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Future earthquake potential in the Bohai–Zhangjiakou Seismotectonic Zone (BZSZ) in North China
deserves close attention. Tectonic stress accumulation state is an important indicator for earthquakes;
therefore, this study aims to analyse the stress accumulation state in the BZSZ via three-dimensional
visco-elastic numerical modelling. The results reveal that the maximum shear stress in the BZSZ increases
gradually as the depth increases, and the stress range is wider in the lower layer. In the upper layer, the
maximum shear stress is high in the Zhangjiakou area, whereas in the lower layer, relatively high values
occur in the Penglai–Yantai area, which may be affected by the depth of the Moho surface. Besides,
weak fault zones will be easily fractured when the maximum shear stress is not sufficiently high due to
their low strengths, resulting in earthquakes. Therefore, based on the modelling results, the upper layer
of the Zhangjiakou area and the lower layer of the Penglai–Yantai area in the BZSZ in North China are
more likely to experience earthquakes.

1. Introduction

The Bohai–Zhangjiakou Seismotectonic Zone (BZSZ)
is situated in the northern part of the North China
seismic region and is over 700 km long and 250 km
wide in the NW–SE direction. The BZSZ, contain-
ing nearly 20 discontinuous NW–NWW-trending
faults (Gao and Ma 1993; Xu et al. 1998; Fang and
Zhang 2009; Suo et al. 2013; figure 1), is a left-
lateral slip structure and has an important control-
ling effect on regional tectonics (Hou et al. 1999;
Fu et al. 2004).

Several earthquakes have occurred in the BZSZ
(Gao and Ma 1993; Fu et al. 2004; figure 1), includ-
ing the 1679 Sanhe–Pinggu earthquake (Ms = 8.0;
Xiang et al. 1988) and the 1976 Tangshan earth-
quake (Ms = 7.8; Chen et al. 1979; Liu et al. 2007)

that have caused significant damage to life and
property. During the past several decades, stud-
ies have been performed to analyse and explain
the seismogenic mechanisms of these earthquakes.
The Tangshan earthquake for example, occurred
in the contiguous part between the Yanshan fold
belt and the depression of North China Plain. The
observational aftershock sequence of the Tangshan
earthquake was distributed primarily in the Tangshan
fault-block in the NE 45◦ direction (Xue 1986; Liu
et al. 2007). Furthermore, previous studies on earth-
quake geology demonstrated that the Tangshan
earthquake was formed under the action of con-
stant forces along the boundaries of an inhomo-
geneous medium, which led to the accumulation
of elastic energy in the local area (Song et al.
1982; Mei and Liang 1989). In addition, Feng et al.
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modern tectonic stress field.
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(1996) studied and analysed the seismogenic con-
dition and long-term precursors of the Tangshan
earthquake.

It is important to study how tectonic stress
accumulates in the BZSZ in North China during
long-term compressional processes and what the
tectonic stress accumulation state is in the litho-
sphere. These issues require considerable attention
and need to be addressed in terms of geomecha-
nics and numerical modelling because the tectonic
stress accumulation state is an important indicator
for earthquakes. The present study aims to anal-
yse the tectonic stress accumulation state in the
BZSZ using three-dimensional (3D) visco-elastic
modelling and discuss the effect of Moho surface
on this stress accumulation.

2. Geological setting

The BZSZ in North China extends along Bohai
Bay–Tianjin–Beijing–Zhangjiakou. Based on inter-
pretations from satellite photographs, the BZSZ
may include a NWW trending hidden active fault,
which is approximately 180 km long from Beijing
to North Tianjin (Xu et al. 1998; Li et al. 1999).
Recently, an increasing number of studies have
focused on the deep structures of the BZSZ, where
both Cenozoic tectonic activity and seismicity
have been extremely intensive and frequent (Zhang
et al. 2002; Wang et al. 2004).

In general, the BZSZ is a left-lateral slip and has
an important controlling effect on regional tecton-
ics in North China (Hou et al. 1999; Fu et al. 2004;
Wang et al. 2005; Fang and Zhang 2009). Seismic
reflection profiles across the BZSZ have shown the
presence of several deeply buried faults cutting the
lithosphere (Gao 2001; Lai et al. 2006). During
the past several decades, continuous Global Posi-
tioning System (GPS) observations have revealed
relative sinistral movement between the Yanshan
Mountains and the North China Basin (Yang et al.
2002; Wang et al. 2005). In addition, some anoma-
lous geophysical backgrounds of the lithosphere

exist in the BZSZ. According to an investigation of
magnetotelluric data, the BZSZ is also a low resis-
tivity zone in the lithosphere under North China
(Zhao et al. 1997).

