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The flood characteristics, namely, peak, duration and volume provide important information for the
design of hydraulic structures, water resources planning, reservoir management and flood hazard
mapping. Flood is a complex phenomenon defined by strongly correlated characteristics such as peak,
duration and volume. Therefore, it is necessary to study the simultaneous, multivariate, probabilistic
behaviour of flood characteristics. Traditional multivariate parametric distributions have widely been
applied for hydrological applications. However, this approach has some drawbacks such as the dependence
structure between the variables, which depends on the marginal distributions or the flood variables
that have the same type of marginal distributions. Copulas are applied to overcome the restriction
of traditional bivariate frequency analysis by choosing the marginals from different families of the
probability distribution for flood variables. The most important step in the modelling process using
copula is the selection of copula function which is the best fit for the data sample. The choice of
copula may significantly impact the bivariate quantiles. Indeed, this study indicates that there is a
huge difference in the joint return period estimation using the families of extreme value copulas and no
upper tail copulas (Frank, Clayton and Gaussian) if there exists asymptotic dependence in the flood
characteristics. This study suggests that the copula function should be selected based on the dependence
structure of the variables. From the results, it is observed that the result from tail dependence test is
very useful in selecting the appropriate copula for modelling the joint dependence structure of flood
variables. The extreme value copulas with upper tail dependence have proved that they are appropriate
models for the dependence structure of the flood characteristics and Frank, Clayton and Gaussian
copulas are the appropriate copula models in case of variables which are diagnosed as asymptotic
independence.

Keywords. Bivariate frequency analysis; extreme value copula; extremal measures; Gaussian copula;
tail dependence coefficient; tail dependence test.

1. Introduction

Single-variable flood frequency analysis provides
limited understanding and assessment of the true
behaviour of flood phenomena, which are often

characterised by a set of correlated random
variables such as peak, volume and duration (Yue
et al. 2001; Favre et al. 2004). Univariate frequency
analysis methods cannot describe the random vari-
able properties that are correlated (Sarhadi et al.
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2016). This approach can lead to high uncertainty
or failure of guidelines in water resources planning,
operation and design of hydraulic structures or cre-
ating the flood risk mapping (Chebana and Ouarda
2011). Additionally, the flood is a multivariate
natural calamity characterising peak, volume and
duration. Hence, it is important to study the simul-
taneous, multivariate, probabilistic behaviour of
flood characteristics.

Multivariate parametric distributions (e.g.,
bivariate normal, bivariate gamma and bivari-
ate extreme value distributions), which have been
extended from univariate distribution, is used to
model the multivariate flood characteristics for dif-
ferent purposes (Adamson et al. 1999; Yue 1999;
Yue et al. 2001). However, this approach has
some drawbacks such as the dependence struc-
ture between the variables, which depends on
the marginal distributions or the flood variables
that have the same type of marginal distributions
(Poulin et al. 2007; Zhang and Singh 2007).

In order to overcome the limitation of multi-
variate distributions, a copula is a very versatile
approach for simulating joint distribution in a
more realistic way (Favre et al. 2004). The main
advantage of this method is that the depen-
dence structure is independently modelled with the
marginal distribution that allows for multivariate
distribution with different margins and dependence
structures to be built (Dupuis 2007; Zhang and
Singh 2007). Several researchers have used copulas
to perform the bivariate frequency analysis (Reddy
and Ganguli 2012; Dung et al. 2015; Sraj et al.
2015). The most important step in the modelling
process using copula is the selection of copula func-
tion which is the best fit for the data sample (Favre
et al. 2004). The chosen copulas should include sev-
eral classes of copulas and several degrees of tail
dependence (Dupuis 2007; Poulin et al. 2007).

Tail dependence characteristics constitute
important features that differentiate extreme value
copulas from other copula structures (Chowdhary
et al. 2011). Therefore, the extreme value cop-
ulas with upper tail dependence are considered
to provide appropriate models for the dependence
structure of the flood characteristics (Genest and
Favre 2007; Poulin et al. 2007; Gudendorf and
Segers 2011; Vittal et al. 2015). On the other hand,
in the multivariate frequency analysis, the vari-
ables can be dependent or independent of each
other. The relationship between the flood char-
acteristics (i.e., peak, volume and duration) is
analysed by several researchers. However, most of

the results of the dependence between different
pairs of flood variables were not consistent (Kar-
makar and Simonovic 2009; Reddy and Ganguli
2012; Sraj et al. 2015). Indeed, the identifica-
tion of the degree of dependence between the
flood variables is a difficult step, because the
dependence of pairs of flood characteristics is con-
trolled by different climate features and catchment
properties (Viglione and Blöschl 2009; Gaál et al.
2015).

