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Moment of Inertia (MOI) for rock blocks that glided smoothly into book-shelf dispositions are deduced
considering realistic linear and exponential 3D variations in density along specific axes/directions.
Knowing (empirical) algebraic relations of density with depth, which could also be anything other
than the exponential and linear variations considered in this work, geoscientists can deduce the MOI
by following the same process. MOI for a homogeneous parallelepiped block along any direction is
proportional to the length of the block in that direction. However, this simple relation does not hold true
for rock blocks with variable densities. Nevertheless, as the block length increases, the MOI along that
direction would also increase.
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1. Introduction

Moment of Inertia (MOI), also known as ‘rotational
inertia’ and ‘second moment of mass’ indicates dis-
tribution of mass in a body that tends to restrict
its rotation, and expresses the ease or difficulty of
that body to rotate. MOI is a well-established con-
cept in statics (e.g., Das and Mukherjee 2012) and
its expression for several regular geometric bod-
ies has been deduced (Spiegel and Liu 1999). The
MOI controls the state of rest or motion of a rotat-
ing body about its rotational axis. The greater the
mass concentrated away from the axis of rotation,
the greater the MOI. Thus, the MOI depends on
the mass distribution inside a moving/deforming
body (Batra 2016) that in turn is sensitive to
any variations in density. Bykov (2014, 2015) used
MOI in modeling seismicity related to rotation of
fault blocks (also see Dahlen 1977). To be spe-
cific, Bykov (2014, 2015) presented a differential

equation involving inertial rotation angle,
displacement and the MOI that represented the
rotation waves in the ‘elastic fragmented mas-
sif’. Dahlen (1977), on the other hand, presented
an expression of Earth in mechanical equilib-
rium during its rotation involving its MOI, and
demonstrated mathematically how far this equi-
librium disturbs locally due to faulting. Other
applications of MOI can be found in engineer-
ing geology (Hudson and Harrison 1992), tectonics
(Bombolakis 1994) and planetary sciences (Mar-
got et al. 2012). For example, Bombolakis (1994)
refined deformation behavior of rocks in mod-
eled critical wedges that involved MOI in the
analysis. Specifically, in structural geology, the
MOI for fault blocks has been utilized in mod-
eling the genesis of the related gouge material
(equations 5 and 7 in Guo and Morgan 2007;
equations A2, A5 and A7 of Guo and Morgan
2008).
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In case of book-shelf sliding, fault blocks rotate
and slip by simple shear along pre-existing planes
(figure 1), and are more common in deltaic shelf
deposits (Mandl 1984, 1987, 2000), and also at
times found in rift zones (Green et al. 2013). Such a
deformation mechanism can work also on a micro-
scopic scale amongst mineral grains (figure 2.23
in Mukherjee 2015). Tectonic loading is cited as
one of the main factors for mega-scale bookshelf
faulting (Narteau 2002). This work does not dis-
cuss ductile bookshelf sliding as recently discussed
by Zuza and Yin (2013). Crustal blocks undergo
rigid-body rotation so that the interfaces between
individual blocks/books act as normal faults that
rotate antithetically sheared with respect to the
synthetic rotation (or primary simple shear) of
the complete set of blocks/books. Deformations
with these kinematics are of great importance in
petroleum geosciences since the wide gaps that
can develop along inter-block fault planes can
transport hydrocarbons. Sediments deposited on
the irregular top of bookshelf can form com-
paction synclines in which hydrocarbons can be
stored preferentially in the hinge zone (Tin 1997).
The bookshelf gliding of crustal blocks is impor-
tant to seismicity studies (e.g., Wetzel et al.
1993), and has been elaborated using 2D Mohr
diagrams and the Cosserat theory of elasticity

Figure 1. Top-to-left simple shear on crustal blocks/mineral
grains produce book-shelf gliding. Antithetic top-to-right
(down) shear between the two blocks. Compaction syncline
produced at the top part of the slided blocks, in regional
context. L: dimension of the block in the third perpendicular
direction. T: thickness of the left block. CM: orientation of
line CQ before shear. ∠QCM = θ. In ΔABC, AC = T · tan θ,
Area ΔABC = 0.5, and AB · AC = 0.5 · T2 · tan θ. Volume
of the space V = 0.5 · L · T2 · tan θ. By symmetry, the same
volume is opened up at the top pat as well.

(de Figueiredo et al. 2004). Also, Zuza and Yin
(2016) deduced the velocity field along/across the
displaced and rotated blocks in book-shelf fault-
ing. Bookshelf gliding of mineral grains, often of
micas and feldspars, are usually found in mylonites
under an optical microscope (Meschede et al. 1997).
The basal level of bookshelf normal faults can
merge into a detachment (Peacock 1997). This
article deduces MOI for bookshelf displaced and
rotated blocks with geologically plausible density
distributions.

