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Space weather prediction involves advance forecasting of the magnitude and onset time of major geomag-
netic storms on Earth. In this paper, we discuss the development of an artificial neural network-based
model to study the precursor leading to intense and moderate geomagnetic storms, following halo coronal
mass ejection (CME) and related interplanetary (IP) events. IP inputs were considered within a 5-day
time window after the commencement of storm. The artificial neural network (ANN) model training,
testing and validation datasets were constructed based on 110 halo CMEs (both full and partial halo and
their properties) observed during the ascending phase of the 24th solar cycle between 2009 and 2014. The
geomagnetic storm occurrence rate from halo CMEs is estimated at a probability of 79%, by this model.

1. Introduction

Space weather prediction involves forecasting of
the magnitude and time of the commencement of
a geomagnetic storm, based on solar and inter-
planetary observations (Srivastava 2005). During a
geomagnetic storm, severe changes occur both in
interplanetary (IP) space and the terrestrial envi-
ronment such as acceleration of charged particles
and enhancement of electric currents, auroras, and
magnetic field variations on the Earth’s surface,
which can endanger human life or health (Siscoe
and Schwenn 2006). Geomagnetic storms (GMS)
represent typical features of space weather. They
occur as a result of energy transfer from the solar
wind (SW) to Earth’s magnetosphere via magnetic
reconnection. However, despite the prominent role
played by CMEs in producing GMS, their predic-
tion cannot be based only on CME observations
(Uwamahoro et al. 2012). To achieve this goal, it is
important to develop a prediction scheme based on
both solar and IP properties of geo-effective CMEs
(Srivastava 2005).

Artificial neural network (ANN) techniques have
been described by various authors to be suitable
for predicting transient solar-terrestrial phenom-
ena (Lundstedt et al. 2005; Pallocchia et al. 2006;
Woolley et al. 2010). A very well-designed and
trained network can improve a theoretical model
by performing generalizations rather than simply
curve fitting. By changing the ANN input values,
it is possible to investigate the functional relation-
ship between the input and the output and there-
fore, be able to derive what the network has learned
(Lundstedt 1997). ANN models for predicting mag-
netic storms using SW data as inputs have been
developed (Lundstedt and Wintoft 1994), with the
ability to estimate the level of geomagnetic distur-
bances as measured by the Dst index. The model
developed by Lundstedt et al. (2002) consists of a
recurrent neural network that requires hourly aver-
ages of the solar wind magnetic field component
B., particle density n, and velocity V as inputs
and predicts the Dst index in almost real-time
(Srivastava 2005). In order to improve GMS fore-
casts, Dryer et al. (2004) suggested that models
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should include both solar and near-Earth conditions.
Recently, Uwamahoro et al. (2012) estimated the
geo-effectiveness of halo CMEs from associated
solar and IP parameters using neural networks.
They presented an improved performance with an
accuracy of 86% in the prediction of geomagnetic
storm occurrence. However, for moderate storms
(—100 < Dst < —50), the model is successful up to
75% only.

For the present study, a combination of solar and
IP properties of halo CMEs is used in an ANN
model to predict the probability of GMS occur-
rence following halo CMEs observed during the
ascending phase of the 24th solar cycle between
2009 and 2014. Out of a total of 110 geomagnetic
storms that occurred during the study period, 21
were intense storms and 89 were moderate. The
results obtained by previous studies show the abil-
ity of the ANN model to produce a good esti-
mate of the probability occurrence of only intense
storms compared to moderate storms. However,
the present model focuses mainly on the proba-
bility occurrence of moderate geomagnetic storms
with an improved performance of about 80%.

2. Observational inputs for space weather
prediction

2.1 Key solar parameters

The Solar and Heliospheric Observatory/Large
Angle Spectrometric Coronagraph (SOHO/LASCO)
(Bruckner et al. 1995) has been detecting the
occurrence of CMEs on the Sun for more than
a decade. Halo CMEs are those that appear to
surround the occulting disk of the observing coro-
nagraphs (Uwamahoro et al. 2012). It has been
observed that halo CMEs originating from the vis-
ible solar disc and that are Earth-directed have the
highest probability to impact the Earth’s magne-
tosphere (Webb et al. 2000), and hence are useful
for the prediction of GMS. In this study, we con-
sidered halo CMEs as categorized by Gopalswamy
et al. (2007), where full halo CMEs (F-type) have
an apparent sky plane angular width (AW) of
360°, while partial halos (P-type) are those with
an apparent AW in the range 120° < W < 360° as
suggested by Uwamahoro et al. (2012). The angu-
lar width of a CME is a measure of the volume in
the corona that is ‘blown out’ (Robbrecht et al.
2009).

