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Fission-track dating was conducted on zircons and apatites from 11 cores of the upper Xiaganchaigou
Formation and lower Shangganchaigou Formation (northwestern Qaidam Basin). The obtained apatite
fission-track age is 3.1–61.9 Ma, and the zircon fission-track age is 49.2–123.5 Ma. Although the average
apatite age is consistent with ages predicted from the stratigraphy, nine of the 11 apatite fission-track ages
have P(χ2) < 5%, indicating that the grains experienced heterogeneous annealing after sedimentation.
The average zircon age is greater than that indicated by stratigraphy, and all eight zircon fission ages
have P(χ2) > 5%, exhibiting consistent characteristics and indicating that zircons retain provenance
age information after burial. From the zircon and apatite ages, the fission-track length distribution, and
the geological setting, the northwestern Qaidam Basin has experienced two tectonothermal events since
the Late Mesozoic, at 39.1 ± 9.3 to 133.7 ± 6.6 Ma and 1.2 ± 0.6 to 32.0 ± 3.0 Ma. The earlier (39.1–
133.7 Ma) tectonothermal event resulted from the initial collision of the Indian and Eurasian plates. As a
consequence of the collision, the Altyn Tagh fault, which forms the northwestern boundary of the Qaidam
Basin, began to develop. Subsequently, uplift of the Altyn Tagh mountains began and the northwestern
depression of the Qaidam Basin started to form. The later (1.2–32.0 Ma) tectonothermal event resulted
from further collision of the Indian and Eurasian plates along the Yarlung Tsangpo suture zone. Strata
in the Qaidam Basin were further deformed by transpression in this period and this period played a
crucial role in petroleum accumulation.

Keywords. Apatite fission-track; zircon fission-track; tectonic evolution; Qaidam Basin.

1. Introduction

Recently, a more advanced fission-track thermo-
chronological method has been used in many types
of studies, including the thermal history of sedi-
mentary basins (Kang and Wang 1991; Shi et al.
1998; Wang 1998; Zhu et al. 2004; Bao et al.
2005; Li et al. 2005a; Zheng et al. 2005), rock
uplift rates (Wang 1997; Jiang et al. 1998; Wang

and Yang 1998; Wu 1999; Wan et al. 2001; Zhao
et al. 2003; Yuan et al. 2004), thrusting systems
and exhumation history of Himalayan mountain
belts (Burbank and Beck 1989; Patel et al. 2007,
2011a,b, 2015; Patel and Carter 2009; Singh et al.
2012; Patel and Singh 2016), thermal history and
provenance of sedimentary basins (Patel et al.
2014), age of formation and amount of denuda-
tion of sedimentary strata (Wang and Ji 1999;
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Wang 2002; Li et al. 2005b), structural uplift and
thermal evolution (Qiu et al. 2000; Chen et al.
2004a), and timing of reactivation of faults/thrusts
(Singh et al. 2012).

Previous studies in the Qaidam Basin used
outcrop and well-drilling samples for fission-track
dating. Wang et al. (2010), who studied the East
Kunlun orogenic belt system using fission-track
analysis of clastic zircons, thought that the East
Kunlun orogenic belt experienced regional tectonic
uplift during the Palaeocene and Eocene. Since the
Oligocene, the western Qaidam Basin has expe-
rienced several episodes of rapid uplift (strong
compression) and deposition (Sun et al. 2010; Gao
et al. 2011) concurrently with Altyn Tagh fault
zone activity (Jolivet et al. 2001; Yin et al. 2002;
Liu et al. 2003; Zhang et al. 2012). In the northern
basin, the Saishiteng Mountains have undergone at
least two large-scale episodes of tectonic activity
since the Oligocene (Wan et al. 2011). These tec-
tonic events on the periphery of the Qaidam Basin
may have been related to distant effects from the
collision of the Indian and Eurasian plates (Mock
et al. 1999): this may indicate that distant effects
influenced the northern margin of the Tibetan
Plateau in the early Cenozoic (Dupont-Nivet et al.
2004; Yin et al. 2008). However, there has been a
relative lack of research on the northwestern part
of the basin. From fission-track dating analysis of
drill-core samples combined with geological data,
we demonstrated a coupled relationship between
the northwestern Qaidam Basin and the peripheral
fault zone.

