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In this work, the effects of viscosity and diffusion on thermoelastic interactions in an infinite medium
with a spherical cavity are studied. The formulation is applied to the generalized thermoelasticity based
on the theory of generalized thermoelastic diffusion with one relaxation time. The surface of the spherical
cavity is taken to be traction free and subjected to both heating and external constant magnetic field.
The solution is obtained in the Laplace transform domain by using a direct approach. The solution of
the problem in the physical domain obtained numerically using a method based on Fourier expansion
techniques. The temperature, displacement, stress, concentration as well as the chemical potential are
obtained and represented graphically. Comparisons are made within the theory in the presence and
absence of viscosity and diffusion.

1. Introduction

The classical theory of thermoelasticity has been
generalized and modified into various thermoelas-
tic models that run under the label of ‘hyperbolic
thermoelasticity’. The notation hyperbolic reflects
the fact that thermal waves are modelled, avoid-
ing the physical paradox of the infinite propaga-
tion speed of the classical model. At present, there
are several theories of hyperbolic thermoelasticity.
The first theory is developed by Lord and Shulman
(1967) who obtained a wave-type heat equation by
postulating a new law of heat conduction to replace
the classical Fourier law. This new law comprises
the heat flux vector as well as its time derivative.
It also comprises a new constant that acts as a
relaxation time. The second theory is developed by
Green and Lindsay (1972) to comprise two constants
that act as relaxation times. This theory modifies

not only the heat conduction equation but also all
the equations of coupled theory. These two theo-
ries (Lord and Shulman 1967; Green and Lindsay
1972) ensure finite speeds of propagation for heat
wave.

Diffusion can be defined as the migration of
particles from regions of high concentration to
regions of lower concentration. The recent inter-
est in the study of this phenomenon is due to its
many industrial applications. Nowacki (1974a, b,
c) developed the theory of thermoelastic diffusion
in which the coupled thermoelastic model is used.
This implies infinite speed of propagation of ther-
moelastic waves. Sherief et al. (2004) developed the
theory of generalized thermoelastic diffusion that
predicts finite speeds of propagation for thermo-
elastic and diffusive waves. Sherief and Saleh (2005)
worked on a problem of a thermoelastic half-space
with a permeating substance, in contact with the
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bounding plane in the context of the theory of
generalized thermoelastic diffusion.

The observed attenuation of seismic waves on
earth, an important source of information regard-
ing the composition and state of the deep interior
cannot be explained by assuming the earth to be
an elastic solid. Keeping this fact in mind, several
problems on wave propagation in a linear viscoelas-
tic solid have been discussed by many researchers.
Also with the rapid development of polymer sci-
ence and plastic industry, as well as the wide use
of materials under high temperature in modern
technology, the theoretical study and application
in viscoelastic materials has become an important
task for solid mechanics. The theory of thermo-
viscoelasticity and the solutions of some boundary
value problems of thermoviscoelasticity are investi-
gated by Ilioushin and Pobedria (1970). The works
of Tanner (1988) and Huilgol and Phan-Thien
(1997) have made great strides in the last decade
in finding solutions for boundary value problems
for linear viscoelastic materials including temper-
ature variations in both quasi-static and dynamic
problems.

Xia et al. (2009) studied the dynamic response
of an infinite body with a cylindrical cavity whose
surface suffers thermal shock using finite element
method. Roychoudhuri and Mukhopadhyay (2000)
studied the effect of rotation and relaxation times
on plane waves in generalized thermoviscoelas-
ticity. Roychoudhuri and Banerjee (1998) investi-
gated the magneto-thermoelastic interactions in an
infinite viscoelastic cylinder of temperature rate-
dependent material subjected to periodic loading.
Spherically-symmetric thermoviscoelastic waves in
a viscoelastic medium with a spherical cavity
was discussed by Banerjee and Roychoudhuri
(1995). Ezzat and El-Karamany (2002) estab-
lished the uniqueness and reciprocity theorems for
generalized thermoviscoelasticity with two relax-
ation times. The thermoviscoelastic interaction in a
homogeneous, infinite Kelvin–Voigt type viscoelas-
tic, thermally-conducting medium due to the pres-
ence of periodically varying heat sources has been
studied by Kanoria and Mallik (2010). Zenkour
et al. (2012) obtained a general solution to the
field equations of generalized thermodiffusion in an
infinite thermoelastic body with a spherical cavity
in the context of the theory of generalized thermo-
elastic diffusion. The bounding surface of the sphere
is subjected to periodic loading and the tempera-
ture and chemical potential are assumed to be zero
on the curved surface.