During the ascending phase of the 24th solar
cycle (January 2009-December 2014), the LASCO/
SOHO catalogue list indicates 110 halo CMEs
(both partial and full halo CMEs) which are
geo-effective. Table 1 lists 110 halo CMEs (Dst <
—50 nT) out of which 21 were intense storms and
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89 were moderate storms. In addition to the AW,
the CME speed represents another important prop-
erty of geo-effective CMEs. Halo CMEs generally
have a higher speed than the mean SW speed
(470 km s™') and are useful parameters to predict
the intensity of GMS (Srivastava 2005). For the
model developed in this study, we used halo CME
(AW and SW speed values of CMEs) data from the
LASCO/SOHO catalogue list (available online at:
http://cdaw.gsfc.nasa.gov/CMElist).

Another solar input used is the flare parame-
ter expressing the flare activity association with
CMEs. In their analysis, Wang et al. (2002) found
that geo-effective halo CMEs were mostly associ-
ated with flare activity. Furthermore, Srivastava
and Venkatakrishnan (2004) observed that fast and
full halo CMEs associated with large flares drive
large geomagnetic disturbances. For our ANN model,
we used the logarithmic value of the peak flux
of the most significant flare that has occurred
during the CME eruption as an input, quantifying
the halo CME association with solar flares. The
flare data archive used is available on the website:
http://hesperia.gsfc.nasa.gov/goes/goeseventlistings /
goesxrayeventlist2014.txt.

2.2 Key interplanetary parameters

The main inputs for any space weather prediction
based on properties of interplanetary medium are
known to be the solar wind speed at 1 AU, the total
interplanetary magnetic field (BT) and the south-
ward component of the interplanetary magnetic
field (B.) (Srivastava 2005). In the IP medium,
CMEs are manifested as shocks and interplanetary
coronal mass ejection (ICME) structures, which
couple to the magnetosphere to drive moderate
to major storms (Webb 2000; Echer et al. 2008).
As indicated by Gonzalez and Tsurutani (1987),
the intensity of the storm following the passage
of shock-ICME structures is well correlated with
two parameters, namely: (1) the IMF negative B,-
component (B;) and (2) the electric field convicted
by the SW, F, = V B, where V is the SW velocity.
Recent findings have also confirmed that the con-
vective electric field has the best correlation with
the Dst index (Echer et al. 2008). So for the ANN
model developed in this study, halo CMEs (AW
> 120°), CME speed (Veme), peak flux as well as
IP peak values of negative B,, E, and SW speed
(Viw) were used as ANN numeric input (as shown
in table 1) (table 2).

The peak values (Viy, B, and E,) correspond to
the maxima (magnitude only) recorded during the
time period of ICME passage. SW data are pro-
vided by the OMNI-2 dataset and available online
(http://www.nssdc.gsfc.nasa/omniweb.html).


http://cdaw.gsfc.nasa.gov/CME list
http://hesperia.gsfc.nasa.gov/goes/goeseventlistings/goesxrayeventlist2014.txt
http://hesperia.gsfc.nasa.gov/goes/goeseventlistings/goesxrayeventlist2014.txt
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Table 1. List of all 110 CME driven geomagnetic storm events along with solar and interplanetary parameters and their
arrivals.

