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How tightly should a sample be packed for strain estimation by the Fry method? We address this
issue using synthetic simulations of 900 images such that each image contains 200 randomly distributed
grains, but differs from other images with respect to the packing tightness and the degree of sorting.
Each image is coaxially distorted by various known strain ratios and the strain estimates from distorted
images are obtained by the Fry method. The statistical errors in the strain estimates are found to grow
larger with the decrease in the packing tightness irrespective of the level of distortion. We demonstrate
that a progressive decrease in the packing tightness results in an increasingly clustered nature of grain
center distribution and hence the larger errors. These results, obtained from the synthetic images, are
corroborated by two natural examples of sandstone, one loosely packed and the other tightly packed.
Based on the results of tests on synthetic and natural examples, we recommend that the Fry method
should be used only on those samples that have >30% packing density.
Keywords. Fry method; strain estimation; packing density; sorting; clustering; error estimation.

1. Introduction

The Fry method is a graphical technique that uses
the relative movement of material points, typically
grain centres, for strain estimation in rocks (Fry
1979; Hanna and Fry 1979). The method produces
a point distribution, the Fry plot, that contains
a characteristic central vacancy, the strain ellipse
provided the grains and the matrix are mechani-
cally identical and the distortion is homogeneous
(Fry 1979; Lisle 1979; Ramsay and Huber 1983).
The Fry method has been extensively used dur-
ing the last three decades due to its applicability
to a wide range of situations and the procedu-
ral simplicity (e.g., Lacassin and Van den driess-
che 1983; Ramsay and Huber 1983; Seno 1992;
McNaught 1994; Srivastava 1995; McNaught 2002;
Gonzalez-casado et al. 2003; Genier and Epard

2007; Long et al. 2011). Several issues related
to the Fry method, such as the degree of anti-
clustering, the effect of pressure solution, the choice
of grain centroid versus grain centre, the use of
non-elliptical grains, the degree of sorting, the
uncertainty in results and the problem of void
fitting have already been addressed in several well-
constrained studies (Crespi 1986; Onasch 1986;
Dunne et al. 1990; McNaught 1994, 2002; Ray and
Srivastava 2008; Reddy Vinta and Srivastava 2012;
Mulchrone 2013).

The problem of subjectivity in the interpretation
of the Fry plot, arising due to diffuse bound-
aries of the central vacancy, was first addressed
by Erslev (1988) and Erslev and Ge (1990). Sev-
eral variants of the Fry method have since been
proposed for objective interpretation of the Fry
plot. For example, Waldron and Wallace (2007)
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Figure 1. Different types of grain center distribution. (a) Random, (b) clustered, (c) anticlustered isotropic, and
(d) anticlustered anisotropic. Modified after Genier and Epard (2007).

proposed a Continuous Function method that iden-
tifies the best-fit strain ellipse by the maximum
value of an exponential function. In an entirely
different approach, Lisle (2010) retro-deforms the
Fry plot in successive increments and uses Kuiper’s
Test and Chi-squared Test for the restoration of
the isotropic non-Poisson point distribution. Using
a similar approach, Shan and Xiao (2011) give
a maximum likelihood method that identifies the
truncated Poisson point distribution in the undis-
torted object set. The image analysis technique
of Reddy Vinta and Srivastava (2012) applies a
weighted Gaussian blur to each pixel on the Fry
plot for extraction of the elliptical central vacancy.
Mulchrone (2003, 2013) uses the Delaunay nearest
neighbour point distribution technique for objec-
tive strain estimation from the Fry plot. Kumar
et al. (2014) made a comprehensive comparison of
these methods and concluded that the Continuous

Function method gives most accurate results. For
this reason, we have used the Continuous Function
method for strain estimation from Fry plots in all
our synthetic and natural examples presented in
this study. As the choice of objective variant does
not affect the results from the Fry method signifi-
cantly, the results will hold good irrespective of the
object variant chosen.

The nature of grain centre distribution is a crit-
ical consideration in the Fry method. The method
is most suited to the samples that had an anti-
clustered grain centre distribution in the undis-
torted state (Fry 1979). Genier and Epard (2007)
test the Fry method on four different types of point
distributions:
(i) anti-clustered-isotropic,
(ii) anti-clustered-anisotropic,
(iii) random, and
(iv) clustered (figure 1a–d).
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Figure 2. Flowchart of the Matlab code for simulation of undistorted and distorted images.

