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Understanding the spatial distribution, stocks, and influencing factors of soil organic carbon (SOC) is
important for understanding the current situation of SOC in alpine meadow ecosystems on the Qinghai–
Tibetan Plateau (QTP). We sampled 23 soil profiles to a depth of 50 cm in a 33.5 hm2 plot in a typical
meadow on the central QTP. The distribution, stock and influencing factors of SOC was then analyzed.
The mean density of soil carbon content (SOCD) was 2.28 kgm−2 with a range of 5.99 kg m−2. SOCD
in the 0–10 cm layer was 3.94 kg m−2 and decreased quadratically with depth. The total stock of SOC to
a depth of 50 cm was ca. 2950 t, the 0–10 and 0–30 cm layers accounting for 38 and 80%, respectively.
SOCD varied moderately spatially and was distributed more homogeneously in the 0–10 and 40–50 cm
layers but was more variable in the middle three layers. SOCD was significantly correlated positively
with soil-water content, total porosity, and silt content and negatively with soil pH, bulk density, stone
content and sand content. This study provides an important contribution to understanding the role of
alpine meadows in the global carbon cycle. It also provides field data for model simulation and the
management of alpine meadow ecosystems.

Keywords. Soil organic carbon; spatial distribution; influencing factors; alpine meadow; Qinghai–
Tibetan Plateau.

1. Introduction

Soil organic carbon (SOC) is an important com-
ponent of soil and can influence the stability and
development of natural ecosystems by influencing
soil structure, fertility, and water holding capac-
ity (Liu et al. 2011). Soil contains the largest pool
of SOC of terrestrial ecosystems, twice the total
content of the atmosphere and biosphere (Yang

et al. 2008; Zhang and Shao 2014). SOC stock
fluctuates with changes of land use, tillage strate-
gies, soil erosion, and grassland degradation, which
can influence not only the physical, chemical, and
biological properties of soil, but also local even
global carbon cycles (Li and Shao 2014).

The distribution (Yu et al. 2007; Zhang and Shao
2014; Bameri et al. 2015), stock estimation (Fu
et al. 2010; Yang et al. 2016), influencing factors
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(Li and Shao 2014; Zhao et al. 2015), and model
simulation (Meersmans et al. 2009a; Koszinski
et al. 2015; Yang et al. 2016) of SOC have been
studied widely in recent decades on global (Batjes
1996), national (Ottoy et al. 2015; Roßkopf et al.
2015; Zhang et al. 2015a; Aitkenhead and Coull
2016; Mulder et al. 2016; Rodŕıguez Mart́ın et al.
2016; Wen and He 2016), regional (Liu et al. 2011;
Wang et al. 2015b), and watershed (Wei et al. 2010;
Xin et al. 2016) scales in forests (Wei et al. 2010;
Ricker and Lockaby 2015), grasslands (Shi et al.
2012; Zhao et al. 2015), croplands (Wang et al.
2015a), wetlands (Li and Shao 2014), and deserts
(Zhang and Shao 2014) on plains (Koszinski et al.
2015), mountains (Chen et al. 2016), hills (Bameri
et al. 2015; Xin et al. 2016), and plateaus (Wang
et al. 2015b; Zhao et al. 2015).

The Tibetan Plateau is the highest unit of
physical geography in the world (Zhang et al.
2015c) and has been called the third pole of the
Earth (Qiu 2008). It functions as an important
barrier for the ecological security of China and
even for all Asia and is an important indica-
tor of global climate change (Sun et al. 2012).
Alpine meadows are widely distributed across the
plateau and cover a total area of 0.7 million km2.
However, the local ecosystems developed in this
high, cold, and oxygen-deficit environment, are
fragile and degenerating due to climate change
and over-grazing in recent decades (Li and Shao
2014). The degradation of the ecosystem has
reduced land productivity and species diversity and
changed the soil-water status (Li et al. 2014; He
and Richards 2015; Li et al. 2016). The study
of SOC, an important component of the soil, is
thus necessary and has received some attention
on the Qinghai–Tibetan Plateau (QTP) (Wang
et al. 2002; Yang et al. 2008; Baumann et al.
2009; Tan et al. 2010; Chen et al. 2016; Yang
et al. 2016). Yang et al. (2008) estimated the
SOC stock of the QTP based on 405 soil profiles
and the enhanced vegetation index from satel-
lite data and analyzed the relationship between
SOC with climatic factors and soil textures. Bau-
mann et al. (2009) analyzed the influence of frozen
earth on SOC stocks from 47 soil profiles on a
1200 km transect on the QTP. Tan et al. (2010)
estimated the biomass and SOC stock of grassland
on the QTP using the ORCHIDEE global vege-
tation model. Studies of SOC on the QTP have
mainly concentrated on large-scale inversion and
estimation, which have low or uncertain accura-
cies due to the natural heterogeneity of the soil