Most of the studies used Pearson’s linear corre-
lation coefficient (r), Kendall’s (τ) and Spearman’s
rank correlation (ρ) for measuring the dependence
among different flood variables. However, these
measures are based on the association of the entire
distributions, but do not reveal the dependence in
the specific part of the distribution (Aghakouchak
et al. 2010). When dealing with extreme events
such as floods, extreme values will appear in the tail
of the distributions. Hence, the tail dependence,
which describes the dependence in the tail of a
multivariate distribution, can be a suitable mea-
sure (Coles et al. 1999; Aghakouchak et al. 2010;
Serinaldi et al. 2015; Hao and Singh 2016).

To describe the dependence in multivariate
extreme values, there are two possible situations,
namely, asymptotic dependence or asymptotic
independence (Coles et al. 1999). Diagnostic analy-
sis to determine whether the variables have asymp-
totic dependence or asymptotic independence is
very important in multivariate extreme analysis.
In fact, in a situation where diagnostic checks
suggest data to be asymptotically independent,
modelling with the classical families of bivariate
extreme value distribution is likely to lead to mis-
leading results (Ledford and Tawn 1996; Coles
2001). Different measures of extremal dependence
have been developed. Coles et al. (1999) proposed
two measures of extreme dependence (χ and χ̄)
for bivariate random variables. Nevertheless, recent
studies show that there are still difficulties in
detecting the asymptotic dependence and indepen-
dence in many cases (Coles et al. 1999; Bacro et al.
2010; Weller et al. 2012; Serinaldi et al. 2015).

Apart from these, several parametric and non-
parametric approaches are suggested to determine
the tail dependence. Non-parametric tail depen-
dence estimator (λU), namely, λLOG

U (Coles et al.
1999; Frahm et al. 2005), λSEC

U (Joe et al. 1992),
λCFG
U (Capéraà et al. 1997) and λSS

U (Schmidt
and Stadtmüller 2006) have been preferred by
most researchers in hydrological analysis (Li et al.
2009; Requena et al. 2016). However, Villarini
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et al. (2008) indicated that these tail dependence
estimators have some drawbacks (e.g., bias, uncer-
tainty, etc.). Furthermore, all tail dependence esti-
mators exhibit a very poor performance when the
underlying upper tail dependence coefficient is null.
It is, therefore, important to test for tail depen-
dence before applying the estimator (Frahm et al.
2005; Poulin et al. 2007). Consequently, upper
tail (in)dependence testing is a useful alternative
approach. Serinaldi et al. (2015) suggested that
test for tail (in)dependence is mandatory because:
(i) samples exist which seem to fail dependency,
but they are realisations of a tail-dependent dis-
tribution; (ii) the use of misspecified parametric
marginals instead of empirical marginals may lead
to wrong interpretations of the dependence struc-
ture; and (iii) the tail dependence estimators can
be insensitive to upper tail dependence, thus indi-
cating the upper tail dependence even if none exist.
Similarly, if data are to be independent in the upper
tail, then modelling with dependence will lead to
overestimation of the probability of extreme joint
events. Hence, Falk and Michel (2006) emphasised
that testing for tail (in)dependence is essential in
data analysis of extreme values.

Several recent studies indicated that Gumbel–
Hougaard copula belonging to extreme value cop-
ulas works well when variables are asymptotically
dependent (Zhang and Singh 2006; Poulin et al.
2007; Karmakar and Simonovic 2009; Dung et al.
2015). However, there are few studies which sug-
gest what is the best copula for modelling the
dependence structure where the variables have the
strength of dependence but weaken at high lev-
els or are asymptotically independent. Therefore,
it is important to find the appropriate copula
to derive the joint distribution of flood variables
where the pair of flood characteristics has asymp-
totically independent or weak dependence at high
thresholds.

The difference between the extreme value cop-
ulas and Gaussian copula is that the Gaussian
copula becomes independent at the high threshold.
Furthermore, Gaussian copula, which is charac-
terised by correlation matrix, generates a wider
range of dependence behaviour (Bortot et al.
2000). Studies by Renard and Lang (2007) also
have proved the usefulness of the Gaussian cop-
ula in hydrological extreme events analysis. In
fact, they suggested that the Gaussian copula
can be reasonably well used for field significance
determination, regional risk estimation, discharge–
duration–frequency curves and regional frequency

analysis. Frank and Clayton copulas, belonging to
the Archimedean family, have been widely used in
the hydrology analysis because they can be mod-
elled with both negatively and positively associated
variables. Furthermore, the Frank and Clayton
copulas, which have zero dependencies in both
tails, are suitable in case the tail dependence is not
existing (Poulin et al. 2007; Dung et al. 2015; Sraj
et al. 2015).