Their results confirm that the method gives best
results when the grain centre distribution is anti-
clustered in the undistorted state. Given a dis-
torted sample, it is, however, difficult to predict
the nature of the pre-tectonic grain centre dis-
tribution without a rigorous analytical treatment
(Dacey 1964; Genier and Epard 2007; Lisle 2010).
As an alternative, the sedimentological degree of
sorting is routinely considered as a proxy for the

degree of anti-clustering in the undistorted grain
centre distribution (Crespi 1986; McNaught 2002;
Reddy Vinta and Srivastava 2012; Mulchrone 2013;
Kumar et al. 2014). In general, the well sorted
samples are considered suitable for application of
the Fry method.

The tightness of grain packing is another
important parameter in the selection of a sample
for strain estimation by the Fry method (Fry 1979;
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Figure 3. Step-wise procedure for simulation of a sample containing 200 grains of the desired degree of sorting (say, S = 4.0)
and packing density (say, P = 30%). (a) Different Gaussian curves correspond to different degrees of sorting. The yellow
curve with standard deviation, σ = 4.0, is the desired curve. (b) The yellow curve is translated along the X-axis until the
desired degree of packing density is achieved. N : number of grains, σ: standard deviation and μ: mean of radii.

Erslev and Ge 1990; Genier and Epard 2007).
Although tightly packed aggregates are routinely
considered suitable for using the Fry method, the
threshold of packing tightness for the Fry method
is not yet known. We seek an answer to this
question through a series of tests on numerically
simulated samples that vary with respect to the
packing density and the degree of sorting. Our
study assumes the lack of competency contrast
between grains and matrix and the homogeneous
nature of a constant-volume distortion (Ramsay
1967; Fry 1979; Ramsay and Huber 1983). The
rheological contrast due to factors, such as the pres-
ence of pore fluids and the grain size variation is
also ignored in our simulations. Such an approach is
common in the literature on evaluation of assump-
tions, scope and errors in strain estimation by the
Fry method (McNaught 2002; Waldron and Wal-
lace 2007; Lisle 2010; Reddy Vinta and Srivastava
2012; Mulchrone 2013; Kumar et al. 2014). The
results of synthetic tests are corroborated by two
natural examples.

2. Methodology

Graton and Fraser (1935), Kahn (1956), Yerazunis
et al. (1962), Griffiths (1967), Blatt et al. (1972),
Folk (1974), Vinopal and Coogan (1978) and others
have already discussed the issues related to grain
size, sorting and packing. In this study, we use the
following definition of the packing density, P , for
simulation of the test samples:

Packing tightness (P )

=
area occupied by all the grains

total area of the sample
× 100. (1)

Our approach consists of five steps: (i) numeri-
cal simulation of 2-D images containing randomly
distributed grains of desired packing density %
and sorting, (ii) distortion of the images by known
strain ratios, (iii) strain estimation in distorted
images by the Fry method, (iv) error estimation,
and (v) tests in natural samples.

A brief account of these steps is given below:
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Figure 4. Images of undistorted samples, distorted samples
and normalized Fry plots. (a–j) An example of undistorted
samples having a constant degree of sorting but varying pack-
ing density. (a1–j1) Distorted samples. (a2–j2) The best-fit
strain ellipses through central vacancy are obtained by the
Continuous Function method (Waldron and Wallace 2007).
Rs: strain ratio.

2.1 Simulation of the undistorted sample sets

As poorly sorted samples are not suitable for
strain estimation by the Fry method, these are
excluded from this study (Waldron and Wallace
2007; McNaught 2002; Reddy Vinta and Srivas-
tava 2012; Mulchrone 2013; Kumar et al. 2014).
Our simulations produce 2D-images of the sam-
ples such that each sample differs from others with
respect to the degree of sorting and the packing
tightness. A sample is defined by a circular domain
that contains a set of 200 randomly distributed cir-
cular grains. For convenience, we define the degree
of sorting equal to the standard deviation of radii
of all the grains, measured in millimetre (Boggs
2009).

We have developed a Matlab code, given in the
supplementary file, which simulates the 2-D images
of undistorted samples. The code requires five
user-defined inputs:

(1) radius of the sample, R,
(2) number of grains, N ,
(3) desired degree of sorting, S,
(4) desired packing density %, P , and,
(5) maximum run time, T (figure 2).

The value of R, N , S, P and T can be changed
as per the requirement. In our simulations, we have
fixed R = 20, N = 200 and T = 20, and varied the
degree of sorting and the packing density from 0.2
to 1.0 and 50 to 5%, respectively. We have chosen
R = 20 so that each sample accommodates 200
grains of the desired packing density and sorting.
Using these inputs, the code simulates a sample of
desired packing density and sorting in the following
steps:

(i) It generates the desired number of random
grain radii such that each radius is >0 (fig-
ure 3a).