and the discrepancy of the data or methods used
in the studies (Yu et al. 2007; Zhang and Shao
2014).

Field studies of SOC at watershed scales in the
hinterland of the QTP, where the average eleva-
tion is ca. 4500 m a.s.l., however, are comparatively
rare. Understanding the spatial distributions and
influencing factors of SOC is necessary for man-
aging degraded meadows and for forecasting the
impact of climate change on SOC (Yang et al.
2016). The verification of large-scale inversion fur-
ther forces the necessity of field studies in the harsh
hinterlands of the QTP.

A dataset for SOC, vegetation coverage (VC)
and soil properties was compiled for an alpine
meadow to analyze the distribution, stock, and
influencing factors of SOC. The specific objectives
were to: (1) estimate the total SOC stock and
analyze the spatial distribution of the density of
soil organic carbon (SOCD) in the study plot,
(2) determine the main factors influencing SOCD
and evaluate the accuracy of multiple linear
regression equation for estimating SOCD.

2. Materials and methods

2.1 Site description

The study area is in the hinterland of the QTP, in
Nagqu prefecture of the Tibet Autonomous Region.
The area has an elevation of ca. 4600 m a.s.l. and
has a subfrigid climate with long cold winters and
short growing seasons (June–August). The annual
mean temperature for 1981–2014 varied from –2.4
to 0.9◦C, with a mean of −0.5◦C, and the annual
mean rainfall varied from 307.5 to 620.5 mm, with a
mean of 455.8 mm, 63.7% of which fell from June to
August (Nagqu Weather Station). The evapotran-
spiration was ca. 1800 mm, and the relative humid-
ity was only 53%. The study plot was established
in 2011 in a degraded meadow, ca. 19 km north of
the Nagqu prefecture. The plot has a width of ca.
480 m from southwest to northeast, a length of 530–
770 m from southeast to northwest, and a total
area of ca. 33.5 hm2. The plot is flat and open and
slopes from northwest to southeast with a maxi-
mum relative elevation (RE) of ca. 10 m (Zhang
et al. 2015b). Vegetation in the study area is typ-
ical zonal grass dominated by Kobresia pygmaea
and associated with Potentilla bifurca, Potentilla
saundersiana, Leontopodium pusillum and Carex
moorcroftii, which were all annual herbs. The soil
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is typical of alpine meadows with a sand content
of ca. 69.4% (Zhu et al. 2016) and is classified
as sandy loam or sandy clay loam according to
world reference base. The soil is shallow in the
study area with a maximum depth of about 50
cm. The 0–15 cm layer, known as the mattice
pipedon (Yang et al. 2016), is compacted with
dense roots. The 15–30 cm layer has fewer roots
and some gravel and stones, and the 30–50 cm
layer has very few roots but some gravel and
stones. Stones are distributed extensively below
50 cm, which limited the depth to which soil
profiles could be exposed.

2.2 Sampling design and data acquisition

We dug 23 pits in the 2015 growing season to
access soil profiles. The pits were arranged in a
120 m (southeast to northwest) × 150 m (southwest
to northeast) grid and were identified as L1–L23.
Eighteen of the 23 pits could be dug to a depth of
50 cm, four of the pits (L1, L3, L8 and L9) were
40 cm in depth, and one (L4) was 20 cm in depth
due to the obstruction of stones. Undisturbed and
disturbed soil samples were collected at intervals of
10 cm from all profiles using cutting rings with vol-
umes of 100 cm3 (5 cm in diameter and in height)
and zip-lock bags of size eight, respectively. Some
undisturbed samples were damaged during trans-
port, leaving 83 undisturbed and 108 disturbed soil
samples for analysis.