Dst (min.) Halo CMES Vcmes Bz Vsw AW Ey Flare

[nT] Date Time [km s~ [nT] [kms™!  [deg] [mVm™!] Class Lnf
—59 FH 12/02/2010 13:42:04 509 —12 379 360 3.9 B8.9 —13.932
—81 FH 03/04/2010 10:33:58 668 —6.9 814 360 4.52 B7.4 —14.117
—67 PH 08/04/2010 04:54:07 227 -8 468 156 3.34 B3.7 —14.81
—80 FH 23/05/2010 18:06:05 258 -8 468 360 4.86 B1.3 —15.856
—80 FH 24/05/2010 14:06:05 427 —13.8 385 360 4.86 Bl.1 —16.023
—74 FH 01/08/2010  13:42:05 850 —10.5 598 360 6.28 B0.0 —16.118
—74 PH 01/08/2010 23:18:05 527 —10.5 598 120 6.28 B0.0 —16.118
—75 PH 06/10/2010 07:12:05 282 —11.6 447 152 4.15 B0.0 —16.118
—63 FH 01/02/2011 23:24 437 -15.9 647 360 7.03 B4.5 —14.614
—88 PH 26/02/2011 20:54 379 —-12.1 687 172 4.33 B4.3 —14.66
—83 PH 07/03/2011 14:48 698 —10 405 261 3.76 M1.5 —11.108
—83 FH 07/03/2011 20:00 2125 —10 405 360 3.76 M1.5 —11.108
—83 PH 08/03/2011 04:12 732 —10 405 282 3.76 M1.5 —11.108
—60 PH 04/04/2011 15:57 2081 —8.7 579 120 4.35 B0.0 —16.118
—80 PH 24/05/2011 21:24 657 —-10.7 752 122 5.44 B2.0 —15.425
—-59 PH 02/07/2011 07:50 511 —8.7 414 196 3.57 B0.0 —16.118
—115 FH 03/08/2011  14:00:07 610 —19.3 611 196 3.57 M6.0 —9.7212
—115 FH 04/08/2011 04:12 1315 —19.3 611 360 11.66 M9.3 —9.2829
—75 FH 06/09/2011 02:24 782 —-17.1 560 360 8.34 M5.3 —9.8452
—75 FH 06/09/2011 23:05 575 —-17.1 560 360 8.34 X2.1 —8.4684
—75 PH 07/09/2011  18:48:05 924 —-17.1 560 188 8.34 B9.1 —-13.91
—75 PH 07/09/2011  23:05:58 792 —-17.1 560 167 8.34 X1.8 —8.6226
—75 PH 08/09/2011  22:12:06 983 —17.1 560 281 8.34 Cl.1 —13.72
—72 PH 14/09/2011 00:00 408 —7.6 549 242 3.79 B0.0 —16.118
—72 PH 14/09/2011 20:12 375 —7.6 549 131 3.79 C9.2 —11.596
—72 PH 15/09/2011 00:00 530 —7.6 549 130 3.79 C4.6 —12.289
—72 PH 16/09/2011 23:48 669 —7.6 549 148 3.79 C2.6 —12.86
—118 FH 24/09/2011 12:48 1915 —24.1 704 360 14.34 M7.1 —9.5528
—118 FH 24/09/2011 19:36 972 —24.1 704 360 14.34 M3.0 —10.414
—147 FH 22/10/2011 01:25 593 —-13.1 516 360 6.67 B0.0 —16.118
—147 FH 22/10/2011 10:24 1005 —13.1 516 360 6.67 M1.3 —11.251
—66 PH 29/10/2011 13:48 295 —-7.9 436 147 3.39 C1.0 —13.816
—73 FH 19/01/2012 14:36 1120 —11.9 459 360 4.78 Ma3.2 —10.35
—80 PH 23/01/2012 03:12 684 —8.9 607 221 5.4 B0.0 —16.118
—80 FH 23/01/2012 04:00 2175 —-8.9 607 360 5.4 M8.7 —9.3496
—62 FH 10/02/2012 20:00 533 -8.3 414 360 3.19 B0.0 —16.118
—54 FH 16/02/2012 06:36 538 -9.7 489 360 3.66 B0.0 —16.118
—85 PH 04/03/2012 05:00 584 —-15.3 592 160 6.53 B0.0 —16.118
-85 PH 04/03/2012 11:00 1306 -15.3 592 360 6.53 M2.0 —10.82
—85 FH 05/03/2012 04:00 1531 —15.3 592 360 6.53 X1.1 —9.115
—143 FH 07/03/2012 00:24 2684 —-16.4 737 360 11.71 X5.4 —7.5239
—143 FH 07/03/2012 01:30 1825 —-16.4 737 360 11.71 X1.3 —8.948
—51 FH 10/03/2012 18:00 1296 —11.1 723 360 5.54 MS8.4 —9.3847
—80 FH 13/03/2012 17:36 1884 -9.2 787 360 6.84 M7.9 —9.446
—55 PH 26/03/2012 06:48 783 -9.1 464 133 3.67 Cl.4 —13.479
—55 FH 26/03/2012 23:12 1390 -9.1 464 360 3.67 C2.7 —12.822
—56 PH 02/04/2012 02:12 350 -8.9 361 135 3.01 B7.9 —14.051
—104 PH 19/04/2012 15:12 540 —154 601 142 5.89 C1.8 —13.228
—86 PH 13/06/2012 13:25 632 —-16.5 519 253 6.93 M1.2 —11.331
—86 FH 14/06/2012 14:12 987 —16.5 519 360 6.93 M1.9 —10.871
—69 FH 06/07/2012 23:24 1828 —11.4 401 360 4.45 X1.1 —9.115

