probability of Detection (POD) and Suc-
cess Ratio (SR). While POD indicates the fraction
of observed ‘yes’ events forecast correctly, the SR
indicates the fraction of forecast ‘yes’ events that
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were actually observed. Both scores range from 0
to 1 with 1 being a perfect score. While POD does
not depend on false alarms, the SR takes it into
account. Both the scores have high values for rain-
fall thresholds below 10 mm d−1, while moderate
skill below rainfall threshold of 20 mm d−1 and poor
skill beyond 40 mm d−1. Since SR accounts for the
false alarms, it has relatively lower values compared
to POD for 1 and 10 mm d−1 threshold.

The two panels in the middle row (figure 6c and
d) show Probability of False Detection (POFD)
and Bias Score or Frequency Bias (BIAS). The
POFD, also known as false alarm rate, indicates
what fraction of ‘no’ events were incorrectly fore-
cast as ‘yes’ events. POFD varies from 0 to 1
with 0 being a perfect score. The POFD values
indicate that forecasts have high false alarms at
low rainfall thresholds (<10 mmd−1). The Fre-
quency Bias (BIAS) indicates how the observed
and forecast frequency of ‘yes’ events compare.
BIAS varies from 0 to ∞ with 1 indicating a perfect
forecast, BIAS >1 indicating over-forecasting and
BIAS <1 indicating under-forecasting. The BIAS
in figure 6 suggests the model is over-forecasting
rain occurrence, particularly at lower thresholds
(<10 mm d−1).

Similarly, the panels in the bottom row (figure 6e
and f) show the Box and Whisker plots for, the
Equitable Threat Score (ETS) and Hanssen and
Kuipers score (HK Score). While ETS tells how
the forecast ‘yes’ events correspond to observed
‘yes’ events (accounting for random hits), HK Score
tells how well the forecasts separate the ‘yes’ and
‘no’ events. For both scores, 0 denotes no skill and
1 means a perfect score. The ETS and HK show
low values (<0.5) of the score at all rainfall thresh-
olds. While both scores indicate poor performance
of the NWP system in predicting the higher rainfall
amounts, it must be noted that these scores fea-
ture double penalty. Verification of forecasts based
on CRA method is presented in the next section
to quantify the spatial errors and error compo-
nents.

3.3 CRA verification results for monsoon seasons
(2007–2015)

The rainfall over different parts of India can be
associated with different synoptic regimes as well
as having different topography and proximity to
neighboring seas. The four regions shown in figure 6
can be considered as rainfall zones for CRA veri-
fication. The rainfall over northeastern India (NE) T
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and the southwestern peninsula (SW) strongly
reflects the effects of the low level monsoon flow
and the orographic enhancement over the moun-
tains. The rainfall over eastern India (E) can be
associated with the monsoon trough and southeast-
erly flow from the Bay of Bengal. The monsoon
trough extends from northwestern India to the
head of the Bay of Bengal. The low pressure sys-
tems that develop over the Bay of Bengal and track
in the westerly and northwesterly direction also
significantly contribute to the rainfall over east-
ern India (E). Some of the low pressure systems
track far inland in the westerly and northwesterly
direction to produce rainfall spells over the arid
and dry regions of northwest India (NW). How-
ever, the rainfall over the NW region is sometimes
associated with eastward passage of an upper-level
trough/low in the mid-latitude westerlies and their
interaction with the inland low pressure systems.

The CRA verification results are presented for
each zone based on the central location of the
CRA. Based on the good CRA matches, the scatter
plots in figures 7 and 8 show the association among
the observed and forecast average rainfall as well
as observed and maximum rain intensity for rain
systems located in each of the four zones, respec-
tively. The scatter of mean rain intensity (figure 7)
and maximum rain intensity (figure 8) over all
four zones (NW, SW, E and NE) consistently sug-
gest underestimation of rain intensity in the fore-
casts especially for the rainfall threshold beyond
20 mm d−1. For rainfall threshold of 10 mm d−1,
the mean rainfall intensity is overestimated while
maximum rain intensity is underestimated in the
model forecast over all four zones. This indicates
that the wet bias in the forecast is mainly con-
tributed by the large number of low amount of
rainfall (<10 mm d−1).