2. Geological setting

The Qaidam Basin, which is located in the north-
ern Tibetan Plateau along the southern margin of
the palaeo-Asian tectonic domain, is a large-scale
Mesozoic–Cenozoic continental petroliferous basin.
The basin has a total area of 120,000 km2 and is
bounded by the Qilian range to the northeast, the
Kunlun range to the southwest, and the Altyn Tagh
range to the northwest (figure 1). These peripheral
mountain ranges encompass complicated tectonic
dynamic processes (Huang and Chen 1987). The
Tethys tectonic domain has opened and closed
several times since the Mesozoic, as it gradually
subducted and compressed into the palaeo-Asian
continent and induced several microblock collisions
to the south of the Qaidam Basin (Zhou and Lin

1995). The collision of the Indian and Eurasian
plates formed a series of fold mountains, including
the Kunlun and Himalaya mountains, and strongly
uplifted the Tibetan Plateau (Singer 1992; Dayem
et al. 2009). Between the fold mountains, a series
of intermountain basins formed and the Qaidam
Basin is one of the largest of these. As a result of the
unique geographical location and regional structure
of this basin, from the early stages of its formation
it was affected by many tectonic–dynamic factors.
These factors included distant effects stemming
from the Indian and Eurasian plates’ collision,
which had a decisive role in the development and
evolution of the basin (Zheng and Peng 1995). The
East Kunlun orogenic belt marks a geomorphologic
boundary of the Tibetan Plateau, and its structural
development in the Cenozoic is thought to be a dis-
tant effect of collision and compression between the
Indian and Eurasian plates (Dai et al. 2005; Yang
et al. 2009). These distant effects also intensified
Altyn Tagh fault zone activity at the northwestern
boundary of the basin (Yue et al. 2001). Within
a very short time after the collision, the Altyn
Tagh fault commenced strike-slip movement (Yue
et al. 2001, 2003; Zhang et al. 2012). Meanwhile,
mountains surrounding the basin and the southern
part of the Altyn Tagh fault began to uplift and
denude, causing considerable and rapid sedimen-
tation in the fault zone and many basins (Chen
et al. 2001, 2004b; Bovet et al. 2009; Pei et al.
2009). The northwestern depression of the Qaidam
Basin is located between the East Kunlun and
Altyn Tagh mountains, and has a Mesozoic base-
ment. The particular location of the basin implies
that the northwestern depression has been sub-
jected to both compressional and transpressional
tectonic conditions (Peng and Zheng 1995). Specif-
ically, the location suggests that the area was a
compressional and fault-depressed basin from the
Mesozoic to the Palaeogene. Since the Miocene, the
peripheral fault belts have been rapidly uplifted
and the entire Qaidam Basin has subsided as a
result of closing of the Tethys tectonic domain and
distant collision effects. The proto-Qaidam Basin
was a compressional, depressed basin (Zheng and
Peng 1995).

3. Methods

In this study, core samples were obtained from
11 boreholes (figure 1). These samples were mainly
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HLQ = Hongliuquan, SZG = Shizigou, GCG = Ganchaigou, XSQ = Xianshuiquan, HGZ = 
Honggouzi, YSS = Youshashan, YQZ = Youquanzi, NYS = Nanyishan, JDS = Jiandingshan, BWS 

= Beiwusi, DCS = Dongchaishan, MY = Mangya, KT = Kaite, HGL = Huanggualiang, DFS = 
Dafengshan, FHT = Fenghuangtai, XSP = Xiaoshaping, JS = Jianshan, EBL I = Eboliang, EBL II 

= Eboliang II, HLS = Hulushan, LH IV = Lenghu IV, LH V = Lenghu V, LH VI = Lenghu VI.

Figure 1. Structural map of the northwestern depression of the Qaidam Basin with sampling locations marked.

sandstones, sandy mudstones, and muddy
sandstones from the Palaeogene Xiaganchaigou
Formation (E3) and the Neogene Shangganchaigou
Formation (N1). The stratigraphically determined
formation ages range from 37.5 to 22 Ma (Wang
et al. 2012; Jian et al. 2013), with burial depths of
1368.8–4416.55 m; more detailed information, such
as strata position, lithology, and depth, is presented
in table 1.

