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The main goal of this study is to produce landslide susceptibility maps for the Qianyang County of Baoji
city, China, using both certainty factor (CF) and index of entropy (IOE) models. At first, a landslide
inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field
surveys. A total of 81 landslide locations were detected. Out of these, 56 (70%) landslides were randomly
selected as training data for building landslide susceptibility models and the remaining 25 (30%) were
used for the validation purposes. Then, a total number of 15 landslide causative factors, such as slope
angle, slope aspect, general curvature, plan curvature, profile curvature, altitude, distance to faults,
distance to rivers, distance to roads, the sediment transport index (STI), the stream power index (SPI),
the topographic wetness index (TWI), geomorphology, lithology, and rainfall, were used in the analysis.
The susceptibility maps produced using CF and IOE models had five different susceptibility classes such
as very low, low, moderate, high, and very high. Finally, the output maps were validated using the
validation data (i.e., 30% landslide location data that was not used during the model construction), using
the area under the curve (AUC) method. The ‘success rate’ curve showed that the area under the curve
for CF and IOE models were 0.8433 (84.33%) and 0.8227 (82.27%) accuracy, respectively. Similarly, the
validation result showed that the susceptibility map using CF model has the higher prediction accuracy
of 82.32%, while for IOE model it was 80.88%. The results of this study showed that the two landslide
susceptibility maps obtained were successful and can be used for preliminary land use planning and
hazard mitigation purpose.

1. Introduction

Landslides, responsible for considerable loss of
property and lives every year, are dangerous nat-
ural hazards. In many countries, the annual loss
of lives and property due to landslides are greater
than any other natural disasters, including earth-
quakes, floods, and windstorms. Globally, land-
slides cause thousands of deaths and injuries each
year and property damage of about billions of

dollars (Lee and Pradhan 2007; Solaimani et al.
2013). In China, more than 10,000 hazardous land-
slides occurred in 2014, which caused deaths and
injuries to a total number of 618 people and a direct
economic loss of 5.41 billion CNY (http://www.
cigem.gov.cn). In addition, currently tens of mil-
lions of people still live under the high-risk threat
of landslides (Liu et al. 2013).

The main goal of landslide susceptibility analy-
sis is to identify dangerous and high risk areas
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and thus landslide damage can be reduced through
suitable mitigation measures (Kannan et al. 2013;
Solaimani et al. 2013). Over the decades, number
of approaches have been proposed to assess land-
slide susceptibility based on geographic informa-
tion systems (GIS) using different models. Many
of these studies have applied probabilistic mod-
els such as frequency ratio (FR), weight of evi-
dence (WOE), etc. (Akgun et al. 2008; Vijith and
Madhu 2008; Oh et al. 2009; Yilmaz and Keskin
2009; Youssef et al. 2009, 2012; Pradhan and
Youssef 2010; Pradhan et al. 2011; Akgun et al
2012; Neuhäuser et al. 2012; Saponaro et al. 2014;
Sujatha et al. 2014). Statistical models such as
logistic regression (Akgun 2012; Devkota et al.
2013; Grozavu et al. 2013; Ozdemir and Altural
2013; Solaimani et al. 2013), bivariate (Bednarik
et al. 2010; Pareek et al. 2010; Pradhan and Lee
2010; Pradhan and Youssef 2010; Pourghasemi
et al. 2013a) and multivariate (Pradhan 2010a, b;
Choi et al. 2012) have been used in landslide sus-
ceptibility mapping. Other different methods such
as spatial multicriteria decision analysis (MCDA)
approach (Akgun and Turk 2010; Akgun 2012),
analytical hierarchy process (AHP) (Yalcin et al.
2011; Pourghasemi et al. 2012a; Park et al. 2013),
certainty factor (CF) model (Devkota et al. 2013;
Pourghasemi et al. 2013c), artificial neural network
model (Chauhan et al. 2010; Pouydal et al. 2010;
Pradhan and Buchroithner 2010; Park et al. 2013),
index of entropy (IOE) model (Mihaela et al.
2011; Devkota et al. 2013), decision-tree methods
(Nefeslioglu et al. 2010; Pradhan 2013), fuzzy
logic (Pourghasemi et al. 2012a, 2012b, 2012c;
Guettouche 2013; Sharma et al. 2013), support vec-
tor machine (SVM) (Yilmaz 2010; Pradhan 2013)
and neuro-fuzzy (Vahidnia et al. 2010; Sezer et al.
2011) have also been employed for the purpose of
landslide susceptibility mapping. Nevertheless, few
studies have so far been carried out on land-
slide susceptibility analysis in this area. The
main difference between the present study and
the approaches described in the aforementioned
literature is that certainty factor and index of
entropy models were applied and compared for
landslide susceptibility mapping in this study
area.

This study aims to apply both certainty factor
(CF) and index of entropy (IOE) models to
develop reliable landslide susceptibility maps of the
Qianyang County of Baoji, China and to find a
better model that is more accurate in landslide
susceptibility mapping in the study area. In order
to achieve this, both certainty factor and index of
entropy analysis methodology, to obtain landslide
susceptibility maps using the geographic informa-
tion system were developed, applied, and verified
in the study area.