The undisturbed soil samples were used to mea-
sure soil bulk density (BD , g cm−3), volumet-
ric soil-water content (SWC, %), total porosity
(TP, %), and saturated hydraulic conductivity
(Ks, mm min−1) by: (1) weighing the undisturbed
natural soil and cutting ring using an electronic
balance (mns+cr, g), (2) transferring the samples to
a vessel, containing water at a level consistent with
the upper layer of the cutting ring, (3) removing
and weighing the samples after 6 h (mns+cr+6, g),
(4) drying the samples in an oven at a constant
temperature of 105◦C for 12 h, and (5) weigh-
ing the dry soil and cutting ring (mds+cr, g). The
BD , volumetric SWC, and TP were calculated as
(Wang and Shao 2013):

BD =
mds+cr − mcr

V
(1)

θv =
mns+cr − mds+cr

V
× BD × 100% (2)

TP =
mns+cr+6 − mds+cr

V
× 100% (3)

where mcr is the weight of the cutting ring (g), V
is the volume of the cutting ring (cm3), and θv is
the volumetric SWC (%).

The constant hydraulic head method was used to
measure Ks. The undisturbed sample before step
(4) above was connected to a Markov bottle to
maintain a stable hydraulic head. The outflow was
recorded every 10 min until the flow was stable. Ks

was calculated as (Wang and Shao 2013)

Ks =
10 · Q · L
A · t · H

(4)

where Q is the outflow of water (cm3), L is the
length of the flow path (cm), A is the cross-
sectional area of the flow path (cm2), t is the flow
duration (10 min in this study), and H is the
hydraulic head (cm).

The disturbed soil samples were weighed after
natural drying (mnd, g), and the samples were then
passed through a 2-mm mesh and the coarse par-
ticles (>2 mm) were weighed (mgs, g). Soil gravel
and stone content (SSC, %) was then calculated as

SSC =
mgs

mnd
× 100%. (5)

The particles from the disturbed soil samples that
passed through the 2-mm mesh were divided into
two parts; one was used to measure soil tex-
ture using a laser particle sizer (Mastersizer 2000,
Malvern Instruments, Britain). Soil texture was
described with clay (< 0.002 mm), silt (0.02–0.002
mm), and sand (0.02–2 mm) according to the inter-
national taxonomy system. The other part was
passed through a 0.25 mm mesh for measuring SOC
using the potassium-dichromate external-heating
method and soil pH using a pH meter (Mettler
Toledo Co., Ltd, Switzerland).

A hand-held GPS receiver was used to record
the longitude, latitude, and altitude. The RE of
the lowest point, L4, was set to 0, and the REs
of the other points were calculated by subtracting
the absolute elevation of L4 (4595 m) from their
elevations.

In addition, two photographs were taken at each
sampling point by a digital camera (Canon 600D)
0.5 m east and west of the point and 1.2 m above
the ground. Photographs of the vegetation at the
23 locations were acquired each week. The VC
was determined from the photographs using Image
J software, and the mean value was used for
analysis.
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Table 1. Area of each location.

Plot position Locations
Length × width

(m)

Area

(m2)

Corner L1, L4, L23 75 × 60 4500

Edge1 L2, L3, L20 150 × 60 9000

Edge2 L5, L8, L9, L12, L13, L17, L21 120 × 75 9000

Interior L6, L7, L10, L11, L14–16, L18, L19, L22 150 × 120 18000

Note: Edge1, southeastern and northern edges of the plot; Edge2, southwestern and northeastern
edges of the plot.