The objective of the present work is to deter-
mine the components of displacement, stresses,
temperature and chemical potential distribu-
tions in an isotropic homogeneous magneto-
thermoviscoelastic infinite medium with a spherical

cavity. The problem is solved in the context of
the theory of generalized thermoviscoelastic dif-
fusion with one relaxation time. The surface of
the spherical cavity is taken to be traction free
and subjected to both heating and external con-
stant magnetic field. The solution of the problem
is obtained in the transformed domain by using
a direct approach without the customary use of
potential functions. An exact solution of the prob-
lem is first obtained in Laplace transform space.
The inversions of Laplace transforms have been
carried out numerically. Numerical results predict
finite speeds of propagation for thermoelastic and
diffusive waves. To investigate the viscosity, mag-
netic field and diffusions effects, a comparison is
made with the results obtained in the thermoelastic
problem. Finally, by taking an appropriate mate-
rial, the results are presented in graphical form to
illustrate the problem.

2. Basic equations

Let us consider a perfect electric conductor medium
in the absence of the displacement current (SI).
The linearized Maxwell equations governing the
electromagnetic field are given by Ezzat (1997):

curlh = J, curlE = −μ0

∂h

∂t
,

E = −μ0

∂u

∂t
×H0, divh = 0, divE = 0, (1)

where μ0 is the magnetic permeability, J is the cur-
rent density vector, E is the induced electric field,
H = H0 + h in which H0 is the applied magnetic
field and h is the perturbation occurred in the total
magnetic field by induction.

The governing equations for a linear isotropic
homogeneous thermoviscoelastic solid with gener-
alized thermodiffusion in the absence of body forces
take the following forms (Sherief et al. 2004; Sherief
and Saleh 2005):

• The equations of motion have the following form:

μ∗ui,jj + (λ∗ + μ∗)uj,ij − β∗
1θ,i − β∗

2C,i + Fi

= ρ
∂2ui

∂t2
, (2)

where ui are the components of the displacement
vector, θ = T −T0, in which T is the absolute tem-
perature of the medium, T0 is the reference uni-
form temperature of the body chosen such that
|θ/T0| = 1, C is the concentration of the diffu-
sive material in the elastic body, ρ is the density
and Fi is the components of Lorentz force, whose
expression is:

Fi = μ0(J×H)i. (3)



Generalized magneto-thermoviscoelasticity in a perfectly conducting thermodiffusive medium 1711

The parameters λ∗, μ∗, β∗
1 and β∗

2 are defined as:

λ∗ = λe

(
1 + α1

∂

∂t

)
, μ∗ = μe

(
1 + α2

∂

∂t

)
,

β∗
1 =β1e

(
1+β1

∂

∂t

)
, β∗

2 =β2e

(
1+β2

∂

∂t

)
, (4)

where

β1e = (3λe + 2μe)αt,

β2e = (3λe + 2μe)αc,

β1 = (3λeα1 + 2μeα2)
αt

β1e

,

β2 = (3λeα1 + 2μeα2)
αc

β2e

, (5)

in which λe, μe being Lamés constants, α1, α2 are
the thermoviscoelastic relaxation times and αt and
αc are the coefficients of linear thermal expansion
and linear diffusion expansion, respectively.