The average CRA verification statistics (after
obtaining the best match of the forecast with
the observations) using OBS data are compiled in
table 2. Figures 9 and 10 complement the informa-
tion in table 2. Figure 9 shows the scatter plots
to indicate how the displacement errors (x-error
and y-error) are clustered or distributed about
the observed positions (origin). This allows one to
understand how the nature of errors varies from
region to region. The scatter plots are presented
on the left for four regions (rows) and four thresh-
olds (columns) (figure 9a). Corresponding to each
of the scatter plot, shaded panels on the right (fig-
ure 9b) show the fraction (%) of points clustering
about the origin. The numbers shown in bracket,

in each of the panels gives the total number of
CRAs or events (daily). In figure 10, it can be
noted that over the NW region, for all thresh-
olds CRAs (10−80 mm d−1), the forecast location
errors are mostly distributed in southeastern quad-
rant of the origin. Corresponding shaded panels on
the right (NW) indicates fractions (%) of CRAs
clustered about the origin. For 10 mm d−1 thresh-
old, about 6% (of total 272 CRAs) are closely
packed near the origin within ±1◦. About 4% of
the cases are distributed within ±2.5◦ with major-
ity of CRAs elongated in southeastern quadrants.
Similarly, for 20 mm d−1 threshold, about 6% (of
total 385 CRAs) are closely packed near the origin
within ±1.5◦ with mostly distributed in southeast-
ern quadrants. For higher threshold (40 mmd−1)
CRAs, more than 12% (199 of CRAs) are clustered
about 1◦ to the south.

Similarly, the second row in figure 9(a and b) cor-
responds to southwest region at all four thresholds.
Over the SW region, the scatter of the position
errors (panels on left) shows a systematic south-
east to northwest orientation typical of the rainfall
along the west coast of India with a majority
of forecasts displaced to the northwest to south-
east quadrant to the observed event. For 10 and
20 mmd−1 rainfall threshold, 10–12% of CRAs are
clustered about 0.5◦ to the south while the location
of more than 12% of CRAs is about 1◦ south with
respect to observed position at 40 mm d−1.

Over eastern India (E), all the rainfall threshold
CRAs tend to forecast to the east and southeast of
the observed location for 10 to 40 mm d−1 CRAs.
For rainfall threshold of 10 and 20 mm d−1, 6%
of total CRAs are mostly distributed about 1.5◦

southeast to the observed location, while more than
8% of total CRAs are clustered around 1◦ south-
east. One point should be noted here is, as the rain-
fall thresholds increase, CRAs are clustered close
or near to observed location, which means that the
rainfall bias has been reduced in predicting high
rainfall amounts (>40 mm d−1). Forecast rainfall in
the NE region tends to be systematically predicted
to the south of the observed location. It can be seen
that majority of the CRAs are located (more than
12% of total) around 1◦ south to observed location
at rainfall threshold of 40 mm d−1.

Similar distributions are evident in the day 3
and 5 forecasts (not shown). Figure 10 shows the
distributions of the position errors and spatial cor-
relations using Box–whisker plots.

The mean pattern correlation (and RMSE in
mm d−1) are presented in table 2. The pattern
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Figure 10. Box–Whisker plots summarizing the correlation, x-err, y-err, and vector errors (degrees) over four rain zones.

correlation (and RMSE) values range from 0.31
to 0.51 (and 20.3−25.7 mm d−1) for 10, 20 and
40 mm d−1 CRA thresholds. It is evident in fig-
ure 10 also. These can be considered robust since
they are based on a large sample. Also, the numbers
(in front of each zone) in the bracket represent the
CRAs for each threshold in table 2. For a higher
CRA threshold (80 mmd−1), the pattern correla-
tion (0.5–0.6) and RMSE values (56−65 mm d−1)
are higher since the focus is on a smaller area
of heavier rain, but due to the much smaller
sample size these mean results contain greater
uncertainty.

The mean displacement errors are given in
degrees latitude and longitude in table 2. Positive
(negative) values of x-displacement error indicate
that rain events are forecast to the east (west)
of the observed location. Similarly, positive (neg-
ative) values of y-displacement error indicate that
rain events are forecast to the north (south) of
the observed location. From figure 10 and table 2,
it can be seen that x-error is positive over all
zones, which reflects that the rainfall systems are
predicted toward the east of observed position.
The largest mean x-displacement error is in the

eastern region (E) with forecasts located at an
average of 1.5◦ longitude eastwards for CRAs
defined by the 10 mm d−1 threshold. This is con-
sistent with the reported slow movement of the
low pressure systems (Iyengar et al. 2011, 2014)
in model forecasts over eastern India after landfall.
The magnitude of x-displacement error in eastern
India (E) is seen to decrease for higher CRA thresh-
olds. This clearly suggests that in eastern India
(E), the location of heavier rain is predicted with
greater accuracy than the lighter rain events. The
mean north–south displacement errors given by
y-displacement error are relatively moderate
with mean values less than 1◦ latitude in eastern
India (E).