The previous studies have used parametric and
non-parametric approaches to determine the tail
dependence coefficient. However, these tail
dependence estimators have some drawbacks.
Consequently, tail dependence testing is a useful
alternative approach. Therefore, this study assesses
how tail dependence test can be useful in selecting
the appropriate family of copula for modelling the
joint dependence structure of flood characteristics.
In order to identify the best copula family for each
situation, the Clayton, Frank and Gaussian cop-
ulas are used for assessing the potential of their
applications in case the variables are diagnosed as
asymptotic independence. The hypothesised copu-
las (extreme value copulas) are applied to evaluate
their suitability if there exists asymptotic indepen-
dence in the tail for bivariate frequency analysis of
flood in Trian watershed, Vietnam.

This study aims to address the following
issues: (i) investigating the potential of perform-
ing the tail dependence tests for the pairs of flood
characteristics; (ii) evaluating the performance of
extreme value copula for asymptotic dependence
variables and Clayton, Frank and Gaussian cop-
ulas for asymptotic independent variables; and
(iii) estimating the joint return period of flood
characteristics.

2. Study area and data

The Trian catchment, which is taken up for the
study, is in the upper part of the Saigon–
Dongnai River basin and it is one of the biggest
subcatchments. The area of this catchment is
∼14, 200 km2. The basin lies between the lati-
tudes of 10◦53′46′′−12◦22′08′′N and longitudes of
107◦01′52′′−108◦46′55′′E (figure 1). There are two
distinct seasons in this area, namely, rainy (April–
November) and dry (December–April) seasons.
The climate is controlled by the northeast and
southwest monsoons. The annual average rainfall
and temperature are about 2200 mm and 20.6◦C,
respectively. There are two main tributaries of the
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Dongnai River (i.e., Dongnai and Langa). There
are nine reservoirs, which are operating to sup-
ply water for drinking, irrigation, flood control
and hydropower production, and were constructed
upstream of Trian gauge. Most of them began to
operate in recent years except for Hamthuan–Dami
and Daininh reservoirs which were operated in 2001
and 2008, respectively. In the Dongnai tributary,
Daininh and Dakrtik reservoirs provide energy
with a capacity of 300 and 144 MW, respectively.
Dongnai 2, Dongnai 3, Dongnai 4 and Dongnai
5 supply water to hydropower plants which have
the installed capacity of 70, 180, 340 and 150
MW, respectively. Hamthuan and Dami reservoirs,
located in the Langa tributary, are a cascade of
two hydropower plants with the installed capac-
ity of 300 and 175 MW. Tapao weir, located at
the downstream of Hamthuan and Dami reservoirs,
is constructed to supply water for drinking and
for irrigation of around 20,340 ha (Government
2016). However, all reservoirs are located far away
from the Trian gauge (figure 1). The flood from
Trian station has significant impacts on the down-
stream areas (e.g., Bienhoa, Vungtau and Hochim-
inh cities). Therefore, this study mainly focused
on the flood in the Trian gauge. Daily discharge
data for the period 1978–2013 are available for the
study from the Trian station on the Dongnai River,
which is a part of the Saigon–Dongnai River basin
and these data are used for flood frequency anal-
ysis. The Trian station is located at 106◦59′08′′E
and 11◦06′16′′N and it is at the confluence of two
Dongnai and Langa rivers. Numerous researchers
suggested that the length of data record should be
at least 30 years for extreme value modelling (Bon-
nin et al. 2006; Kioutsioukis et al. 2010; Yilmaz
et al. 2017). Further, there are several multivari-
ate frequency analysis studies using the observed
data of <35 yrs of data (Zhang and Singh 2006;
Aissia et al. 2012; Jeong et al. 2014). Moreover, sev-
eral researchers suggested that the main advantage
of the POT approach, which is for smaller sam-
ple sizes, is also used to increase the sample sizes
(Lang et al. 1999; Begueŕıa 2005; Bezak et al. 2014).
Based on the 35 years of observed data, the sample
size of the flood variables is 68 in this study, which
meets the minimum requirement of the sample size
(n = 30) for the extreme value modelling. There-
fore, the length of the observed data is significant
for the analysis of the tail dependence. The mean
of daily discharge of Trian stream gauge from 1978
to 2013 is 527.4 m3/s and the observed maximum
daily discharge is 3910 m3/s. The daily time series

of the river discharge data is collected from the
National Hydro-Meteorological Service (NHMS) of
Vietnam.

3. Methodology

The methodology used in this study is shown in
the form of a flowchart (figure 2). Firstly, iden-
tification of flood characteristics (peak, volume
and duration) from the observed daily discharge
time series is carried out. Secondly, check whether
the flood variables time series are stationary or
non-stationary. Thirdly, the tail dependence tests
are then performed to diagnose whether the flood
variables have asymptotic dependence or asymp-
totic independence. Finally, if the flood variables
are having an asymptotic dependence, the extreme
value copula is used for estimation of joint return
periods. Otherwise, Gaussian, Frank and Clayton
copulas are used.