Previous models of finding MOI involved con-
stant density assumption for the faulted blocks.
As stated in this work, in reality, density can vary
either linearly or exponentially. Having considered
that, the present work is an improved model of
MOI for bookshelf glided blocks. Further, this work
links the overall density of the rock with those
of the pore fluid and the solid matrix, density
gradients along different directions and the rock
porosity. Finally, such an expression of density is
linked with the MOI. With this model, therefore,
one can test how MOI changes by changing its
fundamental controlling factors. Testing the MOI
in this way was not available in previous existing
models.

2. Background and derivations

2.1 Case I

Density usually increases linearly vertically down-
ward, especially for most oceanic crust (Reid 1987),
sediments in basins (Motavalli-Anbaran et al.
2013), or even for the entire lithosphere (e.g., Xu
et al. 2016) including the deep crust (Zhang and
Chen 1992). However, the reverse can also happen
(Ebbing et al. 2007 and its review) with depth,
especially if evaporitic rocks are involved (Romer
and Neugebauer 1991). An average density gradi-
ent can be 0.32 Mg m−3 km−1 (Carlson and Her-
rick 1990), or 13 ± 2 kg m−3 km−1 (Tenzer et al.
2012). Metamorphism can induce gradual density
gradients in any orientation in some cases (Zhou
2009). Sedimentary facies variation during marine
to non-marine transitions would alter density pro-
gressively. Densities varying laterally in rocks can
occur over distances of at least ∼ 20 km (Wu and
Mereu 1990).

Referring to figure 2, say at point O(0, 0, 0) of a
rectangular parallelepiped with dimensions x1, y1

and z1 along the axes X, Y and Z, the density is



J. Earth Syst. Sci. (2018) 127:80 Page 3 of 7 80

Figure 2. Co-ordinate system for the crustal block.

ρ0, and the linear density gradient in three perpen-
dicular directions are ki (i = x, y, z). Therefore,
density variations along X-, Y- and Z-axes are:

ρ (x, 0, 0) = ρ0 + kxx, (1)
ρ (0, y0, 0) = ρ0 + kyy, (2)
ρ (0, 0, z) = ρ0 + kzz. (3)

Therefore, for any coordinate (x, y, z), the density
would be given by

ρ (x, y, z) = ρ0 + kxx + kyy + kzz. (4)

The lateral variation of density (along X- and
Y-directions) can be caused by excess pore fluid
pressure in sediments (Buryakovsky et al. 1995).
Note for y = z = 0, x = y = 0 and z = x = 0,
equation (4) satisfies equations (1), (2) and (3),
respectively. Secondly, obviously kx = ky = kz = 0
would indicate a homogeneous block with constant
density ‘ρ0’. The MOI about the Y-axis is given by,
as per Das and Mukherjee (2012)

Iy =
∫ x1

0

∫ y1

0

∫ z1

0

ρ (x, y, z)
(
z2 + x2

)
dx dy dz.

(5)

Note that the volume of the block is

V = x1y1z1. (6)

The effective density of this block is

ρe = {ρm − (ρm − ρf ) Φ0} + 0.5 Σkqq1

(q = x, y, z) (Mukherjee 2017) . (7)

Putting ρ(x, y, z) of equation (4) and ‘V ’ of equa-
tion (6) into equation (5), integrating, and putting
ρe of equation (10) in place of ρ0, and simplifying

Iy = 0.33 ∗ V · ρe
(
z21 + x2

1

)
+ kx · x2

1

(
0.11 ∗ z21 + 0.25 ∗ x1

)
+ 0.17 ∗ ky · y1

(
x2
1 + z21

)
+ 0.5 ∗ kzz1

(
0.5 ∗ z21 + 0.33 ∗ x2

1

)
. (8)

2.2 Case II

2.2.1 Exponential variation of porosity with depth

An exponential depth-density relation can exist in
sediments (Goteti et al. 2012), especially for argilla-
ceous sediments presumably compacted to shallow
depths (Rieke and Chilingarian 1974). These work-
ers referred to the following relationship amongst
bulk wet density of sediments (ρbw), matrix density
(ρm), fluid density (ρf ) and porosity (f)

ρbw = ρm − (ρm − ρf )f. (9)

On the other hand, Athy (1930) presented the
following relation amongst surface porosity (f0),
porosity at depth z (fz) and compaction constant
λ = b−1

fz = f0e
−bz. (10)

Combining equations (9 and 10),

ρbwz = ρm − (ρm − ρf )f0e
−bz. (11)

Considering linear density variations along two
horizontal perpendicular directions Y and Z as per
equation (2) of Case I and equation (11), we get
the following, in place of equation (4)

ρ (x, y, z) = ρm − (ρm − ρf )f0e
−bz

+kxx + kyy. (12)
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Using equations (5 and 12)

Iy = V
(
z21 + x2

1

)
[0.33 ∗ ρm + 0.5 ∗ kx · x1

+0.17 ∗ kyy1]

+ (ρm − ρf )f0x1y1b
−1

[
0.33 ∗ (

e−bz1 − 1
)
x2
1

+e−bz1
(
z21 + 2 ∗ z1b

−1 − 2 ∗ b−2
) − 2 ∗ b−2

]
.