2.3 Calculation of SOCD and SOC stock

SOCD i,j for the ith layer at location j (SOCDi,j ,
kg m−2) was calculated as (Zhang and Shao 2014):

SOCDi,j =
SOCi,j × BDi,j × D × (1 − CFi,j/100)

100
(6)

where SOCi,j is the SOC in the ith layer at location
j (g kg−1), BDi,j is bulk density in the ith layer
at location j (g cm−3), D is the thickness of the
soil layers (10 cm in this study), and CFi,j is the
fraction of coarse fragments >2 mm in the ith layer
at location j (%).

The SOC stock was calculated as:

SOCi,stock =
m∑

j=1

(SOCDi,j × Sj) (7)

where SOCi,stock is the amount of SOC in the ith
layer of the plot (kg), m is the number of sam-
pling locations (m = 23 in this study), and Sj is
the area location j represents. Because the sam-
pling points were at different locations in the plot,
the areas the sampling points can represent differed
(table 1).

The amount of SOC (SOC stock, kg) for the entire
plot was thus calculated as:

SOCstock =
n∑

i=1

SOCi,stock (8)

where n is the number of soil layers (n = 5 in this
study).

2.4 Statistics and evaluation

Classical statistical methods were used to analyze
the spatial variation of SOCD following the steps:
(1) describe and exhibit the statistical parame-
ters of maximum, minimum, mean, median, range,
standard deviation (SD), coefficient of variation

(CV); (2) determine the type of distribution of the
variables; and (3) judge the degree of the variation
of the samples based on the CV, which is the ratio
of SD and the mean. Variation is generally consid-
ered to be low, moderate, and high at CV ≤ 10%,
10% < CV < 100%, and CV ≥ 100%, respectively
(Nielsen and Bouma 1985).

A one-way analysis of variance (ANOVA) was
used to analyze the differences in SOCD in the vari-
ous soil layers. Pearson correlation coefficients were
used to determine the correlations between SOCD
and its influencing factors. Single sample K-S test-
ing was used to test the distribution of SOCD.

Multiple linear regression was used to estimate
SOCD. Odd numbered samples were used to build
the regression equation, and even numbered sam-
ples were used to evaluate the model. The root
mean square error (RMSE ) and the Nash–Sutcliffe
model efficiency coefficient (NSE) (Nash and Sut-
cliffe 1970) were used to evaluate the accuracy of
the model

RMSE =

√√√√ 1
N

N∑

i=1

(SOCDm − SOCDs)
2 (9)

where N is the number of soil samples that used to
build the model; SOCDm is the measured SOCD
(kg m−2) and SOCDs is the simulated SOCD
(kg m−2).

NSE = 1 −
∑N

i=1 (SOCDm,i − SOCDs,i)
2

∑N
i=1

(
SOCDm,i − SOCDm,i

)2 .

(10)
NSE ranges from –∞ to 1. NSE = 1 indicates
that the simulated and measured SOCD are the
same; NSE = 0 indicates that the estimate is as
accurate as the mean measured SOCD; and an
NSE < 0 indicates that the simulated SOCD is not
as accurate as the mean measured SOCD (Nash
and Sutcliffe 1970; Yuan et al. 2016).
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3. Results and discussion

3.1 Descriptive statistics of the soil physical
properties

Soil physical properties are important factors
influencing SOC, so describing the basic proper-
ties of the soil in a study area in necessary. The
mean values of Ks,BD ,TP , clay, silt and sand con-
tents, and SSC were 2.02 mm min−1, 1.37 g cm−3,

28.24, 16.82, 13.75, 69.40 and 40.61%, respectively
(table 2). The Ks varied more spatially, and the
other properties varied moderately. BD and SSC
in the profiles increased with depth; TP , silt con-
tent, and SWC decreased with depth; and Ks, clay
and sand contents did not vary with depth. The
amounts of roots decreased and gravel increased
with depth, which may have increased BD and
decreased TP with depth. The study area suffered

Table 2. Descriptive statistics for the primary soil properties.