(ii) It varies the standard deviation of the radii
until it equals the desired degree of sorting
(figure 3a).

(iii) It achieves the desired degree of packing den-
sity % by varying the mean of the radii, while
keeping the standard deviation, obtained in
step (ii), fixed (figure 3b). At this stage, we
obtain a set of radii that corresponds to the
desired degree of sorting and packing density
%, respectively.

(iv) Circular grains of different radii, obtained in
step (iii) are centred over randomly generated
points following the Gaussian distribution in
the two-dimensional domain.
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Figure 5. Absolute errors (AE) in two simulated samples having same sorting 0.4, but different packing density, 5 and 50%.
(a) AE in the strain ratio. (b) AE in the principal strain orientation. Irrespective of the true strain ratio, the loosely packed
sample, have 5% packing density, shows larger errors than those in the tightly packed sample of 50% packing density. Qt

and Qo are the true and estimated values, respectively.

(v) A subroutine checks the overlap between
grains in the sample obtained in step (iv). If
two or more grains overlap, the code regen-
erates a fresh set of randomly distributed
points and centres the circular grains over
these points. This process operates iteratively
until there are no overlapping grains.

(vi) The event of infinite iteration is checked by
a maximum runtime parameter. The termi-
nal harvest is an image that contains non-
overlapping grains of the desired degree of
sorting and packing density % (figure 2).

We have selected five different sets of well-sorted
samples that are characterized by the sorting 0.2,
0.4, 0.6, 0.8 and 1.0, respectively. For each of the
five selected sample sets, we simulated 10 images of
different packing density, 50, 45, 40, 35, 30, 25, 20,
15, 10 and 5%, respectively (e.g., figure 4a–j). A
total of 50 images, having various combinations of
the sorting and packing density %, were simulated
for the distortion in the next step.

2.2 Distortion

We distorted the images by using the follow-
ing matrix transformation equation for coaxial
distortion:

[
x′

y′

]
=

[√
Rs 0

0 1/
√

Rs

]
∗

[
x
y

]
. (2)

Here (x, y) and (x′, y′) are the co-ordinates of
a grain centre before and after distortion respec-
tively. Rs is the two-dimensional strain ratio.

Each of the 50 images, obtained in the preceding
section, was distorted in 18 steps by increasing the
strain ratio, Rs, successively from 1.5 to 10.0 with
a constant increment of 0.5 (e.g., figure 4a1–j1).
A total of 900 distorted images were obtained for
the estimation of errors in samples having various
combinations of sorting and packing density %.

2.3 Error estimation

Using the Continuous Function method of Waldron
and Wallace (2007), we obtained strain estimates
from each of the 900 distorted images (e.g., fig-
ure 4a2−j2). These strain estimates are compared
with the known strains, used during numerical
distortion of images in section 2.2, for the error
analysis.

Errors in the strain estimates can be represented
by a variety of statistical measures, each having
its merit and limitations (Taylor 1996; Bell 2001).
The MAE is a simple linear measure, which has
the same unit as that of the observations. Its
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Figure 6. The mean absolute error (MAE) and the relative root mean squared error (rRMSE) in strain ratio (Rs) and
strain orientation (θ), measured in degree. The errors increase with decreasing packing density %, irrespective of the level
of distortion (Rs). R2: a measure of goodness-of-fit of the regression line.

Figure 7. Variation in the rRMSE with respect to the packing density %. The rRMSE in both, Rs and θ, increase sharply
in samples having <30% packing density.

computation is direct and interpretation more
intuitive than the rRMSE (Willmott and Mastuura
2005). The rRMSE scores over the MAE as it
accounts for both types of errors: (i) the random
error or the variance, and (ii) the systematic error
or the bias of the estimator. Another merit of the
rRMSE is the tendency to produce several small

errors rather than one very large error; two or more
small errors of equal magnitude are preferable over
a large error. The influence of occasional outliers
is larger on the rRMSE because of its quadratic
nature and smaller on the MAE due to its lin-
ear nature (Willmott et al. 1985; Willmott and
Mastuura 2005). The MAE and the rRMSE were
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estimated as follows:

The Absolute Error, AE = |Qt − Qo| , (3)

where Qt and Qo were the true value and the
estimated value respectively. Q can either be the
strain ratio (Rs) or the principal strain orientation
(θ).