(13)

Recall, as per equation (6), here V = x1y1z1
For kx = ky = 0, the expression simplifies to

Iy = V
(
z21 + x2

1

)
[0.33 ∗ ρm]

+ (ρm − ρf )f0x1y1b
−1

[
0.33 ∗ (

e−bz1 − 1
)
x2
1

+e−bz1
(
z21 + 2 ∗ z1b

−1 − 2 ∗ b−2
) − 2 ∗ b−2

]
.

(14)

For the case of depth independent density, i.e.

b = 0 (15)

or

ρbwz = ρm − (ρm − ρf )f0. (16)

One needs first to rewrite equation (4) as:

ρ (x, y, z) = ρm − (ρm − ρf )f0 + kxx + kyy (17)

and use that in equation (5) for integration.

2.2.2 Linear variation of porosity with depth

A deviation from a linear relation between density
and depth is noted in overpressure zones (figure
2.7 of Telford et al. 1990). Unlike equation (10) in
Case II, porosity can also decrease linearly with
depth (Lerche and O’Brien 1987)

∅z = ∅0 − cz (18)

‘c’ is a constant. Therefore, equation (11) alters to

ρbw (0, 0, z) = ρbwz

= ρm − (ρm − ρf ) (∅0 − cz). (19)

This linear relation between ρbw and z can also
be expressed as equation (3) of Case I with kz =
(ρm − ρf ).

Note: (i) for constant magnitudes of ρm, ρf , Φ0,
x1, z1, ki (i = x, y, z) in Case I and ki (i = x, y)
in Case II, Iy is not proportional to y1. This is
because Iy is either in the form of Iy = Ay2

1 + By1

or Iy = Ay2
1 + By1 + C. (ii) For the Case I, ki = 0

would indicate a homogeneous block with spatially
constant density = {ρm − (ρm − ρf )Φ0}. In that
case

Iy = 0.33 ∗ V {ρm − (ρm − ρf ) Φ0}
(
z21 + x2

1

)
= 0.33 ∗ M

(
z21 + x2

1

)
(20)

where M is the mass of the block.
This matches with standard derivations avail-

able in statics texts for rectangular parallelepipeds.
However, note that where we choose the Y-axis,
whether inside, outside or at some other margin
of the block, obviously modifies the expression for
the MOI (derivations 11.2 in Spiegel and Liu 1999).
Equation (20) for homogeneous block shows (recall-
ing V = x1y1z1), unlike the non-homogeneous case,
Iy ∝ y1. This shows obviously that the presently
considered MOI for the density-distributed blocks
differ significantly from that of the homogeneous
block case. Another point, if the density of the rock
varies temporally, such as due to increased tectonic
loading at its top, the present work would require
a refinement in terms of time-dependent density.

2.2.3 Product of inertia

One can further deduce the product of inertia
(POI) in the context of the tectonics and structural
geology considered in this study. The POI has also
been studied in the context of landscape pattern
and geomorphological features (Zhang et al. 2006).
In this case, the POI with respect to X- and Y-axes

IXY =
∫ x1

0

∫ y1

0

ρ(x, y, z)xy dx dy. (21)

For Case I, substituting ρ(x, y, z) from equation
(4), and after performing definite integral

IXY = 0.5 ∗ x2
1y

2
1[0.5(ρ0 + kz)

+ 0.33(kxx1 + kyy1)]. (22)

Similarly,

IY Z = 0.5 ∗ y2
1z

2
1 [0.5(ρ0 + kx)

+ 0.33(kxy1 + kyz1)] (23)

and

IZX = 0.5 ∗ x2
1z

2
1 [0.5(ρ0 + ky)

+ 0.33(kzy1 + kxz1)]. (24)
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We firstly note that the POI increases
non-linearly with increases in both the dimension
of the parallelepiped (i.e., x1, y1 and z1) and its
density gradient (ki). Secondly, IXY , IY Z , IZX �= 0.
This means that neither of XY, YZ and XZ are the
planes of symmetry, which as per figure 2 is obvi-
ous and matches our intuition. In other words, X-,
Y- and Z-directions are not the principal axes at
the corner point O. Thirdly, if we consider the X,
Y and the Z axes passing through the point (0.5x1,
0.5y1, 0.5z1) and that this point is taken as the
origin (0, 0, 0), the POI becomes