Records indicate that seven historical and recent
earthquakes with Ms ≥ 7.0 have occurred in the
BZSZ (Fu et al. 2004; table 1), and the majority
of these strong seismic activities have occurred at
intersections between the NW-trending BZSZ and
the NE-trending seismotectonic zones, such as the
Tanchen Lujiang Seismotectonic Zone (Wang et al.
2005; figure 1). Based on studies of the field geol-
ogy, crustal deformation, geophysical field, topog-
raphy, seismic parameters and the relationship
between NE- and NW-trending faults, the NW-
trending BZSZ can be divided into four segments
with various seismic characteristics and episodes,
namely, the Penglai–Yantai, Tangshan–Bohai, Bei-
jing and Zhangjiakou segments (figure 2; Gao et al.
2001).

Both paleo and modern tectonic stresses are fun-
damental datasets in Earth sciences (Zoback 1992;
Sperner et al. 2003; Delvaux and Barth 2010; Ju
et al. 2013a), and investigations into crustal tectonic
stress are extremely important in Earth geotec-
tonic studies (Lunina and Gladkov 2007; Ju et al.
2013a, b). In general, several types of data, includ-
ing earthquake focal mechanisms, can allow and
facilitate a revisiting of tectonic interpretations
of the modern crustal stress field (Zoback 1992;
Angelier 2002; Delvaux and Sperner 2003; Delvaux
and Barth 2010). The average direction of the
modern maximum principal stress axis in the BZSZ
in North China is interpreted to be consistently
NEE–SWW (figure 3).

3. 3D visco-elastic modelling

In this study, a 3D visco-elastic model was run
using the Finite Element (FE) technique to study
the stress accumulation state in the BZSZ in North
China. FE modelling allows complex geometries
(e.g., mechanical layers and faults) to be combined

Table 1. Catalog of strong earthquakes (Ms ≥ 7.0) in the BZSZ in North China since
1000–2000 AD (after Fu et al. 2004).

Latitude Longitude

Date (◦N) (◦E) Ms Location

1548-09-12 38.0 121.0 7.0 Bohai Bay

1597-10-06 38.5 120.0 7.0 Bohai Bay

1626-06-28 39.4 114.2 7.0 Lingqiu, Shanxi

1679-09-02 40.0 117.0 8.0 Sanhe-Pinggu, Beijing

1888-06-13 38.5 119.2 7.5 Bohai Bay

1969-07-18 38.3 119.4 7.4 Bohai Bay

1976-07-28 39.4 118.0 7.8 Tangshan, Hebei
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Figure 1. Seismotectonic sketch map in North China (after Xu et al. 1998). BZSZ: Bohai–Zhangjiakou Seismotectonic Zone,
TLSZ: Tancheng–Lujiang Seismotectonic Zone, HPSZ: Hebei Plain Seismotectonic Zone, and FWSZ: Fenwei Seismotectonic
Zone.

Figure 2. Fault distribution and tectonic segmentation in the BZSZ in North China. The BZSZ is divided into four segments:
the Penglai–Yantai segment, Tangshan–Bohai segment, Zhangjiakou segment and Beijing segment. The faults data are from
Gao et al. (2001) and Han (2009).

with realistic material parameters to produce
physically realistic and mechanically rigorous models
(Yin 1991; Smart et al. 2009; Ju et al. 2013b, 2014).

The general-purpose FE code ANSYS was used in
this study because it is well suited to analyse these
type of problems over a wide range of scales in
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Figure 3. Modern tectonic stress field in North China (stress indicator data are from China Earthquake Networks Center).

one, two and three dimensions (Hou et al. 2010;
Jarosinski et al. 2011; Ju et al. 2013a, b).

3.1 Geometry

In the present study, complex model geometries
were constructed based on the CRUST 1.0 data
(Laske et al. 2013; figure 4). A larger rectangular
area including the BZSZ was selected to construct
the model and to avoid the boundary effects. The
x-, y- and z-axes indicate the east, north and ver-
tical (depth) directions, and the depth ranges from
the surface to 80 km underground. In the vertical
direction, the 80 km depth was divided into four
layers: the upper crust, middle crust, lower crust
and upper mantle (figure 4).