—133 PH 11/07/2012 10:36 748 —18.7 667 166 11.37 B0.0 —16.118
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Table 1. (Continued.)
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Dst (min.) Halo CMES Vcemes Bz Vsw AW Ey Flare

[nT] Date Time [km s~ 1] [nT] [km s~ [deg] [mVm™!'] Class Lnf
—133 FH 12/07/2012 16:48 885 —18.7 667 360 11.37 B0.0 —16.118
—78 PH  30/08/2012 15:12 480 —-11.3 545 130 4.89 B0.0 —16.118
—78 FH  31/08/2012 20:00 1442 —11.3 545 360 4.89 C8.4 —11.687
—133 FH  28/09/2012 00:12 947 —19.2 410 360 7.53 B0.0 —16.118
—133 FH  28/09/2012 10:36 768 —19.2 410 360 7.53 B0.0 —16.118
—106 PH 03/10/2012 02:48 383 —14.4 447 153 5.39 B0.0 —16.118
—-111 PH 05/10/2012 20:48 284 —15.1 466 284 5.87 B0.0 —16.118
—74 FH  28/10/2012 16:48 317 —11.7 373 360 4.24 B7.3 —14.13
—74 PH  28/10/2012 08:48 487 —11.7 373 158 4.24 Cl1.7 —13.285
—109 PH 10/11/2012 14:12 460 —17.4 482 191 6.85 B0.0 —16.118
—109 PH 11/11/2012 00:48 690 —17.4 482 154 6.85 C1.3 —13.553
—53 PH  15/01/2013 19:48 798 —-12.3 458 162 4.74 C1.8 —13.228
—51 PH 21/01/2013 05:36 304 —10.6 531 128 4.21 B0.0 —16.118
—51 PH  23/01/2013 03:12 501 —10.6 531 122 4.21 B0.0 —16.118
—51 PH  23/01/2013 14:12 530 —10.6 531 185 4.21 B0.0 —16.118
—55 PH  27/02/2013 04:00 622 —13.4 638 138 6.32 B8.3 —14.002
—132 FH 15/03/2013 07:12 1063 —14.4 725 360 9.71 M1.1 —11.418
—50 FH 20/04/2013 06:00 741 —-12.8 562 153 4.43 B0.0 —16.118
—50 FH  21/04/2013 07:24 919 —12.8 562 360 4.43 B8.7 —13.955
—50 FH  21/04/2013 16:00 857 —12.8 562 130 4.43 C2.9 —12.751
—67 PH  26/04/2013 18:24 271 —-9.9 484 150 3.97 C2.3 —12.983
—67 PH  28/04/2013 13:25 400 —-9.9 484 121 3.97 B0.0 —16.118
—57 FH  14/05/2013 01:25 2625 -7.9 439 360 3.42 X3.2 —8.0472
—54 PH 21/05/2013 02:24 562 —6.6 757 185 3.85 B0.0 —16.118
—54 FH  22/05/2013 13:25 1466 —6.6 757 360 3.85 M5.0  —9.9035
—119 PH  27/05/2013 19:24 528 —17.4 722 126 7.06 B0.0 —16.118
—97 FH 25/06/2013 11:12 349 —-11.9 552 360 4.58 B6.6 —14.231
-79 PH  03/07/2013 07:24 807 —12.5 369 267 4.44 M15 —11.11
—54 PH 21/10/2013 05:12 385 —10 481 228 4.07 C1.6 —13.35
—67 FH  29/09/2013 22:12 1179 —8.8 629 360 5.54 C1.2 —13.63
—62 PH  04/10/2013 19:07 392 —6.2 639 229 2.74 B0.0 —16.12
—62 FH 05/10/2013 07:09 964 —6.2 639 360 2.74 B0.0 —16.12
—50 FH  28/10/2013 02:24 695 —8.1 436 360 2.86 X1.0 —9.21
—50 FH  28/10/2013 15:36 812 -8.1 436 360 2.86 M4.4  —10.03
—54 PH 05/11/2013  08:24:06 850 —8.6 383 197 3.11 M2.5 —10.6
—81 PH 05/11/2013  22:36:05 562 —11.4 611 195 4.8 X3.3 —8.016
—81 FH 07/11/2013  00:00:06 1033 —11.4 611 360 4.8 B0.0 —16.12
—81 FH 07/11/2013 10:36:05 1405 —11.4 611 360 4.8 C2.1 —13.07
—70 PH 06/11/2013  14:24:26 347 —6.2 539 122 3.34 M3.8 —10.18
—66 FH 07/12/2013 07:36:05 1085 —-9.8 639 360 4.12 M1.2 —11.33