3.1 Extracting flood characteristics

Block maxima (BM) and peak over threshold
(POT) approaches are widely used to extract flood
characteristics. However, the block maxima cannot
consider multiple occurrences of flood events (Lang
et al. 1999; Bezak et al. 2014). Unlike the block
maxima, which only extracts one event per year,
POT considers a wider range of events and provides
more information than BM. The threshold estima-
tion is the most difficult part of the POT approach
(Lang et al. 1999; Scarrott and Macdonald 2012).
Threshold choice involves balancing between the
bias and variance. Too low a threshold may vio-
late the asymptotic basis of the model, leading to
bias, while too high a threshold will reduce the
sample size, leading to high variance of the param-
eter estimates (Coles 2001). There are two common
approaches for choosing a threshold, namely, fixed
quantile corresponding to a high non-exceedance
probability (95%, 99% or 99.5%) and graphical
method (Vittal et al. 2015). Three different tech-
niques belonging to the graphical method, namely,
the mean residual life plot (MRL), threshold sta-
bility plots and fitting distribution diagnostics
(Thompson et al. 2009; Solari and Losada 2012)
are used in this study to decide the threshold
value. In addition, the lag-autocorrelation plot is
used to check the independent and identically dis-
tributed (IID) flood variables (i.e., peak, volume
and duration) assumption.
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Figure 2. Flowchart of methodology.

3.2 Diagnostic test to examine non-stationary
component

The extreme events, particularly flood events, are
intensifying due to global climate change, urbani-
sation and anthropogenic activities. Therefore, the
flood time series can have a non-stationary compo-
nent. The flood frequency analysis, which considers
time series as stationary, may lead to mislead-
ing results in the estimation of the flood quantile.
Checking the non-stationary component of flood
series in flood frequency analysis should be con-
sidered as an important initial step (Vittal et al.
2015). Trend analysis is normally used to detect
the non-stationarities in the flood variables. The
Mann–Kendall (M–K) test is a non-parametric sta-
tistical test which is used for examining the trends
in time series and has been widely applied in the
hydrological analysis (Villarini et al. 2009; Lima
et al. 2015; Sun et al. 2015).

3.3 Tail dependence test

Coles et al. (1999) proposed two measures of
extreme dependence (χ and χ̄) for bivariate ran-
dom variables, as shown below:

χ = 2 − log P (F1 (x) < u, F2 (y) < u)
log u

, (1)

χ̄ =
2log (1 − u)

log P (F1 (x) > u, F2 (y) > u)
− 1. (2)

With a pair of complementary measure (χ, χ̄), a
summary of multivariate extremal dependence can
be determined:

• If χ̄ = 1 and 0 < χ < 1, the variables are
asymptotically dependent and χ is a measure of
the strength of dependence within the class of
asymptotic dependence distribution.

• If −1 < χ̄ < 1 and χ = 0, the variables are
asymptotically independent and χ̄ is a measure
of the strength of dependence within the class of
asymptotically independent distribution.

There are still difficulties in detecting the asymp-
totic dependence and independence in many cases
using these extremal dependencies (Coles et al.
1999; Bacro et al. 2010; Weller et al. 2012; Serinaldi
et al. 2015). Hence, the coefficient of tail depen-
dence (η) introduced by Ledford and Tawn (1996)
is used to detect asymptotically dependent and
independent variables. Ledford and Tawn (1996)
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assumed that the joint survivor function of the pair
(X, Y ) with unit Frechet distribution is a regularly
varying function, as shown below:

P (X > z, Y > z) = £(z)z−1/η, (3)

where £(z) is a slowly varying function and η is
the coefficient of tail dependence.

• If η = 1 and limz→∞ £ (z) = c for some 0 <
c ≤ 1, the variables are asymptotically depen-
dent with a degree c.

• If η < 1, the variables are asymptotically
independent.

The coefficient of tail dependence can be estimated
by univariate theory because the joint survivor
function can be reduced to univariate survivor
function T = min(X,Y ). The coefficient of tail
dependence will be equal to shape parameter if T is
fitted with generalised Pareto distribution (GPD).
The log-likelihood ratio (LLHR) test can be used
for testing the asymptotic dependence against the
asymptotic independence. The null hypothesis of
asymptotic dependence is tested comparing the
log-likelihood of the asymptotic dependence and
asymptotic independence. Under the null hypoth-
esis η = 1 vs. the alternative η < 1, the LLHR
test statistic, based on twice the difference between
the log-likelihood of asymptotic dependence and
asymptotic independence, has the approximate χ2

distribution with the degree of freedom. The signifi-
cance of asymptotic independence can be measured
from the p-value of χ2 distribution. As mentioned
earlier, threshold in GPD is selected based on the
threshold stability plot.