Property Layer (cm) Maximum Minimum Mean SD CV (%)

Ks (mm min−1) 0–10 5.88 0.10 1.53 1.55 101.34

10–20 9.79 0.20 3.19 2.49 78.19

20–30 6.15 0.03 1.78 2.11 118.58

30–40 4.83 0.18 1.82 1.62 89.00

40–50 6.21 0.02 1.78 1.81 101.79

BD g (cm−3) 0–10 1.69 0.71 1.04 0.22 21.28

10–20 1.69 1.07 1.42 0.17 12.04

20–30 1.66 1.03 1.43 0.18 12.88

30–40 1.75 1.27 1.53 0.12 8.06

40–50 1.79 1.32 1.61 0.14 8.84

TP (%) 0–10 48.01 17.62 30.53 8.35 27.36

10–20 39.93 24.58 30.93 4.72 15.27

20–30 34.80 18.43 27.30 4.55 16.65

30–40 40.96 14.57 25.96 6.60 25.42

40–50 32.90 19.30 24.74 3.66 14.77

Clay content (%) 0–10 23.41 13.08 17.77 2.58 14.52

10–20 22.90 2.53 14.58 4.65 31.86

20–30 39.15 9.11 16.99 6.56 38.62

30–40 27.41 8.19 17.58 4.77 27.13

40–50 25.44 6.36 17.31 4.86 28.08

Silt content (%) 0–10 19.98 11.47 16.16 2.24 13.86

10–20 19.77 2.78 13.30 4.03 30.30

20–30 25.11 7.93 13.44 3.76 27.95

30–40 18.88 4.72 13.02 3.44 26.44

40–50 18.32 6.91 12.49 3.40 27.20

Sand content (%) 0–10 73.65 57.91 66.07 4.56 6.90

10–20 94.69 57.40 72.12 8.45 11.71

20–30 80.63 35.74 69.55 9.93 14.28

30–40 87.09 54.58 69.33 7.74 11.17

40–50 86.73 56.24 70.09 7.50 10.70

Soil gravel and

stone content (%)

0–10 45.07 4.78 27.65 12.09 43.74

10–20 57.39 8.75 38.95 9.60 24.64

20–30 60.87 33.94 43.83 7.57 17.26

30–40 58.49 25.83 45.31 10.49 23.15

40–50 64.95 26.74 49.35 10.67 21.63

Soil-water content (%) 0–10 38.43 4.23 21.87 10.85 49.59

10–20 23.67 1.79 9.29 5.79 62.40

20–30 11.91 1.89 7.24 2.83 39.03

30–40 14.44 1.53 6.43 3.49 54.19

40–50 7.36 1.93 4.62 1.77 38.25
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Figure 1. Horizontal distribution of the mean values of soil saturated hydraulic conductivity (Ks, mm min−1); bulk density
( BD , g cm−3); total porosity (TP , %); soil clay, silt, and sand contents (%); soil gravel and stone content (SSC , %), and
soil-water content (SWC, %).

a drought in July 2015, so SWC had not recov-
ered throughout the profile, although some rain fell
in August, which may account for the decrease in
SWC with depth.

The Ks was high in the central and northwest-
ern parts of the plot, BD was lower in the north,
and TP was low in the central and eastern parts of
the plot (figure 1). The distributions of clay, silt,
and sand contents were similar; all were low in the
northeast and southwest. SSC was higher in the
northern and southeastern parts of the plot. SWC
did not vary. The soil in the northwest of the plot
generally had high Ks and TP and low BD and
SSC , which were suitable for SWC, nutrient migra-
tion, and vegetation growth. The distribution of
the soil properties may have been due to the RE ,
although the largest RE was only 10 m; the ter-
rain was higher in the northwest and lower in the

southeast, which may have caused the variations in
the soil properties (Leifeld et al. 2005; Chen et al.
2016; Xin et al. 2016).

3.2 Statistics and distribution of SOCD

3.2.1 Statistical analysis of SOCD

Mean SOCD in our study plot was 2.28 kg m−2 to
a depth of 50 cm, with a range of 5.99 kg m−2

(table 3). The single-sample K-S test (p < 0.05)
indicated an abnormal distribution. The distance
from the median to the maximum was 3.8 times the
distance from the median to the minimum, indicat-
ing a right-skewed distribution. The SD of SOCD
was 1.42, and the CV was 62.19%, indicating a
moderately variable SOCD. Mean SOCD decreased
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Table 3. Descriptive statistics for the density of soil organic carbon (SOCD, kg m−2) and the SOC stocks (kg) in the soil
layers of the study plot.