—112 FH 16/2/2014 10:00:05 634 —-12.9 474 360 6.09 M1.1 —11.418
—112 PH 16/2/2014 12:48:05 659 —-12.9 474 243 6.09 C0.0 —13.816
—73 PH 17/2/2014 05:12:05 582 —8.5 691 121 5.87 B0.0 —16.118
—86 FH 18/2/2014 01:36:21 e —-8.3 618 360 5.13 C4.7 —12.268
—56 PH 21/2/2014 01:25:51 648 —8.3 498 143 3.82 B0.0 —16.118
—56 FH 21/2/2014 16:00:05 1252 —8.3 498 360 3.82 B0.0 —16.118
—56 PH 22/2/2014 12:12 1033 —-8.3 198 233 3.82 B0.0 —16.118
—-99 PH 24/2/2014 11:36:05 495 —12 483 193 5.5 M1.2 —11.331
-99 PH 24/2/2014 23:24:07 790 —12 483 188 5.5 B0.0 —16.118
—80 FH 08/04/2014  23:12:12 514 —-8.9 387 360 3.06 B9.6 —13.856
—57 PH 12/04/2014  07:24:06 1016 -7.9 346 139 2.69 C5.0 —12.206
—67 PH  25/04/2014  00:48:03 456 -94 309 296 2.86 X1.3 —8.948
—80 FH 24/08/2014  12:36:05 551 —13 333 360 3.89 M5.9  —9.738
—65 PH 25/08/2014  20:48:05 711 —10.2 328 177 3.27 M3.9 —10.152
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Table 1. (Continued.)
Dst (min.) Halo CMES Vcemes Bz Vsw AW Ey Flare
[nT] Date Time [km s~ 1] [nT] [km s~ [deg] [mVm™!'] Class Lnf
—75 PH 10/09/2014 17:24:05 1071 —-11.3 726 134 7.12 X1.6 —8.7403
=75 FH 10/09/2014  18:00:05 1267 —-11.3 726 360 7.12 X1.6 —8.7403
—57 PH 07/11/2014  18:08:34 795 —5.4 503 293 2.62 B0.0 —16.118
—-71 FH 19/12/2014  01:04:42 1195 —-14.9 429 360 5.04 B0.0 —16.118
Table 2. The input and output parameters and their corre- ut idden

ons ANeurons

sponding measures.

Parameters Parameter name Variable type Measure
Inputs CME AW Numeric < 120°
CME Speed Numeric ~ Values in km s~ !
Fass Numeric -
Vasw Numeric  Values in km s~}
B, Numeric Values in nT
Ey Numeric  Values in mV m™
Outputs Dst Numeric Values in nT

3. Artificial neural network (ANN) and
principal component analysis (PCA)

In this study, ANN has been used as a tool in the
development of a model to study the precursors
leading to GMS from the observed solar and IP
properties of halo CMEs. Neural network is an
assembly of interconnected computing elements
called units or neurons. For the model developed
in this work, we used a three-layered feed forward
ANN. Feed Forward Neural Networks (FFNN) rep-
resent the simplest and most popular type of ANN,
which has been widely used with success in the
prediction of various solar-terrestrial time series
(Lundstedt and Wintoft 1994; Macpherson et al.
1995; Conway 1998; Uwamahoro et al. 2009). The
ANNSs generally have a layered structure in which
each input passes through same number of nodes
to produce an output. The first layer is the layer
of input data, termed the input layer whereas the
output layer is the layer of nodes which produces
the output. The intermediate layers of processing
units are called hidden layers.