Furthermore, tail (in)dependence test is used
as an approach for detecting whether the flood
variables have asymptotic dependence or indepen-
dence, respectively. Tail independence test, pro-
posed by Falk and Michel (2006), is normally
suggested by many authors in extreme value anal-
ysis (Bel et al. 2008; Ribatet et al. 2009; Seri-
naldi et al. 2015). Frick et al. (2007) proposed
a generalisation of Falk and Michel’s test, based
on a second-order differential expansion of the
spectral decomposition of non-degenerate distribu-
tion function. This test is based on the following
equation:

P (X + Y > ct |X + Y > c)

=
{

F (t) = t1+ρ, tail independence,
F (t) = t, tail dependence, (4)

where c → 0 is the threshold, ρ ≥ 0 is the
independence measure and F (t) is the standard
uniform distribution with t ∈ [0,1]. According to
the central limit theorem, the p-values of the opti-
mal test are given below:

p = Φ

(∑m
i=1 log C̄i + m

m1/2

)
(5)

where C̄i = (Xi +Yi)/c, i = 1, . . . , m, and Φ is the
standard normal density distribution function.

This test is quite sensitive to the threshold
c. Hence, Frick et al. (2007) suggested that the
threshold is chosen so that the number of
exceedances is about 10–15% of the total number
observed data.

3.4 Selection of marginal distribution

The work of Vittal et al. (2015) suggested that it
is important to apply both parametric and non-
parametric distributions for a selection of the best
fit marginals for flood variables. There is more than
one parametric distribution that can be fitted to
the sample data. Hence, identifying the best fitting
distribution to the sample needs to be tested with
several distributions rather than assuming that the
particular distribution will be sufficient to pro-
vide the necessary insight for flood variables (Lang
et al. 1999; Vittal et al. 2015; Dong Nguyen et al.
2018). The log-normal (LN), Pearson type III (P3),
log-Pearson type III (LP3), GPD, Gumbel and gen-
eralised extreme value (GEV) distributions, which
have been widely used for modelling the extreme
values (Lang et al. 1999; Saf 2009; Salas Jose et al.
2013; Bezak et al. 2014), are used.

For non-parametric distribution, the kernel
density estimator with Epanechnikov, Gaussian,
triangular and rectangular kernel functions is used
in this study. Both parametric and non-parametric
distributions are used to find the best marginal
distribution for each flood variable in this study.

3.5 Extreme value copula and no tail dependence
copula functions

A copula is defined as a joint distribution function
of standard uniform random variables. If F (x, y) is
any continuous bivariate distribution function with
marginal distributions F1(x) and F2(y), the copula
function can be expressed as:

F (x, y) = C[F1(x), F2(y)]. (6)
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If the F1(x) and F2(y) are continuous, the copula
function C is unique and can be written as:

C(u, υ) = F [F−1
1 (u), F−2

2 (υ)], (7)

where the quantile functions F−1
1 and F−2

2 are
defined by F−1

1 (u) = inf[x: F1(x) ≥ u] and
F−1
2 (υ) = inf[x: F2(y) ≥ υ], respectively.
Among several families of copulas (Archimedean,

Plackett, Farlie–Gumbel–Morgensten and Ellipti-
cal), extreme value copulas are more popular for
hydrological application, particularly for extreme
events. Indeed, the extreme value copulas with
upper tail dependence are considered to be appro-
priate models for the dependence structure in
extreme events. Extreme value copulas can be used
as a convenient choice in modelling data with pos-
itive correlation and arise naturally in the domain
of extreme events (Gudendorf and Segers 2011;
Mirabbasi et al. 2012). The families of extreme
value copulas considered in this study, including
Gumbel–Hougaard, Husler–Reiss and Galambos.
Besides, Gaussian, Frank and Clayton copulas,
are also used in circumstances where diagnostic
checks suggest data to be asymptotically indepen-
dent. More details and descriptions can be found in
Poulin et al. (2007), Gudendorf and Segers (2011)
and Salvadori et al. (2013). The relevant expression
for their dependence function and tail-dependent
coefficient are presented in table 1.

Genest et al. (1995) and Cherubini et al. (2004)
suggested the maximum pseudo-likelihood (MPL)
and canonical maximum likelihood approaches in
case of an unknown marginal distribution to esti-
mate copula parameters. In order to allow marginal
distribution to be free and not restricted by
parametric families, the MPL method is sug-
gested because the marginal distribution is con-
sidered to be the empirical distribution function.

Furthermore, Genest and Favre (2007), Kim et al.
(2007) and Kojadinovic and Yan (2010) showed
that the MPL is the best choice for estimating cop-
ula parameters. Therefore, the MPL is used in this
study.