• Maxwell electromagnetic stress tensor Mij in the
cavity results due to the induced fields. It is given
by

Mij = μ0(Hihj +Hjhi − δijHkhk). (6)

• The energy equation in the context of general-
ized thermoelastic diffusion with one relaxation
time developed by Lord and Shulman (1967), is
modified to the form (Sherief et al. 2004):

Kθ,ii =

(
∂

∂t
+ t0

∂2

∂t2

)
(ρCEθ + β∗

1T0e+ aT0C),

(7)

where K is the thermal conductivity, CE is the
specific heat at constant strain, a is a coefficient
describing the measure of thermoelastic diffusion
effects, e = ekk is the cubical dilatation and t0 is
the thermal relaxation time.

• The equation of mass diffusion:

Dβ∗
2e,ii+Daθ,ii+

(
∂

∂t
+ t1

∂2

∂t2

)
C−DbC,ii = 0,

(8)

where D is the diffusion coefficient or diffusivity,
t1 is the diffusion relaxation time, b is a coefficient
describing the measure of diffusive effects and eij
are the components of the strain tensor.

• The constitutive equations have the form:

σij = 2μ∗eij + δij(λ
∗ekk − β∗

1θ − β∗
2C), (9)

where σij are the components of the stress tensor
and δij is Kronecker’s delta tensor.

• The chemical potential equation has the form:

P = −β∗
2ekk + bC − aθ, (10)

where P is the chemical potential per unit mass.

It will ensure that the equation satisfied by the
concentration of the diffusive material C will also
predict finite speed of propagation of matter from
one medium to the other.

3. Formulation of the problem

Let us consider a homogeneous, isotropic thermo-
elastic infinite body with a spherical cavity of radius
R. The spherical polar coordinates (r, Θ, φ) are
taken for any representative point of the body at
time t and the origin of the coordinate system is
at the center of the spherical cavity. Let us also
assume that the initial state of the medium is quies-
cent. The surface of the spherical cavity is assumed
to be traction free and subjected to heating which
is a function of time. The chemical potential is also
assumed to be a known function of time on the
bounding cavity. All the variables considered will
be functions of the radial distance r and the time
t only.

Considering radial variations of the medium, the
only non-zero displacement component is ur =
u(r, t), so that, the component of strain tensor are:

err =
∂u

∂r
, eΘΘ =

u

r
= eφφ,

erφ = erΘ = eΘφ = 0. (11)

The dilatation e thus, will be

e=div(u)=err+eφφ+eΘΘ=
∂u

∂r
+
2u

r
=

1

r2
∂

∂r
(r2u).

(12)
The constitutive equations for a spherical symmet-
ric system are given by

σrr=2μ∗∂u

∂r
+ λ∗e− β∗

1θ − β∗
2C,

σΘΘ=2μ∗u

r
+ λ∗e− β∗

1θ − β∗
2C, (13)

and the chemical potential is

P = −β∗
2e+ bC − aθ. (14)

The equations of heat conduction and mass diffu-
sion are:

K∇2θ =

(
∂

∂t
+ t0

∂2

∂t2

)
(ρCEθ + β∗

1T0e+ aT0C),

(15)

Dβ∗
2∇2e+Da∇2θ +

(
∂

∂t
+ t1

∂2

∂t2

)
C = Db∇2C,

(16)
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where ∇2 is Laplace operator in spherical
coordinates

∇2 =
∂2

∂r2
+

2

r

∂

∂r
. (17)

Due to the application of the initial magnetic field
H0, there results an induced magnetic field h =
(0, 0, h) which be small, so that, their products
with ui and their derivatives can be neglected
for linearization and an induced electric field E.
Applying an initial magnetic field vector H0 =
(0, 0, H0) to equation (1), one obtains

E =

(
0, μ0H0

∂u

∂t
, 0

)
, J =

(
0,−∂h

∂r
, 0

)
,

h = −H0

(
∂u

∂r
+

2u

r

)
. (18)

The components of Lorentz force can be obtained
from equation (18) in the form

Fr = μ0(J×H)r = μ0H
2
0

∂

∂r

(
∂u

∂r
+

2u

r

)
. (19)

The equation of motion, equation (2), then reduces
to

σrr,r +
σrr − σΘΘ

r
+ Fr = ρ

∂2u

∂t2
. (20)

Thus, from equations (13) and (20), one obtains

(λ∗+2μ∗+μ0H
2
0 )
∂e

∂r
−β∗

1

∂θ

∂r
−β∗

2

∂C

∂r
= ρ

∂2u

∂t2
. (21)

Applying the operator (∂/∂r + 2/r) to both sides
of equation (21), one gets

(λ∗ + 2μ∗ + μ0H
2
0 )∇2e− β∗

1∇2θ − β∗
2∇2C = ρ

∂2e

∂t2
.