Layer CV (%) SOC stock Proportion

(cm) N Maximum Minimum Mean Median Range SD CV (%) (kg) (%)

0–10 22 6.17 2.54 3.94 3.95 3.63 0.78 19.95 1116.30 37.9

10–20 17 6.54 1.58 2.86 2.52 4.96 1.23 43.05 800.74 27.1

20–30 13 2.53 0.91 1.55 1.45 1.63 0.48 31.26 437.19 14.8

30–40 15 2.84 0.55 1.15 1.02 2.29 0.58 50.21 319.35 10.8

40–50 15 1.33 0.81 0.97 0.88 0.52 0.17 17.92 276.38 9.4

0–50 82 6.54 0.55 2.28 1.79 5.99 1.42 62.19 2949.95 100

Note: N: sample size; SD: standard deviation; CV: coefficient of variation.

Figure 2. Fitted curve for the vertical distribution of the
density of soil organic carbon (SOCD, kg m−2). Vertical bars
correspond to ±1 standard deviation of the SOCD.

with depth, mainly due to the decrease in the num-
ber of roots and to the increase in SSC (table 2).
One-way ANOVA analysis showed that the differ-
ence between the mean SOCD in the five layers
was significant at p <0.001. The stock of SOC in
the plot was ca. 2950 t, with the 0–10 and 0–20 cm
layers accounting for 37.8 and 65.0%, respectively.
The temperature was low in the study area dur-
ing the non-growing seasons, and the surface SWC
was nearly saturated during the growing seasons
in normal years, which decreased the decomposi-
tion rates of dead roots and litter and resulted in
the accumulation of SOC in the surface layer. Yang
et al. (2016) reported the same result for the north-
eastern QTP, where the soil was deeper than in our
study area and the mattic epipedon of the 0–14 cm
layer accounted for 21% of the SOC in the upper
1 m of soil.

Measures of SOCD have differed in SOC studies
on the QTP due to the influences of topography,

vegetation, soil properties, and permafrost distri-
bution. Yang et al. (2016) estimated a slightly
higher SOCD in a meadow on the northeastern
edge of the QTP. Mean SOCD to a depth of 50
cm in another study of meadow ecosystems on
the QTP was 7.51 kg m−2, which was three times
higher than in our study (Yang et al. 2008). The
altitudes of these studies were lower than in our
study area, and another study reported that high
altitude can reduce the turnover rate of SOCD
(Leifeld et al. 2005). The soil in our study area,
however, developed shallow, with a mean depth of
about 50 cm; SSC was high, with a mean of 40.6%
to a depth of 50 cm, and the meadow was degraded
to some extent and had low VC and above ground
biomass (average of 74 g m −2 for 9 and 27 July
and 24 August). The shallow soil, high SSC , and
the degraded vegetation can account for the lower
SOCD, which could obscure the increase in SOCD
with altitude in our study area.

3.2.2 Vertical pattern of SOCD

SOCD varied specifically within the soil profile,
even though the soil was shallow. SOCD decreased
quadratically with depth (figure 2). The values
of SOCD in the 10, 20, 30, 40, and 50 cm
soil layers were 3.94±0.78, 2.86±1.23, 1.55±0.48,
1.15±0.58, and 0.97±0.17 kg m−2, respectively
(table 3). SOCD was higher in the 0–20 cm layers
and lower in the 30–50 cm layers, where, however,
SD was lower, indicating a relatively homogeneous
distribution of SOCD. Studies have reported that
SOCD decreased with depth exponentially (Meers-
mans et al. 2009b) or logarithmically (Li and
Shao 2014), but SOCD in our study was best
described by a quadratic function (R2= 0.989,
p < 0.001). The differences may be caused by dif-
ferences in soil properties, vegetation, and climatic
factors.
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3.2.3 Horizontal variation and distribution of
SOCD

SOCD varied moderately spatially, and the
degree of variation was not dependent on depth
(table 3). SOCD generally varied less in the 0–10
and 40–50 cm than the middle layers. Studies
have reported that SOCD in the surface layer was
sensitive to vegetation, climate, land-use type and
management strategy and varied more than in
deeper layers (Li and Shao 2014). The 0–10 cm
layer in our study area, however, was the mattic
epipedon, where the hardened root-soil structure
was conducive to the stocks of SOC and weak-
ened the influence of the external environment. In
addition, the 40–50 cm layer lay at the bottom of
the profile was weak affected by the vegetation,
climate, and human activities.