Multiple faults have developed in the Zhangjiakou–
Bohai area in North China, and several important
ones were selected to be included in the model
because they were active in the Late Pleistocene
and Holocene periods, and earthquakes had
occurred at least once on these faults (table 2 and
figure 4). In general, faults can be considered in
two ways during FE modelling. The first approach
implements the existing faults as discrete planes
of weakness cutting the FE model. These planes
are described by so-called contact elements, which
are defined at opposite sides of pre-assigned faults
(Smart et al. 2009; Fischer and Henk 2013; Ju
et al. 2014). In the second approach, which was
used in the present study, the entire FE model

Figure 4. Three-dimensional finite element model in the
Bohai–Zhangjiakou area. x: the east direction; y: the north
direction; z: the vertical (depth) direction. For clarity, this
showing model utilized a ratio of x : y : z = 1 : 1 : 10.
(a) Upper crust layer, (b) middle crust layer, (c) lower crust
layer, and (d) upper mantle layer.

meshes continuously and the faults are represented
by weakness zones (Fischer and Henk 2013; Ju
et al. 2013a, b).

All the four layers and faults in the model
were discretized using primarily three-node trian-
gular elements with some four-node quadrilateral
elements, and after meshing, there were approxi-
mately 28543 nodes and 158839 elements (figure 5).
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Table 2. The important faults developed in the Bohai–Zhangjiakou area and their parameters (the data are after Gao and
Ma 1993; Chen et al. 1999; Li et al. 1999; Gao 2001; Xu et al. 2002; Wang and Li 2005; Li et al. 2009; Hu 2010; Zhan
et al. 2011).

Faults Length Strike Dip Dip angle Lastest activity Fault pattern

Miaodongying–Dayingtan Fault* 35 km NW–SE Q4(?)

Zhangjiakou Fault* 30 km NW–SE SW 60 Q3 Normal

Xianmalin Fault 15 km NW–SE SW 75–80 Q4 Normal

Shizhuang Fault 20 km NW–SE NE 70–80 Q2 Normal-strike slip

Xinbaoan–Shacheng Fault 32 km NW–SE SW 60–70 Q4 Normal

Huangtuyao–Tumu Fault 21 km NW–SE SW 60 Q3 Normal

Sanggan River Fault 32 km E–W N 70 Q3 Normal

South Yihua Basin Fault 16 km E–W N 55–65 Q4

Nankou–Sunhe Fault* 58 km NW–SE SW/NE 70 Q4 Normal

Yongding River Fault 26 km NW–SE SW/NE 70–75 Q2 Normal-strike slip

Changping–Fengnan Fault* 180 km NW–SE SW 50–70 Q2 Normal-strike slip

Huangzhuang–Gaoliying Fault* 130 km NE–SW SE 55–75 Q3 Normal

Shunyi–Liangxiang Fault 110 km NNE–SSW NW 60–80 Q3 Normal

Xiadian Fault* 100 km NE–SW SE 70–80 Q4 Normal

Langfang–Wuqing Fault 50 km NW–SE SW Q3 Normal

Nanyuan–Tongxian Fault NE–SW NW Q1(?) Normal

Nankou Piedmont Fault 60 km NE–SW SE 50–80 Q3 Normal

Luanxian–Leting Fault 50 km NNW–SSE NE 70–90(?) Q4(?) Reverse

Jiyunhe Fault* 50 km NW–SE SW 70 Q4 Normal

Tangshan Fault* 50 km NE–SW NW 70–80 Strike slip

Haihe Fault 70 km NWW–SEE SSW 60 Q Normal

Baigezhuang Fault 50 km NW–SE SW 60 Q1−2 Normal

Ninghe–Changli Fault* 160 km NE–SW SE ∼85 Q4 Normal

Bozhong No.2 Fault 34 km NW–SE NE Q4 Normal

Shaxi Fault NW–SE SSW ∼90 Q4 Normal

Chengbei Fault NW–SE SSW ∼90 Q3 Normal

Shanan Fault NWW–SEE SSW ∼90 Q3 Normal

Penglai–Weihai Fault* 140 km NW–SE NE Q3−4 Normal

Tancheng–Lujiang Fault Belt* NNE–SSW E 60 Strike slip

Note: Faults with stars are included in the finite element model. Q: Quaternary period; Q1: Early Pleistocene epoch;
Q2: Middle Pleistocene epoch; Q3: Late Pleistocene epoch; Q4: Holocene epoch.