(22)

For convenience, the following non-dimensional
quantities are used

r′ = c1ηr, u′ = c1ηu, θ′ =
β1e

λe + 2μe

θ,

P ′ =
P

β2e

, t′ = c21ηt, t′0 = c21ηt0, t′1=c21ηt1,

C ′ =
β2e

λe + 2μe

C, σ′
ij =

1

λe + 2μe

σij,

q′r =
β1

Kc1 (λe + 2μe)
qr, M ′

ij =
Mij

μ
, (23)

where η = ρCE

K
, c1 =

√
λe+2μe

ρ
is the speed of prop-

agation of isothermal elastic waves and qr is the
heat flux in the radial direction.

In the non-dimensional variables, the govern-
ing equations, equations (13–16) and (22), can be

expressed in the following forms (dropping primes
for convenience):(

1 +
c23
c21

+
c22
c21

∂

∂t

)
∇2e−

(
1 + β1

∂

∂t

)
∇2θ

−
(
1 + β2

∂

∂t

)
∇2C =

∂2e

∂t2
,

∇2θ=

(
∂

∂t
+t0

∂2

∂t2

)[
θ+ε

(
1 + β1

∂

∂t

)
e+ εη1C

]
,(

1+β2

∂

∂t

)
∇2e+η1∇2θ+η2

(
∂

∂t
+t1

∂2

∂t2

)
C=η3∇2C,

(24)

σrr =

(
1 +

c22
c21

∂

∂t

)
e− 4

β2

(
1 + α2

∂

∂t

)
u

r

−
(
1 + β1

∂

∂t

)
θ −

(
1 + β2

∂

∂t

)
C,

σΘΘ =

(
1− 2

β2

)(
1 + α1

∂

∂t

)
e

+
2

β2

(
1 + α2

∂

∂t

)
u

r
−

(
1 + β1

∂

∂t

)
θ

−
(
1 + β2

∂

∂t

)
C, (25)

P = η3C −
(
1 + β2

∂

∂t

)
e− η1θ, (26)

where

ε =
β2
1eT0

ρ2cEc21
, η1 =

aρc21
β1eβ2e

,

η2 =
ρc21

β2
2eηD

, c3 =
μ0H

2
0

ρ
,

η3 =
bρc21
β2
2e

, β2 =
λe + 2μe

μe

,

c22 =
λeα1 + 2μeα2

ρ
. (27)

4. Initial and boundary conditions

The initial and regularity conditions are given by

u = 0 =
∂u

∂t
, θ = 0 =

∂θ

∂t
,

C = 0 =
∂C

∂t
at t = 0. (28)

The homogeneous initial conditions are supple-
mented by the following boundary conditions:

(1) The cavity surface is traction free:

σrr +Mrr = 0 at r = R. (29)

where Mrr is the Maxwell stress in the sphere.
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(2) The cavity surface is subjected to a thermal
shock, i.e.,

θ = θ0H(t) at r = R. (30)

(3) The chemical potential is also assumed to be a
known function of time at the cavity surface

P = P0H(t) at r = R. (31)

where θ0 and P0 are constants and H(t) is
heaviside unit step function.