The distributions of SOCD in the various soil
layers were obtained using Kriging interpolation
(figure 3). SOCD in the 30–40 cm layer was con-
centrated in the south of the plot, and SOCD in
the 40–50 cm layer was concentrated in the central
part. SOCD in the other three soil layers all tended
to increase from southeast to northwest, which was
consistent with the distribution of Ks, TP, and silt
content and in contrast to the distribution of BD
(figure 1), indicating that the soil properties and
water conditions were better in the northwestern
than the central and southeastern parts of the plot,
which may have contributed to the distribution of
SOCD.

3.3 Factors influencing SOCD

Pearson correlations between SOCD in each layer
and the influencing factors were consistent with the
correlations between SOCD in the entire profile
and the influencing factors, except for some fac-
tors in the 0–10 and 40–50 cm layers (table 4).
SOCD was significantly correlated positively with
SWC, TP , and silt content at p <0.01 and nega-
tively with BD ,SSC , and pH at p <0.01 and with
sand content at p <0.05.

Studies have reported positive correlations
between the contents of fine soil particles (silt and
clay) and SOCD (Li and Shao 2014; Zhang and
Shao 2014). Fine soil particles and iron oxide can
fix soil organic matter (Li and Shao 2014), which
may mostly account for the positive correlation.
In addition, soil porosity can promote the aggre-
gation of SOC to some extent, and SWC can
protect the SOC from oxidization. The increase in

BD ,SSC , and sand content indicates a decrease in
fine particles, so SOC accordingly decreased. The
alpine-meadow soil was weakly acidic, with a mean
pH of 6.75 and a range of 5.75–7.51. A small change
in pH can greatly influence the structure and func-
tion of microbial communities (Curtin et al. 1998),
and accordingly influence the content of organic
carbon.

The inconsistency of significant differences
between the individual layers and the entire profile
(0–50 cm) was mainly due to the special features
of the area and the number of samples (table 4)
for each layer. A comparison between SOCD and
the other properties among the layers can pro-
vide an indirect understanding of the soil structure.
For example, the correlations of the clay, silt, and
sand contents with the SOCDs in the 10–20, 20–30,
30–40 and 40–50 cm layers were consistent with
the correlations of the clay, silt, and sand contents
with the SOCD in the entire profile. SOCD in the
0–10 cm layer, however, was oppositely correlated,
which may indicate that the features of the 0–10
cm layer are distinct from those of the other lay-
ers and that the mattic epipedon has an important
influence on the soil properties in return. Samples
of the entire soil profile can generally represent the
overall condition of the soil and can be used for
regression analysis.

3.4 Simulation and estimation of SOCD

The Pearson analysis showed that SWC, BD ,TP ,
silt content, SSC , and pH were all significantly
correlated with SOCD. To avoid the influence of
collinearity of the factors, we chose BD , which was
most highly correlated with SOCD, for estimating
SOCD. pH, RE , and VC were then chosen for rep-
resenting soil chemistry, terrain, and vegetation,
respectively.

The regression parameters and efficiencies of
the multiple regression equations of each layer are
shown in table 5. The models were better for the
0–10 and 20–30 cm layers, with higher R2 and lower
p values. The model for all samples (0–50 cm) had
the best efficiency (p <0.001), with the highest R2

of 0.656.
Cross validation was used to verify the multiple

regression equation. Data from the odd numbered
rows were chosen to build the regression equation
for SOCD, and the even numbered rows were used
to evaluate the performance of the equation. The
equation was
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Figure 3. Spatial distribution of the density of soil organic carbon (SOCD, kg m−2) in the various soil layers.