The Relative Error, RE =
|Qt − Qo|

Qt
. (4)

For a set of n results, the Mean Absolute Error
(MAE) and the relative Root Mean Squared Error
(rRMSE) are:

MAE =
Σ |Qt − Qo|

n
, (5)

and

rRMSE =

√√√√Σ
{

|Qt−Qo|
Qt

}2

n
. (6)

Considering the obvious advantages of multiple
error measures, we have used AE, MAE and
rRMSE in this study. The inferences from all the
three measures are found to be consistent.

3. Results

3.1 Synthetic samples

Figure 5(a–b) shows a typical example of the
absolute errors in two such samples that have
the same degree of sorting (S = 0.4), but differ-
ent packing density, 5 and 50% respectively. The
absolute errors in the axial ratio (Rs) and the
orientation (θ) of the strain ellipse are distinctly
larger in the loosely packed sample than those
in the tightly packed sample (figure 5a–b). The
inference that the AEs become larger with decreas-
ing the packing density % holds good irrespective
of the level of distortion and/or the degree of
sorting.

Similar to the AE, the other two error mea-
sures, the MAE and the rRMSE also increase with
decreasing packing density % irrespective of the
strain ratio and the degree of sorting (figure 6a–
d). The Cartesian plot between the rRMSE (Rs)
and the rRMSE (θ) shows the sensitivity of the
Fry method to the packing density % irrespective
of the degree of sorting (figure 7). It is noteworthy

Figure 9. Absolute errors (AE) in two natural samples
(figure 8a–b) having different packing density, 23 and 58%.
(a) AE in the strain ratio. (b) AE in the principal strain ori-
entation. The loosely packed sample, 23% packing density,
shows larger errors than those in the tightly packed sample of
58% packing density. Qt and Qo are the true and estimated
values, respectively.

that the errors, in particular, increase sharply as
the packing density becomes <30% (figure 7).

3.2 Natural examples

In addition to the synthetically simulated samples,
we have also tested two natural samples of sand-
stone. These are: (i) a poorly sorted and loosely
packed sandstone from Scotland having 23% pack-
ing density and (ii) a well-sorted and tightly packed
Ordovician sandstone having 58% packing density
(figure 8a–b; source: Sand atlas). The images of
grain centres in both the samples are distorted by
strain ratios ranging from 1.5 to 10.0, in successive
increments of 0.5. The strain estimates from dis-
torted images are compared with the known strains
for error estimation (figure 8c–d).

The results from natural examples substanti-
ate the inferences from synthetic examples. The
absolute errors of the axial ratio (Rs) and the orien-
tation (θ) of the strain ellipse are distinctly smaller
in the tightly packed sandstone as compared to the
loosely packed sandstone (figure 9a–b).
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Figure 10. Test of clustering in the samples that have a constant sorting, 0.2, but variable packing density. (a–j) Contoured
grain centres. Note that distributions become increasingly clustered with decreasing packing density %. Contours: 0.0–0.5–
1.0–1.5–2.0–2.5–3.0–3.5% per 1% area. The number of grains in each sample is 200.

4. Discussion

Why do the strain estimates in the loosely packed
samples have larger errors? We answer this ques-
tion by testing the nature of grain centre distribu-
tion in the undistorted samples of varied packing
density % (e.g., figure 10).

We use a simple graphical approach that
provides a more direct and intuitive interpreta-
tion. Alternatively, more sophisticated statistical
or analytical methods could also be used for quan-
titative results (Genier and Epard 2007; Lisle
2010). Equal area contouring is an easy graphical
approach for the distinction between clustered and
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anti-clustered point distributions. We have tested
the nature of point distributions by contouring the
grain centres in the undistorted samples of var-
ied packing density % and sorting. Figure 10(a–j)
exemplifies a typical result of such a test on sam-
ples shown in figure 4(a–j). Three inferences can be
drawn from these results. First, the samples having
a higher packing density, >30%, characteristically
lack any point maximum or cluster (figure 10a–c).
Second, the point distribution assumes an increas-
ingly clustered nature with the decrease in packing
density % (e.g., figure 10d–i). Third, the point max-
ima grow and the distribution becomes strongly
clustered as the packing density becomes 5%
(figure 10j). Variation in packing density, therefore,
affects the degree of clustering in grain centre dis-
tribution. In the loosely packed samples, the degree
of clustering is stronger and the basic assumption
of anti-clustered grain center distribution in the Fry
method is violated.

5. Conclusions

This study demonstrates that the combination of
two parameters, the packing density % and the
degree of sorting, rather than any one of these,
need to be considered for testing the suitability
of a given sample for strain estimation by the Fry
method. Our empirical observations suggest that
the packing density must be >30%, even in well-
sorted samples, for strain estimation by the Fry
method (figure 7).
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