5. Solution of the problem in Laplace
transform domain

Applying Laplace transform defined by

f(r, s) =

∫ ∞

0

e−stf(r, t)dt, (32)

into equations (24–26) under the initial conditions
given in equation (28), one obtains

(∇2 − ω1) ē = ω2∇2θ̄ + ω3∇2C̄,

(∇2 − ω4) θ̄ = ω5ē+ ω6C̄,

ζ2∇2ē+ η1∇2θ̄ + ζ5C̄ = η3∇2C̄, (33)

σ̄rr = ω0ē− 2ζ3
ū

r
− ζ1θ̄ − ζ2C̄,

σ̄ΘΘ = ζ4ē+ ζ3
ū

r
− ζ1θ̄ − ζ2C̄, (34)

P̄ = η3C̄ − ζ2ē− η1θ̄, (35)

where

ω1 =
s2

ω0

, ω2 =
ζ1
ω0

, ω3 =
ζ2
ω0

,

ω0 = 1 +
c23
c21

+
c22
c21
s, ζ1 = 1 + β1s,

ζ2 = 1 + β2s, ζ3 =
2(1 + α2s)

β2
,

ζ4 =
1

β2
(β2 − 2)(1 + α1s), ζ5 = η2(s+ t1s

2),

ω4 = s+t0s
2, ω5=ω4ε(1+β1s), ω6=ω4εη1.

(36)

Eliminating ē, C̄ between equation (33), one gets
six-order partial differential equation satisfied by θ̄
in the form

(∇6 −A1∇4 +A2∇2 −A3)θ̄ = 0, (37)

where

A1 =
y2x2 + y1x3 − ω1y3 − x1y4

y1x2 − x1y3
,

A2 =
y2x3 − ω1y4 − x1y5

y1x2 − x1y3
,

A3 =
−ω1y5

y1x2 − x1y3
, (38)

in which

x1 = 1 +
ω3ω5

ω6

, x2 =
ω3

ω6

,

x3 =
ω3ω4

ω6

− ω2, y1 = ζ2 +
η3ω5

ω6

,

y2 =
ζ5ω5

ω6

, y3 =
η3
ω6

,

y4 = η1 +
ζ5
ω6

+
η3ω4

ω6

, y5 =
ζ5ω5

ω6

. (39)

In a similar manner, we can show that ē and C̄
satisfy the equations

(∇6 −A1∇4 +A2∇2 −A3) {ē, C̄} = 0. (40)

Introducing mi (i = 1, 2) into equation (37), one
gets

(∇2 −m2
1)(∇2 −m2

2)(∇2 −m2
3)θ̄ = 0, (41)

where m2
1, m2

2 and m2
3 are the positive solutions

for the characteristic equation

m6 −A1m
4 +A2m

2 +A3 = 0. (42)

The roots m1, m2 and m3 are given by

m1 =

√
1

3
[2p sin(q) +A1],

m2 =

√
−p

3
[
√
3 cos(q) + sin(q)] +

A1

3
,

m3 =

√
p

3
[
√
3 cos(q)− sin(q)] +

A1

3
, (43)

where

p =
√
A2

1 − 3A2, q =
1

3
sin−1(χ),

χ = −2A3
1 − 9A1A2 + 27A3

2p3
. (44)

The solution of equation (41), which is bounded at
infinity, is given by

θ̄(r, s) =
1√
r

3∑
i=1

Bi(s)K1/2(mir), (45)

where Bi are parameters depending on s and
K1/2(·) are the modified Bessel function of the
second kind of order 1/2.
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In a similar manner, one can write

{ē(r, s), C̄(r, s)}= 1√
r

3∑
i=1

{B′
i(s), B

′′
i (s)}K1/2(mir).

(46)
Substituting equation (46) into equations (33) and
(34), one gets the following relations:

B′
i =

y3m
4
i − y4m

2
i + y5

y1m2
i − y2

Bi = ΓiBi,

B′′
i =

(y1−ω5y3)m
4
i −(y1ω4+y2−y4ω5)m

2
i

+ ω4y2−ω5y5

ω6(y1m2
i − y2)

Bi

= ΩiBi. (47)

Thus, one gets

{ē(r, s), C̄(r, s)} =
1√
r

3∑
i=1

{Γi, Ωi}BiK1/2(mir).