Figure 1 illustrates the three-layered ANN archi-
tecture used in the present study. In a three layered
FFNN with six input neurons, one hidden layer
with different neurons and one output neuron. The
activation functions we have used in hidden layer
and output layer nodes are tan-sigmoid and linear
functions, respectively. Such activation functions
on the network outputs play an important role in
allowing the outputs to be given a probabilistic
interpretation (Bishop 1995). Indeed, ANNs pro-
vide an estimate of the posterior probabilities using

AW

Veme

fi

Vsw

Bs

Figure 1. The three-layered FFNN architecture which was
used in the study.

the least squares optimization and are sensitive to
sample size. A larger database provides better esti-
mates (Richard and Lippmann 1991; Hung et al.
1996). If there exists a relation between the input
and the output, the network learns by adjusting
the weights until an optimum set of weights that
minimizes the network error is found and the net-
work then converges. Before training, the dataset is
generally split randomly into training, testing and
validation datasets in order to avoid the training
results becoming biased towards a particular sec-
tion of the database. For the ANN trained while
developing this model, data were split into 60% for
the training set and 20% for the testing, and rest
20% for the validation dataset, in order to deter-
mine how the ANN has learned the behaviour in
the input—output patterns, consisting of the data
not involved in the network training process was
selected. Given that input variables have different
numerical ranges (negatives values of B, and F,,
values of AW and SW speed in hundreds, CME
speed in thousands), they were first normalized
through weight initialization.

A typical batch learning procedure can be imple-
mented through the following algorithm:

(1) Read the input data
(2) Initialize the weights
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(3) Repeat

(a) Initialize all weight correction to zero
(b) For each input point

(i) Calculate net output
(ii) Calculate gradient of error corre-
sponding to each weight
(iii) Accumulate the weight corrections

(¢) Modify the weights using average of the
accumulated weight corrections until
the error reduces to desired level or the
iterations exceed the allowed maximum
number.

(4) Print the net output and net error
(5) End

3.1 Principal component analysis

Principal component analysis (PCA) is a technique
that is useful for the compression and classification
of data. The purpose is to reduce the dimensionality
of a dataset by finding a new set of variables, smal-
ler than the original set of variables that retains
most of the sample information (Jolliffe 2002). It is
a way of identifying patterns in data, and express-
ing the data in such a way as to highlight their
similarities and differences. Principal component
analysis is appropriate when there are measures on
a number of observed variables and we wish to
develop a smaller number of artificial variables. Prin-
cipal component analysis is a variable reduction
procedure useful when data have a large number
of variables and there is some redundancy in those
variables. In this case, redundancy means that some
of the variables are correlated with one another,
possibly because they are measuring the same con-
struct. Principal component can be defined as a
linear combination of optimally-weighted observed
variables. The goal is to account for the variation
in a sample in fewer variables. Steps involved in
calculation of PCA are given below:

® (Giving data
The data consists of 110 CMEs which need to
be reduced so that it takes minimum time for
classification, providing more accurate results.

® Subtracting the mean
For PCA to work properly, the mean is subtrac-
ted from each of the data dimensions. The mean
subtracted, is the average across each dimension.
This produces a dataset whose mean is zero.

e Calculating the covariance matrix
Since the data is 2 dimensional, the covari-
ance matrix will be calculated. Covariance shows
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the variation in the data which will ultimately
account for pattern classification.

Calculating the eigenvectors and eigenvalues of
the covariance matriz

From the covariance matrix, calculate the eigen-
vectors and eigenvalues for this matrix. These
are important as they contain useful informa-
tion about our data. An eigenvalue represents the
amount of variance that is accounted for by a
given component. It is important to notice that
these eigenvectors are both unit eigenvectors, i.e.,
their lengths are both 1. This is very important
for PCA that when asked for eigenvectors, it must
give unit eigenvectors. These are important as
they provide with information about the patterns
in the data.