Selection of appropriate copula is a complex pro-
cess and needs to be considered through several dif-
ferent measures. Only one measure can fail to iden-
tify the suitable copulas that can lead to an inap-
propriate joint probability of flood characteristics
(Fu and Butler 2014). There are several different
methods to select the best copula, including graph-
ical method, goodness-of-fit (GoF) tests and model
selection criteria. The first two methods are used
to measure the discrepancy between the theoretical
distribution and empirical distribution, while the
model selection criteria such as Akaike’s informa-
tion criterion (AIC), which penalises the minimised
negative log-likelihood function for the number of
parameters estimated, would be more appropriate
than repeated tests of significance whose outcomes
lose their interpretability (Katz 2013).

In the graphical method, the theoretical
non-exceedance joint probabilities obtained using
copula functions are compared with the empiri-
cal non-exceedance joint probabilities, which can
be estimated by Gringorten plotting position
formula

FXY (xi, yi) = P (X ≤ xi, Y ≤ yi)

=
∑i

m=1

∑i
l=1 nml − 0.44

N + 0.12
, (8)

where nml is the number of pairs (xj , yj) counted as
xj ≤ xi and yj ≤ yi; i, j = 1, . . ., N ; 1 ≤ j ≤ i and
N is the sample size. Besides the graphical method,
the GoF test is also used to test the adequacy
of the hypothesised copulas. Genest et al. (2009)
reviewed and compared several GoF tests for

Table 1. Definition and upper tail dependence coefficient of the copula used in this study.

Copula Cθ(u, υ) λu

Gumbel C(u, υ) = exp[−(ln(u))θ + −(ln(υ))θ]
1/θ

2 − 21/θ

Galambos C(u, υ) = uυ exp[−(ln(u))−θ + −(ln(υ))−θ]−1/θ 2 − 2φ(1/θ)

Husler–Reiss C(u, υ) = exp(ûΦ[ 1
θ

+ 1
2
θln( û

υ̂
)] − υ̂Φ[ 1

θ
+ 1

2
θln( υ̂

û
)]) 2 − 21/θ

Gaussian C(u, υ) = Φ[φ−1(u), φ−1(υ)] 0

Clayton C(u, υ) = (u−θ + υ−θ − 1)−1/θ 0

Frank C(u, υ) = − 1
θ
ln

[
1 + (e−θu−1)(e−θυ−1)

e−θ

]
0

φ, Φ are the cumulative density functions of a standard normal and multivariate normal
distributions with mean 0 and covariance

∑
, respectively, u = ln(û) and υ = ln(υ̂).
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copula. They proved that Cramer–von Mises (SI
n)

test comparing the empirical and theoretical cop-
ulas is the best GoF test. However, there is
no difference between the extreme value copulas
in this test. In order to overcome this short-
coming, the test based on a Cramer–von Mises
(SII

n ) statistic, measuring the distance between
parametric and non-parametric estimators of the
Pickands dependence function, was introduced by
Genest et al. (2011). This test is defined as:

SII
n =

∫ 1

0

n |An (t) − Aθn (t)|2 dt, (9)

where An(t) and Aθn(t) are the non-parametric
and parametric estimators of Pickands dependence
function A. Based on the objective and availability
of data in this study, SII

n is used to find out the
appropriate copula functions.

3.6 Joint return period estimation

The concepts of return period for flood events are
widely used as criteria in the design of hydraulic
structures and flood control facilities (Klein et al.
2010). The return period of hydrological extreme
events is normally associated with a certain
exceedance probability. In the bivariate case, the
joint return periods called OR (X ≥ x or Y ≥ y)
and AND (X ≥ x and Y ≥ y) have been commonly
used:

TAND
X,Y =

μT

P (X ≥ x and Y ≥ y)

=
μT

1 − FX (x) − FY (y) + FXY (x, y)
,

(10)

TOR
X,Y =

μT

P (X ≥ x or Y ≥ y)

=
μT

1 − FXY (x, y)
. (11)

The above equations are used for both block max-
ima and POT approaches, where μT is the mean
inter-arrival time (years). In the case of block max-
ima, μT is equal to 1.0 (Shiau 2003; Vittal et al.
2015). Since POT is applied in this study, the
mean inter-arrival time is determined based on the
observed flood events.

4. Results and discussion

4.1 Identification of flood characteristics

The POT approach is used to extract flood char-
acteristics in this study. The threshold is selected
based on the three different approaches, namely,
the mean residual life (MRL) plot, threshold sta-
bility plots and fitting distribution diagnostics.
Figure 3(a) shows the MRL plot for observed
daily discharge for Trian. It is clear that after

Figure 3. (a) Mean residual life plot, (b) threshold stability plots and (c) diagnostic plots for observed daily flood data.
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Figure 4. The autocorrelation plot up to lag 10 for all the flood characteristics.