(48)
Using the relation between ū and ē, one gets the
solution for the dimensionless form of displacement
assuming that ū vanishes at infinity as:

ū = − 1√
r

3∑
i=1

Γi

mi

Bi(s)K3/2(mir). (49)

Thus, from equations (48) and (49), one gets⎧⎨
⎩
σ̄rr(r, s)
σ̄ΘΘ(r, s)
P̄ (r, s)

⎫⎬
⎭ =

1√
r

3∑
i=1

Bi(s)

×

⎡
⎢⎢⎢⎣

ω0Γi − ζ1 − ζ2Ωi

2ζ3Γi

mir

ζ4Γi − ζ1 − ζ2Ωi −ζ3Γi

mir
η3Ωi − η1 − ζ2Γi 0

⎤
⎥⎥⎥⎦
{
K1/2(mir)
K3/2(mir)

}
.

(50)

The transformed boundary conditions become

σ̄rr = 0, θ̄ = θ0/s,

P̄ = P0/s, at r = R. (51)

In order to evaluate the unknown parameters
Bi, Laplace transform of the boundary conditions
given in equation (51) together with equations (46)
and (50) is used. Thus, one arrives to the following
set of linear equations:

3∑
i=1

Bi(s)K1/2(miR) =
θ0
√
R

s
,

3∑
i=1

(
(ω0Γi − ζ1 − ζ2Ωi)K1/2(miR)

+
2ζ3Γi

miR
K3/2(miR)

)
Bi(s) = 0,

3∑
i=1

(η3Ωi − η1 − ζ2Γi)K1/2(miR)Bi(s)

=
P0

√
R

s
. (52)

The above equations can be written in the matrix
form AX = Z, where A = (aij) is the 3× 3 matrix
coefficients of the system, X = {B1, B2, B3}T and

Z =
{

θ0
√
R

s
, 0, P0

√
R

s

}T

. The solution of this sys-

tem gives the parameters B1, B2 and B3. This
completes the solution of the problem in Laplace
transform domain.

6. Special cases

6.1 Generalized magneto-thermoelastic theory
with diffusion

Neglecting the viscous effect by taking α1 = α2 = 0.
So, the expressions for the displacement com-
ponents, stresses and temperature field can be
obtained in the generalized magneto-thermoelastic
with diffusion heat conduction equation.

6.2 Generalized thermoelastic theory with diffusion

Neglecting the viscous effect by taking α1 = α2 = 0
and neglecting the magnetic field by setting c3 = 0.
The expressions for the displacement components,
stresses and temperature field can be obtained in
the generalized thermoelastic with diffusion heat
conduction equation.

6.3 Generalized magneto-thermoviscoelastic theory
with one relaxation time

The generalized magneto-thermoviscoelastic the-
ory with one relaxation time can be deduced by
putting the concentration of the diffusive material
C = 0 and the diffusion coefficient D = 0.

6.4 Generalized thermoviscoelastic theory
with one relaxation time

The generalized thermoviscoelastic theory with one
relaxation time can be deduced by putting the
concentration of the diffusive material C = 0,
the diffusion coefficient D = 0 and magnetic field
c3 = 0.

6.5 Generalized magneto-thermoelastic theory
with one relaxation time

Neglecting the viscous effect and the effect of the
diffusion by taking α1 = α2 = 0 and C = D = 0
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to obtain the expressions for the displacement
components, stresses and temperature field in the
generalized magneto-thermoelastic theory.

6.6 Generalized thermoelastic theory
with one relaxation time

Neglecting the viscous effect, the effect of the diffu-
sion and the magnetic field by taking α1 = α2 = 0,
C = D = 0 and c3 = 0, respectively. One obtains
the expressions for the displacement components,
stresses and temperature field in the generalized
thermoelastic theory.

7. Inversion of Laplace transforms

To obtain a solution of the problem in the physi-
cal domain, the transforms in equations (41), (45),
(46) and (48–50) are inverted. In order to invert
Laplace transform in the above equations, we adopt
a numerical inversion method based on a Fourier
series expansion (Honig and Hirdes 1984). In this
method, the inverse g(t) of Laplace transform ḡ(s)
is approximated by the relation

g(t) =
ect

t1

(
g(c)

2
+ Re

N∑
k=1

eikπt/t1g(c+ ikπ/t1)

)
,

0 ≤ t ≤ t1, (53)

where N is a sufficiently large integer represent-
ing the number of terms in the truncated infinite
Fourier series. It must be chosen such that

ectRe {eiNπt/t1g(c+ iNπ/t1)} ≤ ε1, (54)

where ε1 is a persecuted small positive number
that corresponds to the degree of accuracy to be
achieved. c is a positive free parameter that must
be greater than the real parts of all singularities of
ḡ(s). The optimal choice of c was obtained accord-
ing to the criteria described in Honig and Hirdes
(1984).