Choosing components and forming a feature
vector

It turns out that the eigenvector with the high-
est eigenvalue is the principal component of the
dataset. Once eigenvectors are found from the
covariance matrix, the next step is to order them
by eigenvalue, highest to lowest. This gives the
components in order of significance. The com-
ponents with lesser significance can be ignored.
Originally data have n dimensions and n eigen-
vectors and eigenvalues but final dataset can
have only p dimensions. This is constructed by
taking the eigenvectors that are kept from the
list of eigenvectors, and forming a matrix with
these eigenvectors in the columns.

Feature vector = (eigleig2eig3 - - - eign)

Deriving the new dataset

Once components (eigenvectors) are chosen and
formed a feature vector, take the transpose of the
vector and multiply it on the left of the original
dataset, transposed as:

Final data = Row feature vector x row data adjust

where row feature vector is the matrix with the
eigenvectors in the columns transposed so that
the eigenvectors are now in the rows, with the
most significant eigenvector at the top, and row
data adjust is the mean-adjusted data trans-
posed, i.e., the data items are in each column,
with each row holding a separate dimension.
Final data is the final dataset, with data items
in columns and dimensions along rows.

The PCA plot of the data is shown in figure 2

which shows the highly nonlinear behaviour of the
CME data (110 CMEs) when the data dimension is
reduced from six variables to a set of orthonormal
basis (principal components). When the first three
components are plotted, they give the maximum
information about the data.
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Figure 2. The PCA plot showing the linearity in the CME data.

4. Result and discussion

We have first discussed the interdependency of
various input parameters and then discussed our
results from ANN by various plots showing the
network output.

Figure 3 shows the geomagnetic storm of 7
March, 2012 with peak minimum Dst = —143 nT
followed by two full halo CMEs (AW = 360°) at
00:24 UT and 01:30 UT with high CME speed
(Veme) of about 2684 km s™! and 1825 km s *,
respectively, that were probable sources of the
storm. Indeed, the two halo CMEs involved were
associated with X-class solar flares and were fol-
lowed by an ICME also observed on 7 March, 2012
(on the 67th day of the year). The red lines show
that at the time of sudden storm commencement
(SSC), there is a sudden increase in the magni-
tude of B, and Dst while the wind speed (Vi)
and E, decreases suddenly (on the 68th day of
the year). Since the storm is followed by two full
halo CMEs, there were two sudden storm com-
mencement (SSC) regions depending upon their
CME speeds. However, we get only one peak of Dst
(min.) which is more pronounced and include the
effects of both the CMEs shown by the black line
(on 69th day of the year). This plot also depicts
the interdependency of input parameters as well as
with the output parameter. The B, and Dst vary in

the same manner while the V;,, and E, variations
were out of phase, but their magnitudes vary in
the same manner. So we have taken interplane-
tary parameters along with solar parameters as
input variables while Dst (min) as an output vari-
able for training, testing and validation of dataset
in ANN.

The input given to the ANN for training in a
manner such that rows contain the attributes and
column contain the number of samples. The activa-
tion function of the hidden layer and output layer
are logistic sigmoid function and pure linear func-
tion. The number of neurons in the hidden layer
is determined empirically by experimenting with
various network configurations. The ANNs were
trained by the gradient descent back-propagation
training algorithm. When the network is trained,
the network gives the correct output upon testing
and validation. The optimum network architecture
was found to be that with six inputs using eight
hidden nodes (configuration: 6:8:1). The network
with only seven hidden nodes was found to perform
poorly when tested on the validation dataset.

Uwamahoro et al. (2012) considered the ANN
with only three solar input parameters, which
performed poorly when tested on the validation
dataset, indicating the importance of consider-
ing the IP parameters for improving the model
performance.
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Figure 3. A 5-day window plot showing the variation of the interplanetary parameters, i.e., z-component of the interplan-
etary magnetic field (IMF) B, the southward wind speed Vsw, the electric field E, with the output, Dst index, following
the passage of the interplanetary coronal mass ejections (ICMEs), observed on 7 March, 2012.

Table 3. The ANN architecture used in the study with their
corresponding best validation performances.