Figure 5. Extremal measures for the dependence of observed flood peak and volume.

the threshold value of u = 950 m3/s, the MRL
is consistent with a straight line. Furthermore,
with the threshold value of u = 950 m3/s, the
shape and modified scale parameters begin to
reach a plateau (figure 3b). Besides, the diagnos-
tic plots (probability–probability (PP), quantile–
quantile (QQ)) for the fitted PIII distribution with
the threshold (950 m3/s) after declustering (r = 10
days) are shown in figure 3(c) and they show a good
agreement between the model and empirical values.

Figure 4 shows that there is insignificant auto-
correlation for all flood characteristics. The IID
flood variables assumption is still maintained based
on this threshold. Therefore, the threshold value
of u = 950 m3/s is a suitable threshold for Trian.
This threshold is used for all future flood char-
acteristics. Flood duration and volume are also
determined based on this threshold. The M–K test
for peak, volume and duration of observed data
showed that there is no significant trend for any

of the flood variables observed at the Trian gauge.
It indicates that the flood events in the present
data are still stationary. Therefore, the stationary
flood frequency analysis is used to estimate the
joint return periods.

4.2 Tail independence test

The pair of extremal measures (χ, χ̄) is used to
detect whether the flood variables are asymptoti-
cally dependent or not. Nevertheless, in this study,
the value of χ(u) is nearly equal to 0.5. It means
that the pair of flood characteristics has asymp-
totic dependence for all u. However, the value of
χ̄ shows that the pair of flood characteristics is
independent of many cases. For example, figure 5
shows the χ and χ bar plot for the pair of observed
flood peak and volume. Therefore, it is difficult
to identify between asymptotical dependence and
independence based on these plots.
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LLHR and tail dependence (TailDep) tests are
used to decide the asymptotically (in)dependent
variables in case the extremal measures do not
work. The results from two tests are nearly sim-
ilar. Table 2 shows the p-value of LLHR and

Table 2. Likelihood ratio and tail
dependence test p-value.

Tests

p-value

DV DP PV

LLH 0.04 0.01 0.01

TailDep 0.30 0.02 0.04

Diagnostic Dep InDep InDep

tail dependence tests for all pairs of observed
and future flood variables. Based on the extremal
measures and these tests, the asymptotically
dependence and independence are shown in table 2.

4.3 Marginal distribution of flood variables

To determine the most appropriate marginal
distribution for all flood characteristics, GEV,
Gumbel, LN, P3, GPD and LP3 distributions
belonging to the parametric distribution and
Epanechnikov, Gaussian, triangular and rectangu-
lar kernel functions belonging to non-parametric
distribution are used in this study. The maxi-
mum likelihood estimation is used to estimate the

Table 3. AIC values for all marginal distributions.

Flood
variable

Parametric

LN Gumbel GEV P3 LP3 GPD

V 1309 1318 1317 1297 1285

P 1066 1066 1068 1061 1067 1068

D 654.9 656.0 658.0 641.7 628.9

Non-parametric

Gaussian kernel Triangular kernel Rectangular kernel Epanechnikov kernel

V 1310 1311 1317 1313

P 1074 1074 1092 1074

D 634.8 644.2 644.5 647.0

V is the volume (106 m3/s), P is the peak (m3/s) and D is the duration (days).

Figure 6. Theoretical and empirical joint non-exceedance probabilities of observed flood duration and volume (asymptotic
independence).
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Figure 7. The joint return period of the pair of flood peak
and volume modelling by Frank and Gumbel copulas.

parameters of the distributions. The selection of
the appropriate distribution is based on the AIC
value. The selected marginal distributions are pre-
sented in table 3, which provides a comparison of
performances for all marginal distributions. The
results indicate that the LP3 distribution is most
appropriate for modelling the flood volume and
duration while the P3 is found to be the best for
flood peak.

4.4 Copula selection

Figure 6 shows the theoretical and empirical joint
non-exceedance probabilities of asymptotic tail
independence data. It is observed that the Frank
and Gaussian copulas fit the dataset, which is diag-
nosed as an asymptotic independence better than
extreme value copulas. Additionally, AIC value and
GoF test also indicated that the copula function
that has no tail dependence may work well when
variables are asymptotically independent.

The joint return period (AND) of observed flood
duration and peak pair is estimated by using the
best fitted models of each group copulas. The
Gumbel–Hougaard copula (extreme value copulas)
and Frank copula (the no tail dependence copu-
las) are selected to estimate the joint return period
of the observed flood duration and peak pair. Fig-
ure 7 shows the comparison of joint return period
curves of the pairs of observed duration and peak
which are estimated by the Frank copula (black)
and Gumbel copula (blue). This plot indicates that
there are huge differences between two copulas. For
a lower return period, the two corresponding curves
are very close to each other. However, there are T
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Figure 8. Theoretical and empirical joint non-exceedance probabilities of (a) observed duration and volume and (b) observed
duration and peak.

large differences in the central part in the 50- and
100-yr return periods. Besides, the shape of the
joint return period of each copula has significant
differences. The bound limits shrink significantly
for the Gumbel–Hougaard copula while this situa-
tion is not shown by the Frank copula. For example,
at 5-year return period, the corresponding bound
for the Gumbel-Hougaard copula is wider than
that of the Frank copula. At 10-, 50- and 100-yr
return periods, the phenomenon is opposite and
the curve from the Gumbel–Hougaard becomes
sharper. This result indicates that choosing the
inappropriate copula function will lead to serious
difference between the joint return period results.
This study suggests that the copula function is

selected based on the dependence structure of the
variables. The result from the tail dependence test
may provide useful additional information about
the adequacy of the chosen copula functions.