SOCD = −0.035 ∗ RE − 1.514 ∗ BD − 2.215 ∗ pH

−0.501 ∗ V C + 19.366

(N = 41, R2 = 0.547, p < 0.001). (11)

The measured SOCD was plotted against the esti-
mated SOCD to test the utility of the equation
(figure 4). All points were near the 1:1 line, the
correlation coefficient and NSE were high, and
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Table 4. Pearson correlation coefficients between the density of soil organic carbon and environmental factors in the soil
layers.

Clay Silt SandLayer

(cm) RE SWC Ks BD TP content content content SSC pH VC

0–10 0.372 −0.336 0.175 −0.282 0.660∗∗ −0.145 −0.051 0.108 −0.414 −0.433∗ 0.694∗∗

10–20 0.362 0.134 −0.004 −0.123 −0.212 0.298 0.354 −0.329 −0.320 −0.395 0.088

20–30 0.731∗∗ 0.075 0.754∗∗ −0.074 0.197 0.025 0.197 −0.089 −0.713∗∗ −0.418 0.134

30–40 0.228 0.755∗∗ −0.007 −0.464 0.002 0.166 0.288 −0.235 −0.123 −0.065 0.117

40–50 0.148 −0.039 0.086 0.119 0.362 0.419 0.514 −0.503 −0.391 0.204 0.466

0–50 0.155 0.547∗∗ 0.094 −0.674∗∗ 0.414∗∗ 0.062 0.412∗∗ −0.231∗ −0.646∗∗ −0.785∗∗ 0.112

Note: RE: relative elevation (m); SWC: soil–water content (cm3 cm−3); Ks: saturated hydraulic conductivity (mm min−1);
BD: soil bulk density (g cm−3); TP: total porosity (%); VC: vegetation coverage.

*indicates the correlation is significant at p <0.05; **indicates the correlation is significant at p <0.01

Table 5. Multiple linear regression analysis of soil organic carbon density in
various soil layers.

Layer Regression parameter

(cm) N RE BD pH VC constant R2 p

0–10 22 0.072 1.025 −0.382 3.724 2.356 0.567 0.005

10–20 17 0.088 0.228 −2.354 0.055 17.104 0.188 0.609

20–30 13 0.100 −0.499 −1.040 0.302 8.371 0.613 0.077

30–40 15 0.053 −2.040 0.585 0.389 −0.203 0.258 0.515

40–50 15 0.012 0.213 0.312 0.767 −2.161 0.392 0.247

0–50 82 0.015 −1.401 −2.263 −0.295 19.158 0.656 0.000

Note. N: sample size; RE: relative elevation (m); BD: soil bulk density
(g cm−3); VC: vegetation coverage.

Figure 4. Comparison of measured and simulated densities
of soil organic carbon (SOCD).

the estimation error was small (RMSE = 0.692
kg m−2). These results indicated that estimating
SOCD in the alpine meadow soil using RE ,BD ,
pH, and VC can be acceptably accurate. The study

area was small relative to the entire QTP, but
the present study was meaningful for characteriz-
ing the alpine meadows in the hinterland of the
QTP, where the soil, vegetation, and climate are
similar.

4. Conclusion

We investigated the distribution, stocks, and influ-
encing factors of SOCD in the hinterland of the
Qinghai–Tibetan Plateau by digging 23 soil pits
in an alpine meadow ecosystem. The mean SOCD
was 2.28 kg m−2 to a depth of 50 cm and was
moderately variable. Vertically, SOCD decreased
quadratically with depth. The total stock of SOC
in the study plot was ca. 2950 t, the 0–10 cm
layer accounting for 38% of the total and the
0–30 cm layer for 80%. Horizontally, SOCD was
higher in the northwestern and lower in the cen-
tral and southeastern parts of the study plot,
which may have been due to the variation of
the soil properties and water conditions. SWC,
BD ,TP , silt content, sand content, SSC, and pH
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were the main factors influencing SOCD. A mul-
tiple linear regression equation using RE, BD,
pH, and VC estimated SOCD with acceptable
accuracy.
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