IXY =
∫ 0.5x1

0.5x1

∫ 0.5y1

−0.5y1

ρ(x, y, z)xy dx dy

= IY Z = IZX = 0. (25)

This is for both the Cases I and II of ρ(x, y, z)
as per equations (4) and (12), respectively. This
is as expected (Gere and Goodno 2009) since in
this case the X-, Y- and Z-axes are the symmetry
axes passing through the geometric centroid of the
parallelepiped.

The following note can be made regarding equa-
tion (15) and later onwards in the main text that
involves the following definite integral

∫ z1

0

(z2e−bz)dz = b−1[2 ∗ b−2

−e−bz1(z21+2 ∗ z1b
−1+2 ∗ b−2). (26)

One needs to consider the case of b = 0 before the
definite integral operation, such as

∫ z1

0

z2 dz = 0.33 ∗ z31 . (27)

Instead, if b = 0 is put on the right hand side of
equation (26), the result is invalid since ‘b’ occurs
also in the denominator.

3. Discussions

This article uses a few simple cases. In reality,
both ρm and ρf can be depth (pressure and tem-
perature) dependent (Djomani et al. 2001), while
ρf can increase with depth (Patwardhan 2012).
Even though the rock/sedimentary body remains
‘the same’ during bookshelf gliding, a change in
‘ρ′

f that could be due to circulation of fluid along
the fault plane would change the magnitude of
MOI at any point inside the block. More refined

deductions of MOI can be attempted by opti-
mists if required for tectonic modeling. In any
case, we would require (at least empirical) equa-
tions (e.g., equations 1, 2 and 3 of Case I and
equation 10 of Case II) of density variation within
a rock/sediment column to find its MOI. There-
fore, the present approach may not work as it is
for book-shelf faulted blocks in metamorphic rocks,
which are likely to have either locally non-specific
(Reynolds 2011) or unknown density distributions
(Gorbatsevich et al. 2017). Also note, since rotation
rates that can only be constrained on faults >1 km
long in tectonic/geological cases are very slow,
e.g., 3◦ Ma−1 (Price and Scott 1994), 1−2◦ Ma−1

(Kreemer et al. 2009) or 0.25 μrad yr−1 (Sigmunds-
son 2006) with rotations of ∼ 22◦ (Tapponier et al.
1990) would take place over a long geological time
with a total significant temporal change in ρf alone
in the rotating block can alter the MOI.

Bookshelf gliding (figure 1) and rotational fault-
ing are the two well known cases of deformation
involving rigid body rotation in structural geology
and tectonics. Of these two types of faults, the
former affects rectangular parallelepiped crustal
blocks en mass, so that analyzing their MOI for
geologically realistic density distribution within
blocks on scales of kms becomes relatively easy;
it is much more difficult to constrain the slip
rates of small scale bookcase faults. For faulted
blocks with irregular geometric shapes, such as
for rotationally faulted blocks (Mukherjee and
Khonsari 2017), the analysis would become dif-
ficult. MOI of irregular objects can be deduced
either experimentally (Koyama et al. 2010) or using
computer models such as AMINERTIA (Internet
reference).

4. Conclusions

The moment of inertia is deduced for book-shelf
faulting of crustal blocks having geologically real-
istic density distributions. The deductions involve
porosity, densities of rock matrix and that of the
pore fluid. This work does not describe the evolu-
tion/genesis of such faulting, but estimates MOI
when such a deformation takes place. Depend-
ing on their occurrence, such crustal blocks are
potentially important in our understanding of
ocean floor kinematics (Sigmundsson 2006), and
in petroleum geosciences, their kinematic analyses
become important, especially in analyzing basins
formed above book-shelf faulted blocks (Veeken
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2007; such as in the Afar region: Tapponnier et al.
1990). Considering the effect of porosity in the
expression of MOI for bookshelf faulted blocks
is important since such arrays are common in
sedimentary environments, deltaic deposits in par-
ticular (Mandl 2000) where the density of each
block is likely to be depth-controlled (along the
Z-direction as per the present work). The MOI
for the density-distributed blocks differ much from
the case of the homogeneous block case, for exam-
ple only for the latter case, the MOI about the
Y-axis is proportional to the dimension of the par-
allelepiped along the Y-direction. The presented
model is capable of handling MOI and POI for
time-dependent density of the parallelepiped as
well. The POI depends non-linearly on the length,
width and height of the parallelepiped and its
density gradient.
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