Two methods are used to reduce the total error.
First, Korrecktur method is used to reduce the dis-
cretization error. Next, the e-algorithm is used to
reduce the truncation error and hence to acceler-
ate convergence. It should be noted that a good
choice of the free parameters N and ct is not only
important for the accuracy of the results but also
for the application of Korrecktur method and the
methods for the acceleration of convergence.

8. Numerical example and discussion

In order to discuss the problem in great detail
and to find out the nature of dependence of

physical variables on diffusion and viscosity, we
have computed them numerically for a particular
model. Copper material was chosen for the purpose
of numerical evaluation. The material properties of
the problem are thus given in SI units (Kanoria
and Mallik 2010) as:

T0 = 293K, ρ = 8954 kg m−3, τ0 = 0.02 s,

τ = 0.2 s, α1 = 0.06 s, α2 = 0.09 s,

αt = 1.78× 10−5 K−1,

αc = 1.98× 10−4 m3 kg−1,

μ=3.86×1010 kgm−1s−2, λ=7.76×1010 kgm−1 s−2,

CE=383.1 J kg−1 K−1, K = 386Wm−1 K−1,

D = 0.85× 10−8 kg sm−3,

a = 1.2× 104 m2 s−2 K−1,

b=0.9× 106 m5 kg−1 s−2, μ0=4π ×10−7 Hm−1,

H0 = 107/4πAm−1.

The numerical technique outlined above is used
to obtain the temperature, radial displacement,
radial stress and concentration as well as the chem-
ical potential distributions inside the sphere. The
spherical cavity is considered with radius r = 1 and
its center at the origin.

Comparison of the dimensionless physical quanti-
ties are made for three different cases: (i) magneto-
thermoviscoelastic solid with diffusion MTVED,
(ii) magneto-thermoelastic solid with diffusion
MTED, and (iii) magneto-thermoelastic solid MTE
and are shown in figures 1–5 for t = 0.15. It can be
seen from figure 1 that diffusion acts to decrease
the magnitude of the temperature distribution.
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Figure 1. Variation of temperature distribution with dis-
tance using different theories.
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The temperature distribution θ(r, t) in MTVED
theory is large compared to MTE and MTED theo-
ries. According to all theories, the values of temper-
ature are same on the boundary. It can be noticed
that the temperature function approaches zero in
the presence of a diffusion effect more rapidly than
in the absence of a diffusion effect as the distance
r increases.

It is also observed from figure 2 that due to the
presence of viscosity term, the displacement u(r, t)
has appreciably decreased for viscous case in com-
parison with non-viscous cases for most values of
r. The thermoviscoelastic relaxation times (α1 and
α2) have a small effect on the values of displace-
ment; actually, the displacement increases in the
case of MTE theory but decreases in the case of
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Figure 2. Variation of displacement distribution with dis-
tance using different theories.
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Figure 3. Variation of radial thermal stress distribution with
distance using different theories.

MTVED theory. It is to be noted that the absence
of viscosity term is responsible for lowering down
the values of displacement component and this
coincided with the results reported in Deswal and
Kalkal (2011). The displacement starts with nega-
tive values in case of MTVED and MTED theories
while it starts with positive value in case of MTE
theory, i.e., the behaviour of displacement in MTE
theory is opposite in nature to that of MTVED and
MTED theories owing to the absence of viscosity
term.