The contributions to the total error due to
displacement, volume and pattern are also sum-
marized in table 2 and also in figure 11. In all the
four regions, the contribution from pattern error
forms the highest share for the 10 and 20 mm d−1

CRAs, which tend to have larger areas. The rel-
ative contributions of pattern error (displacement
error) decreases (increases) over all four zones for
CRAs of all thresholds (particularly over eastern
India (E)).
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Figure 11. Box–Whisker plots summarizing the RMSE and contribution to total error from displacement error, volume error
and pattern error over four zones.

The panels in figure 11 show the RMSE (mm d−1)
and the percentage contribution to total error due
to location, volume and pattern error. Not sur-
prisingly, the RMSE is least for 10 mm d−1 CRAs
with generally lower spread as this sample includes
a larger proportion of lighter rainfall events. The
20, 40 and 80 mm d−1 CRAs show higher RMSEs
and greater variability. The contribution from pat-
tern error is dominant in all four regions for 10
and 20 mm d−1 CRAs with the median value rang-
ing from 45% (10 mmd−1) in the SW region to
75% 10 mm d−1 in the E region. The median con-
tribution to error due to displacement is ranging
from 15–25% for all regions for 10 mm d−1 CRAs.
This low relative contribution (∼20%) from dis-
placement in the E region is surprising, given the
large systematic eastward errors seen in figures 10
and 11, but the pattern error in this region is
very large and dominates the total error. Contribu-
tion of volume error over the NE region increases
with rainfall threshold. Contributions from vol-
ume error are generally least except in the SW
region, where they are responsible for a simi-
lar proportion as the displacement errors are up
to 40 mm d−1.

4. Summary and conclusions

In the present study, an attempt has been made to
investigate and quantify the rainfall forecast biases
in the unified model as part of an overall scientific
challenge to better predict the Indian monsoon.
This study has examined the performance of the
Met Office Unified Model (UM) over India for
9 years (2007–2015) during the monsoon season
using IMD rain gauge observations (2007–2011)
and NCMRWF–IMD rainfall observations (2012–
2015). This rainfall data is best estimate of the
rainfall analysis available over India.

The model forecasts show a wet bias resulting
from an excessive number of rainy days com-
pared to observations all over India. Systematic
errors in the forecast rain systems are estimated
using CRA analysis with 10, 20, 40 and 80 mm d−1

threshold for four regions: the northwest (NW),
southwest (SW), east (E) and northeast (NE).
The mean and maximum rain amounts tended
to be underestimated at higher rainfall thresholds
(>20 mm d−1). This confirms the wet bias in the
model is due to the overestimation of low rainfall
amounts.
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The displacement errors are scattered but show
some systematic trends, depending on the CRA
threshold. In the NW region, the forecast events
are frequently displaced by about 1◦ to the north,
of the observed position. Over eastern India (E)
forecasts for lighter rainfall events tend to be
displaced about 1◦ to the east, while heavier fore-
cast rainfall events are displaced southeast to the
observed location by about 1◦. Southerly fore-
cast displacements are most common in the NE
region.

For 10 and 20 mm d−1 CRAs, the contribution
from pattern error is dominant in all four regions,
and the contribution from volume error is generally
least. The relative contribution to total error due
to displacement tends to increase with increasing
CRA threshold as the relative contribution from
pattern error decreases.

The information on the dominant contribution
to the total error in any region may be useful
guidance for the forecaster. For example, over the
plains adjoining the Himalayas, it is often seen that
the UM forecasts produce excess rainfall mainly
associated with a prominent easterly bias in the
850 hPa winds (Iyengar et al. 2011). Another exam-
ple is the rainfall associated with the Bay of Bengal
low pressure systems, where the predicted low pres-
sure systems in the model make a rather slower
than observed west northwesterly movement. The
impact of position errors are reflected in figures 10
and 11 for region E.

The detailed analysis presented in this study
can help the model developers and forecasters
to understand the systematic errors associated
with forecast characteristics of monsoon rainfall
over different parts of India. A similar analysis
of QPFs from other modeling systems will pro-
vide robust measures of bias, accuracy, and relative
error components in forecast rain systems over
India. Additionally, plausible sources of forecast
errors including grid resolution, model initializa-
tion, and physical processes will be addressed in
the future studies.
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