Apatite and zircon grains were separated from
the host rocks by standard crushing, heavy-liquid
separation, and magnetic separation procedures.
Grains were mounted in epoxy on a Teflon plate
then ground and polished to expose the internal
crystal surfaces. To reveal the spontaneous tracks,
apatites were etched at a constant temperature
of 25◦C in 6.6% HNO3 for 30 s and zircons were
etched at 220◦C in a eutectic mixture of 8 g NaOH
and 11.5 g KOH for 33 hr. Subsequently, mus-
covite with a low U content (< 5 ppb) was used as
an ‘external detector’ to obtain the induced track
densities. CN-5 uranium glass was used as a neu-
tron dosimeter for apatite and CN-2 was used for

zircon. The sheet was irradiated in a reactor at a
neutron fluence of 1.0 × 1016 cm−2. After irradi-
ation, the muscovite was placed in the external
detector at 25◦C in 40% HF acid etching for 35 min
to reveal induced fission-tracks. Apatite fission-
tracks were counted using an Autoscan Profes-
sional Automated System (including a Zeiss Axio
Imager M2m microscope, ES16 stage, and Fission
Track Studio software) under a total magnifica-
tion of 1000×. Zircon fission-tracks were counted
using a Zeiss microscope under a magnification of
1600× with oil immersion. Fission-track ages were
calculated following the zeta calibration method
(Hurford and Green 1983; Green 1985; Hurford
1990) with an apatite zeta value of 357.8 ± 6.9 (1 σ)
and a zircon zeta value of 132.7 ± 6.4 (1 σ).

4. Results and discussion

All of the 11 samples were obtained from drilling
cores. The buried depth is between 1368.8 and
4415.3m. From previous palaeotemperature
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studies (Qiu et al. 2000; Zhong et al. 2004), these
samples fall in the partial annealing zone of apatite
(Green et al. 1986; Tagami et al. 1996), leading to
partial or full annealing of apatite fission-tracks;
however, the effects on the fission-tracks of zir-
con are smaller. The age distribution of sample
grains from a single provenance obeyed the Pois-
son distribution of radioactive decay. Therefore,
single-grain ages from apatite and zircon in sed-
imentary rocks represent the provenance cooling
age, if the sedimentary rocks never experienced
complete annealing. Galbraith and Green (1990)
proposed a method to determine whether an indi-
vidual grain age fits a Poisson distribution and
ensure all grains belong to the same component. In
their study, the parameter χ2 can be used to distin-
guish grain components, such that when P (χ2) >
5%, the mineral grains have variable provenance
and multi-component analysis must be performed
to determine the one-component age. Currently,
routine methods used to discriminate age compo-
nents are Gaussian peak fitting and binomial peak
fitting (Galbraith and Laslett 1993; Brandon 1996).

The apatite fission-track ages of all samples show
a wide range, from 3.1 ± 0.5 to 61.9 ± 4.7 Ma. As
the P (χ2) values of 10 samples are less than 5%,
this implies that the fission-tracks were reformed
by high burial temperatures and tectonic ther-
mal events. Multi-component analysis was carried
out to analyse the ages of samples that failed
the χ2 text, and the results were expressed as
a frequency distribution histogram of the same
ages. Overall, the ages of all samples were con-
sistent, and were distributed in two peak ranges:
1.2 ± 0.6 to 32.0 ± 3.0 Ma (P1) and 39.1 ± 9.3
to 133.7 ± 6.6 Ma (P2; table 1, figure 2). The
apatite fission-track lengths have a wide range and
show two peaks, indicating that the samples were
heated for a long time and experienced at least
two tectonic events (Kang and Wang 1991; Zhu
et al. 2001). The apatite fission-track peak age
of 39.1–133.7 Ma perhaps represents the time of
collision between the Kohistan Ladakh block in
the Northwestern Indian plate and Eurasian plate,
the other peak age of 1.2–32.0 Ma may repre-
sent the time of collision between the Indian plate
and the Eurasian plate along the Yarlung Tsangpo
suture line.