No. of hidden Sample Best validation

layers ratio performance
6:7:1 325.6077

19 6:8:1 254.905
6:9:1 583.702
6:7:1 350.6579

20 6:8:1 201.3559
6:9:1 338.1322

Table 3 shows that with the increase in the hid-
den layer, the network performance improves and
we found that our network performs best with 20
hidden neurons. Also on changing the sample ratio
of the neurons, i.e., input : hidden : output, the net-
work performance changes and the networks best
validation performance was found to be for the
sample ratio 6:8:1 with 20 hidden neurons.

Figure 4 shows the best validation performance
or the mean squared error (MSE) is 201.3559 at
epoch 497 and the errors in the training, test and
validation process decrease in the same manner.
The regression plots are shown in figure 5 which
clearly shows that the model validates up to 79%
with an overall regression up to 77.36%. Thus
the network is successful in predicting the occur-
rence of intense storms up to 77.36% and with a

Best Validation Performance is 201.3559 at epoch 497
10't

Train
Validation
Test

107+

1074

Mean Squared Error (mse)

10‘ C I 1 1 1 1 1 1 1 1 Wi
0 50 100 150 200 250 300 350 400 450 500
503 Epochs

Figure 4. The performance plot with 19 hidden layer and 8
hidden neurons.

validation of 79% for the sample ratio 60:20:20 for
training, validation and test respectively.
Uwamahoro et al. (2012) using the ANN model
predicted 100% of intense storms and 75% of
moderate storms. The overall ANN model predic-
tion ability of GMS (Dst < —50 nT) based on
the observed halo CME was estimated at 86%.
The results obtained demonstrate the ability of the
ANN model to produce a good estimate of the
probability occurrence of intense storms compared
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to moderate storms. This difference in performance
is related to the characteristics of inputs. Observa-
tions of the data indicate that intense storms are
generally preceded by full halo CMEs (AW = 360°),
high values of CME speed and flare activity as
well as high peak values of B, and V,, compared
to those associated with moderate GMS. On the
other hand, previous studies have indicated that
partial halo CMEs produce mostly moderate
storms and the majority of them are less energetic
(possess lower speed). Note that moderate storms
are often driven by the non-halo CMEs or CIRs
that have not been considered in the present study.

The results presented in this study only serve as
an indication that solar and IP parameter charac-
teristics of geo-effective halo CMEs, can be used in
an ANN to estimate the probability occurrence of
the subsequent GMS. The estimated geo-effective-
ness of solar events (halo CMEs in this case) can be
compared to other predictions from various anal-
yses. Valach et al. (2009) used a combination of
X-ray flares (XRAs) and solar radio burst (RSPs)
as input to the ANN model and obtained a 48%
successful forecast for severe geomagnetic response.
The ANN model described in the present study
shows an improved performance with an accuracy
of 77.36% with a validation performance of 79%.
We also want to emphasize that our topic of inter-
est was to estimate the GMS occurrence following
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halo CMEs observed during the ascending phase of
24th solar cycle between 2009 and 2014; however, a
lager database provides better estimates (Richard
and Lippmann 1991; Hung et al. 1996). On the other
hand, this compares favourably to the 77.7% ob-
tained by Srivastava (2005), using the logistic regres-
sion model. The prediction performance of the ANN
model described in the present study is unique, as
our main focus is to estimate the probability occur-
rence of both intense and moderate storms, which
were not effectively done in previous studies.

5. Summary and conclusion

Predicting the occurrence of GMS on the basis of
CME observations by ANN architecture is a very
effective tool. In this study, a combination of solar
and IP parameters have been used as inputs in an
ANN model with the ability to estimate the prob-
ability occurrence of GMS resulting from halo CMEs.
The results obtained, indicate that the model per-
forms well in estimating the occurrence of intense
GMS as compared to moderate storms. In addition,
this study shows that IP input parameters charac-
terizing geo-effective halo CMEs and related ICME
structures (i.e., increased peak values of B, and
Viw) contribute significantly in improving the
predictability of GMS occurrence. It was observed
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Figure 5. The regression plot showing the output-target fit.
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by use of the PCA technique that the GMS data is
highly nonlinear; however, our model can correctly
predict up to 79% of the GMS resulting from CMEs.
Thus, the ANN model described in this paper will
contribute towards improving real-time space wea-
ther predictions and is used to minimize the effects
on the radio as well as satellite communication.
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