On the basis of the above analysis, in this study,
three extreme value families of copulas (Gumbel–
Hougaard, Galambos and Husler–Reiss) are chosen
to model the asymptotically dependence pair of
flood characteristics. The Gaussian, Frank and
Clayton copulas are used in modelling the asymp-
totically independence pair of flood characteristics.
The dependence parameters of copulas are esti-
mated using the MPL method. The copula depen-
dence parameters, AIC and GoF statistics are given
in table 4.
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Figure 9. The joint return periods of peak and volume (a) AND both peak and volume are exceeded and (b) OR either
peak or volume is exceeded.

Figure 8(a) shows the PP plot of model and
empirical joint non-exceedance probabilities for
observed flood duration and volume. This plot
indicates that the extreme value copulas
(Gumbel–Hougaard, Galambos and Husler–Reiss)
give the best fit to the dataset. However, identi-
fying the differences among three copula functions
is difficult. Therefore, the AIC and GoF tests are
used to choose the best copula function. For exam-
ple, the AIC value (− 165.013) and statistical test
value (0.00579) are shown in table 4, which indi-
cate that the Gumbel–Hougaard copula provides
the best performance for the pair of observed flood
duration and volume.

For asymptotically independence case,
figure 8(b) shows the PP plot of the model and
empirical joint non-exceedance probabilities for the
pair of observed flood duration and peak. It is clear
that all copulas (Gaussian, Clayton and Frank)
give a good fit to the data. However, the Frank
copula fits better than other copulas. Similarly,

the best fit copula using the AIC (− 67.695) and
statistical test values (0.285) is Frank copula
(table 4). All measures indicate that the Frank cop-
ula is the best fit to the data sample (observed flood
duration and peak). The best copula based on the
AIC value and GoF test is used to estimate the
joint return period for modelling the pair of flood
characteristics.

4.5 Joint return period estimation

The joint return periods (AND and OR) of flood
peak and volume for 5-, 10-, 50-, 75- and 100-year
return periods are shown in figure 9. For exam-
ple, the flood peak (m3/s)–volume (106 m3) pairs,
(4011–11,020), (4119–11,432) and (42,965–11,674)
are the joint return periods (OR) of 50, 75 and
100 years, respectively. The results from this figure
also indicate that for all return periods, AND pro-
vide lower flood variable quantile than OR. Several
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combinations of flood peak and volume as well
as other flood characteristics in the same return
period are also obtained through bivariate fre-
quency analysis. These results provide more possi-
ble choices for the decision maker to select the flood
event for structure designing and water resources
planning as well as assessing the variability of
the obtained flood map inundation that can-
not be achieved through the univariate frequency
analysis.

5. Summary and conclusions

The main emphasis of this study is on the tail
dependence test before the selection of copula
function which best fits the data sample. Indeed,
extremal measurement is a useful approach but
in many cases, it cannot detect whether data
are asymptotically dependent or not. The LLHR
and tail dependence tests are used to identify the
asymptotically (in)dependence of observed flood
variables. Two pairs of flood characteristics (peak–
volume and duration–peak) have asymptotically
independence while flood duration and volume
pair have asymptotically dependence in this study.
Three extreme value families of copula, namely,
Gumbel–Hougaard, Galambos and Husler–Reiss
are evaluated to model the asymptotically depen-
dence pair of flood characteristics. The extreme
value copulas with upper tail dependence have
proved that they are appropriate models for the
dependence structure of the flood characteris-
tics. However, identifying the differences among
three copula functions is difficult. Therefore, the
test based on a Cramer–von Mises (SII

n ) statis-
tic measuring the distance between parametric
and non-parametric estimators of the Pickands
dependence function is used and it is proved that
it is highly efficient for extreme value copula.
Similarly, Gaussian, Frank and Clayton copulas
are the appropriate copula models in case of
variables which are diagnosed as asymptotically
independence. Then, the best fit copula models
are used to calculate the joint return periods of
flood characteristics. These results provide more
possible choices for the decision maker to select
the flood event for structure designing and water
resources planning as well as assessing the variabil-
ity of the obtained flood map inundation in the
present situation that cannot achieve through the
univariate frequency analysis.
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