The fission-track ages of eight zircon samples
range between 49.2 ± 3.9 and 123.5 ± 12.0 Ma.
For all samples, P (χ2) > 5%, indicating a uni-
form age structure (table 1, figure 3). This result
implies that burial temperature did not

influence these samples and they effectively
preserve provenance age information. The fact that
the zircon fission-track ages are older than the
stratigraphic ages suggests that the Xiaganchaigou
Formation and its overlying strata have not expe-
rienced high burial temperatures, and that zircon
fission-tracks with no annealing can be used to
study provenance.

Despite the complicated Mesozoic tectonic evo-
lution, subduction of ocean crust and collision
orogenesis of continental crust in northwestern
China had ceased by the end of the Triassic,
as shown by tectonic analysis and the peripheral
fault belts of the Qaidam Basin formed at dif-
ferent times (Zheng et al. 2009). Collision of the
East Kunlun fault belt finished in the Permian,
while the main orogenic uplift persisted into the
Ladinian Stage (Deway 1988; Zheng and Peng
1995), and the Qilian fault belt mainly closed
and uplifted during the Caledonian stage (Wang
and Ma 1984; Huang 1996; Lai et al. 1996; Zhao
1996; Yang et al. 1998). From the Early Triassic,
northwestern China experienced intracontinental
evolution where significant tectonic events resulted
from the evolution of the southern Tethyan tec-
tonic domain (Zheng et al. 2009). Major events
included the collision of the Qiangtang block and
the Eurasian Plate in the Late Triassic, the col-
lision of the Lhasa block and the Eurasian Plate
in the Late Jurassic, and the ongoing collision of
the Indian and Eurasian plates since the Palaeo-
gene. All of these events caused large-scale uplift
of the Tibetan Plateau and East Kunlun fault
belts (Howeii 1991; Zhou and Lin 1995) and
intense sinistral strike-slip of the Altyn Tagh fault
belt.

The tectonic setting and regional tectonic posi-
tion of northwestern China has been affected by
a number of geodynamic factors. From the Early
Jurassic, northwestern China has contained several
major fault belts in post-orogenic phases, includ-
ing extension and strike-slip (Jia 1997; Guo and
Zhang 1998; Jin et al. 1999; Chen and Wang 2000;
Zuo et al. 2004). On the basis of the tectonic
characteristics and evolution of the Qaidam Basin
in the Jurassic and Cretaceous, previous studies
found that the tectonic setting of the Qaidam
Basin altered from an extensional to a compres-
sional environment (Zhai et al. 1997; Hu et al.
1999; Zeng et al. 2002). In the Middle–Late Juras-
sic the Altyn Tagh region continued to subside
and accumulate sediments derived from the central
Qaidam Basin (Ma et al. 2006, 2009). In the Late
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Figure 3. Fission-track radiograms and age histograms of zircons from the northwestern Qaidam Basin. The leftmost panels
of each group of two are fission-track radiograms, in which the X and left Y axes represent the age accuracy and standard
deviations of single grains, respectively. The line extending from the origin of the left Y-axis is a best-fit line through the
data points to intersect the right Y-axis, which indicates the age of that grain. The right panels are the age component and
Gaussian curve histograms.

Cretaceous (102–85 Ma), the Kohistan Ladakh
block in the northwestern Indian Plate collided
with the Eurasian Plate (Jin 1999); subsequently,
at 92–89 Ma, the deep part of the Altyn Tagh
region commenced ductile strike-slip movement
(figure 4a; Liu et al. 2001), forming the Altyn
Tagh fault. During the middle–late Palaeogene the
Altyn Tagh region began to be uplifted and eroded,
becoming the primary sediment-supply area for the
northwestern Qaidam Basin (Wang et al. 2012; Yi
et al. 2013). The zircon fission-track ages (49.2 ±
3.9 to 123.5 ± 12.0 Ma) and apatite P2 age dates
(39.1 ± 9.3 to 133.7 ± 6.6 Ma) recorded by fission-
track annealing times are coincident with uplift
of the Altyn Tagh mountains, also illustrating
that the main Palaeogene sediment source for the
northwestern Qaidam Basin was the Altyn Tagh
mountains.