Figure 3 shows that the numerical values of
radial stress σrr(r, t) in MTE theory are larger
than those in MTVED and MTED theories, espe-
cially for r ≥ 1.3. Figures 4 and 5 represent the
change in the concentration C(r, t) about the initial
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Figure 4. Variation of concentration of the diffusive material
distribution with distance using different theories.
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Figure 5. Variation of chemical potential distribution with
distance using different theories.
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concentration and the chemical potential P (r, t)
along the radial direction. The behaviour of the
concentration and the chemical potential for both
theories MTVED and MTED are alike. The influ-
ence of diffusion factor on various functions is
noticed to be quite significant and the functions
follow similar trend and behaviour in the presence
and absence of diffusion. The maximum impact
zone of this factor is near the boundary of medium
and their effects lessen as r diverges from the point
of source application (see Kalkal and Deswal 2014).

The temperature θ(r, t), radial displacement
u(r, t), radial stress σrr(r, t) and concentration
C(r, t) as well as the chemical potential P (r, t) dis-
tributions inside the sphere are obtained according
to the general case. These distributions are shown
in figures 6–10 respectively. The computations were
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Figure 6. Variation of temperature distribution with dis-
tance for three values of time.
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Figure 7. Variation of displacement distribution with dis-
tance for three values of time.

carried out for three values of time, namely t = 0.1,
t = 0.15 and t = 0.2. Figure 6 shows that the value
of θ does not necessarily increase with the increase
of time t. Figure 7 shows that u decreases as t
increases for r ≤ 1.5 and vice versa for r ≥ 1.5.
Figure 8 shows that the values of σrr decrease
with an increase of time along the radial direc-
tion. Figure 9 shows that the concentration distri-
bution C(r, t) does not necessarily decrease with
the increase of time t. The behaviours of C are sim-
ilar for different values of t. Figure 10 shows that
the chemical potential P (r, t) decreases with the
increase of time t. The behaviour of P for t = 0.1
may differ from that of t = 0.15 and t = 0.2.

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

1 1.4 1.8 2.2 2.6 3

rr

2.0
15.0
1.0

t
t
t

r

Figure 8. Variation of radial thermal stress distribution with
distance for three values of time.
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Figure 9. Variation of concentration of the diffusive material
distribution with distance for three values of time.
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Figure 10. Variation of chemical potential distribution with
distance for three values of time.

9. Conclusions

The phenomenon of a finite speed of propagation
is manifested in all figures. This is different from
the cases in both the uncoupled and coupled the-
ories of thermoelasticity where an infinite speed of
propagation is inherent, and hence all the consid-
ered functions have non-zero values for any point
in the medium.

Due to the complicated nature of the governing
equations for the generalized thermoviscoelastic
diffusion theory, the work done in this field is very
limited. The method used in this study provides
a quite successful approach in dealing with such
problems (Honig and Hirdes 1984). This approach
gives exact solutions in the Laplace domain with-
out any assumed restrictions on the actual physical
quantities that appear in the governing equations
of the problem considered.

It can be observed that the viscous effect plays
an important role. It is more pronounced in the
fractional order thermoviscoelasticity. Some differ-
ence in the value of distributions is noticed for the
three theories, i.e., α1, α2 and γ0 have a clear effect.
It can also be observed that the diffusion effect
plays an important role.

From the figures, it is clear that diffusion
strongly affects the physical quantities. It acts to
decrease the amplitudes of displacement and stress
distributions while it acts to increase the ampli-
tude of the temperature distribution. This is due to
the influences of cross effects arising from the cou-
pling of the fields of temperature, mass diffusion
and strain. These results are compared well with
those of Deswal and Kalkal (2011). The method
used in the present study is applicable to a wide

range of problems in thermodynamics (Sherief and
Saleh 2005; Xia et al. 2009; Zenkour et al. 2012).
Finally, the results obtained in this study

should prove useful for researchers in material sci-
ence, designers of new materials, low-temperature
physicists, as well as for those working on the
development of a theory of hyperbolic magneto-
thermo-diffusion. Study of the phenomenon of dif-
fusion is also used to improve the conditions of oil
extraction (seeking ways of more efficiently reco-
vering deposits) (Singh 2005). Cross-effects of heat
and mass diffusion exchange with the environment
arising from and inside nuclear reactors influence
their design and operations (Nowinski 1978). The
problem of generalized thermoelasticity has been
reduced as a special case of our problem.
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