Figure 5. Meshing graph of the finite element model in the Bohai–Zhangjiakou area. There are altogether 28,543 nodes and
158,839 elements in the model.

3.2 Material properties

In the present study, material properties were
assigned to the elements representing different

layers and faults. Mechanical behaviour in the elas-
tic domain was described by Hooke’s law, whereas
the viscous deformations obeyed Newton’s law of
viscosity (Jaeger et al. 2007).
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Young’s modulus and Poisson’s ratio are the
most important elastic parameters in building
materials (Martinez-Martinez et al. 2012; Ju et al.
2014, 2015), and can be calculated from the wave
velocity and density data (Liu et al. 1986; Rao
et al. 2006).

E =
ρV 2

S (3V 2
P − 4V 2

S )

V 2
P − V 2

S

(1)

υ =
V 2
p − 2V 2

S

2(V 2
p − V 2

S )
(2)

where E is the dynamic Young’s modulus, υ is the
Poisson’s ratio, ρ is the density, VP is the P-wave
velocity, and VS is the S-wave velocity.
Previous studies indicated that the ratio between

the dynamic and static Young’s moduli ranged
from 0.8 to 3.0 (Mockovciakova and Pandula 2003;
Martinez-Martinez et al. 2012; Yao et al. 2012)
and that the dynamic Young’s modulus was usu-
ally larger (Yao et al. 2012). Unfortunately, this
ratio has not been quantitatively calculated in the
study area; therefore, based on the geological set-
tings of the BZSZ in North China, a ratio of 2.9
was used to calculate the static Young’s modulus.
The viscosities of the different layers in the visco-
elastic FE model were based on the previous study
results of Zang et al. (2003) and Shi and Cao (2008)
(table 3).

Because the fault zones were defined as ‘weak
zones’ in the FE model, the elastic modulus was
typically smaller, and the Poisson’s ratio was larger
than that of a corresponding normal layer (Zeng
et al. 2013). Therefore, in this study, the Young’s
modulus and Poisson’s ratio were 50% and 105%
of the corresponding normal layer, respectively
(table 3).

3.3 Boundary conditions

According to the modern tectonic stress field shown
in figure 3, the direction of the maximum principal
stress axis is NEE–SWW in the study area. In addi-
tion, Li et al. (2006) calculated the current strain
field with GPS data, and the average strain rate

is approximately 0.5×10−9/yr in the North China
area. Based on previous studies (Xie et al. 2004;
Wang et al. 2005; Li et al. 2006; Liu et al. 2012),
the boundary conditions in this FE model were set
as follows: (a) an average compressional displace-
ment of 3.0 mm/yr was applied in the maximum
principal stress axis NEE–SWW direction (Liu
et al. 2012) with the horizontal displacement fixed
on the west and south sides of the model, (b)
the top of the model was set as a free boundary
and the vertical displacement of the bottom was
fixed to avoid movement and rotation of the model,
and (c) a gravity load was applied to the entire
model domain.

3.4 Modelling results

In the present study, the entire modelling process
was performed in two steps. First, a gravity load
was applied to the entire model domain. Once equi-
librium was achieved, displacement boundary con-
ditions were imposed to obtain the tectonic stress
field. In the second step, each time step was set to 3
years, and the entire modelling process underwent
5000 steps.

The maximum shear stress accumulation was cal-
culated and is shown at different depths in figure 6.
In general, the maximum shear stress gradually
increases with increasing depth, and a wider stress
range exists in the lower layer (9 MPa at a depth
of 25,000 m and 3.6 MPa at a depth of 5000 m;
figure 6). In the lower layer, the maximum shear
stress is higher in the Penglai–Yantai area, whereas
in the upper layer, relatively high values are seen
in the Zhangjiakou area (figure 6).

The maximum shear stress is low in the fault
zones in all layers (figure 6) because these fault
zones were set as ‘weak zones’ in the FE model.
They have relatively low strengths and cannot
accumulate stresses; therefore, these weak fault
zones will be easily fractured, resulting in earth-
quakes. Based on the modelling results, the upper
layer of the Zhangjiakou area and the lower layer
of the Penglai–Yantai area in the BZSZ in North
China are more likely to experience earthquakes.