During the Cenozoic (∼45 Ma), the Indian and
Eurasian plates collided along the Yarlung Tsangpo
suture line (Chung et al. 1998), as a result of which,
the Tibetan Plateau experienced intense horizon-
tal compression. The Qaidam Basin extruded east
along the Altyn Tagh strike-slip fault and experi-
enced distant effects from the collision of the Indian
and Eurasian plates (Howeii 1991). The Altyn
Tagh strike-slip fault gradually expanded from a
deeper stratigraphic layer into a shallower position
because of dragging from deep ductile strike-slip
movement (figure 4b). The East Kunlun and Qil-
ian fault belts uplifted and thrust into the basin.
Compressive stress from the western and northern
Qaidam Basin caused continuous uplift of the base-
ment and shifted the depositional centre eastward
and then southeastward (Sun et al. 2004). With
further intensification of the collision between the
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Figure 4. Evolution of the Altyn Tagh strike-slip fault (mod-
ified after Liu et al. 2001). (a) At the end of the Mesozoic
era, the Tibetan plateau started to uplift alone with the col-
lision between the Indian and Eurasian plates. The eastern
Kunlun active fault zone, which locates in the south rim of
the Qaidam basin, gradually thrust into basin. Under the
remote effects of collision, the uplift and ductile strike-slip
motion in Altyn region began. The second peak age of AFT
(P2) and the age of zircon reflect the tectonic thermal events
happened in this period; (b) at the end of Eocene, the col-
lision between Indian and Eurasian plates became stronger,
and collision zone gradually advanced to the Yarlung Zangbo
River. Altun Tagh fault developed from deep ductile strike
slip to surface fracture, and formed the large strike-slip fault
finally. The total displacements of strike slide reached about
400 km. The first peak age of AFT (P1) indicate the tectonic
events during this period.

Indian and Eurasian plates, the response of the
Qaidam Basin to collisional stress was increasingly
obvious in two respects: (1) the eastern extru-
sion of the Qaidam block along the Altyn Tagh
strike-slip fault resulted in transpressional stress in
the peripheral and internal regions of the basin;
and (2) continuous thrusting of peripheral fault–
fold belts caused intense horizontal compression
that was significant for the formation of struc-
tural traps. Early anticlines developed further, and
new anticlines formed in shallow strata as a result
of the collision between the Indian and Eurasian
plates. The P1 apatite component age (1.2 ± 0.6
to 32.0 ± 3.0 Ma) clearly records this annealing
process of gradually increasing burial depth and
temperature.

The northwestern region of the Qaidam Basin
was evidently controlled by the Altyn Tagh strike-
slip fault, where deep ductile strike-slip formed
thrust faults and basement-involved structures

beginning in the Late Cretaceous and
continuing until the Oligocene. As a result of
dynamic conversion and intensified activity of the
Altyn Tagh strike-slip fault, transpressional effects
were strengthened and have gradually affected the
surface since the Oligocene–Miocene. A large num-
ber of transpressional structures developed linearly
with a backward S-shape (Liu et al. 2001). Delam-
ination and discordance between deep structures
and shallow structures are clearly visible in seismic
sections (Sun et al. 2012), where the peak posi-
tion of these structures has evidently shifted. Most
deep structures terminate in the rocks below the
Shangganchaigou Formation and have been mod-
ified by later tectonic activity. Shallow structures
mainly developed in the upper part of the Shang-
ganchaigou Formation and were well preserved as
petroleum traps with little modification by later
tectonic activity.

5. Conclusions

Based on the analysis of zircon and apatite fission-
track ages of core samples from 11 boreholes in
the northwestern depression of the Qaidam Basin,
we determined that the basin experienced two tec-
tonic events since the late Mesozoic, at 39.1 ± 9.3
to 133.7 ± 6.6 Ma and 1.2 ± 0.6 to 32.0 ± 3.0 Ma.
The earlier tectonic event resulted from the ini-
tial collision of the Indian and Eurasian plates.
During this event, peripheral fault belts began
to develop, mountain ranges uplifted, and the
proto-Qaidam Basin began to form in a com-
pressional environment. The later tectonic event
was caused by further collision of the Indian and
Eurasian plates along the Yarlung Tsangpo suture
zone. As a result of transpressional forces on deep
structures, shallow structures such as anticlines
started to develop. The later tectonic events caused
further development of previous structures, facil-
itated development of many shallow structures,
and played a crucial role in allowing shallow
accumulation of petroleum.
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