Table 3. Material properties used in the visco-elastic finite element model.

ρ E (×104) ν

Layers h Normal layer Faults Normal layer Faults Normal layer Faults η

Upper crust −12.36 2750 2500 2.925 1.463 0.245 0.257 1.3×1023

Middle crust −24.53 2810 2600 3.452 1.726 0.252 0.265 2.0×1022

Lower crust −34.01 2930 2700 5.063 2.532 0.277 0.291 3.0×1020

Upper mantle – 3360 – 7.686 – 0.298 – 2.0×1021

Note: h is the average depth (km), ρ is the density (kg/m3), E is the static Young’s modulus (MPa), ν is the Poisson’s
ratio, and η is the viscosity (Pa·s).
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4. Discussion and conclusions

During the Paleogene, multiple extensional struc-
tures consisting of numerous NNE-trending faults
and graben systems were developed. There are sev-
eral NWW-trending faults perpendicular to these
systems that adjust the extension rate of different
sections, with the Bohai–Zhangjiakou fault zone
being the largest strike-slip transform zone in the
area. In the Neogene and Quaternary periods, the
tectonic movements in North China changed dra-
matically, and the Bohai–Zhangjiakou fault zone
became a huge regional structure controlling the
northern margin of the North China Basin (Xu et
al. 1998; Wang et al. 2005).

In general, the movements of plates from the ex-
ternal boundary conditions are the primary causes
of tectonic activities in the Chinese mainland (Chen
et al. 2001). However, Yuan et al. (1999) proposed
that the upward force produced by mantle convec-
tion might be the main driving force for earthquakes
in North China, which experienced strong events
during the Mesozoic period (Wu et al. 2005; Zhu
et al. 2011, 2012). Therefore, earthquakes in the
BZSZ are influenced by many factors, such as hori-
zontal plate tectonics and fluctuations in the Moho
surface.

The Moho surface is an extremely important
factor for the tectonic stress accumulation state
in the BZSZ (Xue 1986; Liu et al. 2012). The
Moho surface is deeper in the Zhangjiakou area
(figure 7), and the modelling results indicate that
the maximum shear stress is high in the upper

layer of this region, whereas, in the lower layer,
the shear stress is relatively low (figure 6). This
reveals that the depth of the Moho surface affects
the tectonic stress accumulation state. In addition,
Gao et al. (2001) proposed that both the NE-
and NWW-trending faults were seismogenic tec-
tonics in North China; however, the NE-trending
faults were earthquake-generating tectonics, such
as the Tangshan and Xiadian Faults (Xue 1986;
Xiang et al. 1988; Liu et al. 2007; Suo et al. 2013).
However, based on an analysis of the prospect-
ing trenches, the NE-trending faults may not be
seismogenic. The seismogenic process and modern
seismic activity in North China are primarily con-
trolled by NWW-trending faults (Suo et al. 2013).
Seismogenic tectonics control stress accumulations
and changes in the lithosphere, and usually are
the major faults in the system, while earthquake-
generating tectonics are channel to release tec-
tonic stresses (Li and Wang 1981). In the BZSZ,
seismogenic tectonics and earthquake-generating
tectonics are not the same, similar to the Mabian–
Yongshan Seismic Zone (Li and Wang 1981).
In the present study, the maximum shear stress

accumulation in the BZSZ was calculated and shown
at different depths based on 3D visco-elastic mod-
elling. The maximum shear stress in the BZSZ
increases gradually with increasing depth, and
there is a wider stress range in the lower layer.
In the upper layer, the calculated maximum shear
stress is high in the Zhangjiakou area, whereas in
the lower layer, the values are relatively high in the
Penglai–Yantai area, which may be affected by the

Figure 7. Depth map of the Moho surface beneath the BZSZ in North China. The western part of BZSZ has a deeper Moho
surface, the maximum depth can reach about 44 km. The depth data are from CRUST 1.0 Model (Laske et al. 2013).
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depth of the Mohr surface. Based on the modelling
results and their relationship with the Moho
surface depth, a deeper Moho surface generally
favours stress accumulation in the upper layer and
limits its accumulation in the lower layer. There-
fore, in the BZSZ in North China, the upper layer
of the Zhangjiakou area and the lower layer of the
Penglai–Yantai area are more likely to experience
earthquakes in the future.
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