2. Study area

Geographically, the study area is located in central-
western part of China, and lies between latitudes
34◦34′ 34′′–34◦56′56′′N and longitudes 106◦ 56′15′′–
107◦22′31′′E (figure 1). The study area covers
roughly a surface area of 996.46 km2 and belongs
to the Qianyang County of Baoji city, China. The
temperature of the area varies between −20.6◦C in
winter and 40.5◦C in summer, with an yearly aver-
age of 11.8◦C. The mean annual rainfall accord-
ing to local weather station in a period of 40 years
is around 627.4 mm, and the maximum rainfall
appears in August (C.H. of China Meteorological
Administration (CMA), 2014). Main streams in the
study area are the Wei and Jing Rivers. The land-
form of the area can be classified into mountain,
hill, and plain, which result in large elevation dif-
ference. On the whole, the northern regions are rel-
atively higher with the highest elevation 1560 m,
and the southern regions are relatively lower with
the lowest elevation 752 m. The slope angle val-
ues vary between 0◦ and 38◦. The main commer-
cial agricultural products in the region are wheat
and Sorghum. Apart from the agricultural areas,
the other mainland cover types are pasture and for-
est. In this area, the traffic is convenient. Up to
now, the County road mileage is about 389.8 km.
The population of the County was about 132,000
in the year 2010. There is a wide gap in the
population density between a plain terrain and a
mountainous area. The average density of popu-
lation in plain terrain is approximately 163 peo-
ple per square kilometer, while in mountainous
area it is about 28 people per square kilometer.
Major settlements are shown in figure 1 (Yang
2009). The area is mainly distributed by loess.
In total, 81 landslides were mapped in the study
area.

3. Data preparation

3.1 Landslide inventory map

The landslide inventory map, providing informa-
tion for the assessment of the influence of dif-
ferent causative factors on landslide occurrence,
is the backbone of landslide susceptibility stud-
ies (Van Westen et al. 2006; Youssef et al. 2014a,
b). The reliability and accuracy of the collected
data related to landslides affect the success of
landslide susceptibility analysis. Landslide inven-
tory maps can be prepared either by collecting the
information related with landslides or by analyzing
satellite imagery and aerial photographs coupled
with field surveys using GPS (Pradhan and Kim
2014). In order to produce a detailed and reliable
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Figure 1. Location of the study area.

landslide inventory map, extensive field surveys
and observations were performed during 2009 in
the study area. A total number of 81 landslides
were identified and mapped by evaluating aerial
photos in 1:50,000 scale, with well supported field
surveys and subsequently digitized for further anal-
ysis. The locations (centroid) of 81 landslides are
mapped in figure 1. From these landslides, ran-
domly 56 (70%) locations were chosen for the
preparation of landslide susceptibility maps, while
the remaining 25 (30%) cases were used for testing
the model.

3.2 Thematic layers

In order to apply certainty factor and index of
entropy models, a spatial database that considers
15 factors, including slope angle, slope aspect,
general curvature, plan curvature, profile curva-
ture, altitude, distance to faults, distance to rivers,

distance to roads, STI, SPI, TWI, geomorphology,
lithology and rainfall, was designed and constructed.
Data of these factors, such as slope angle, slope
aspect, general curvature, plan curvature, profile
curvature, altitude, STI, SPI, TWI, were mainly
produced from the DEM. Other parameters were
mainly collected from available resources (geologi-
cal structure map, environment geology map, road
map and drainage map, etc.). All of these data were
produced in raster format with a pixel size of 30 ×
30 m2 to be compatible with the spatial resolution.
A brief description of each data layer preparation
is given here.

Slope degree, with direct effect on landslide for-
mation, is a very important parameter in the slope
stability analysis, and it is frequently used in
preparing landslide susceptibility maps (Lee and
Min 2001; Saha et al. 2005; Gorsevski et al.
2012). Slope configuration and steepness play
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Figure 2(a–f). (a) Slope angle map, (b) slope aspect map, (c) general curvature map, (d) plan curvature map, (e) profile
curvature map, and (f) altitude map of the study area.
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Figure 2(g–i). (g) Distance to faults map, (h) distance to rivers map, (i) distance to roads map, (j) STI map, (k) SPI map,
and (l) TWI map of the study area.
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Figure 2(m–o). (m) Geomorphology map, (n) lithology
map, and (o) rainfall map of the study area.

an important role in conjunction with lithology
(Pourghasemi et al. 2012c). In this study, the
slope degree map was prepared from the 30×30 m2

digital elevation model (DEM) collected from
the advanced space-borne thermal emission and
reflection radiometer (ASTER) using ArcGIS 10.0
(ESRI Inc., Redlands, CA, USA) and was classi-
fied into five classes considering the steepness of the
terrain (Kayastha et al. 2013; Liu et al. 2014),
i.e., 0–7◦, 7◦–14◦, 14◦–21◦, 21◦–28◦, and 28◦–38◦

(figure 2a). ArcGIS 10.0 analysis was performed
to discover in which slope group the landslide
happened and the rate of occurrence was also
observed. The landslide percentage in each slope
group class is determined as a percentage of slopes.
The result indicates that about 94.6% of the land-
slides occurred on slopes ranging from 0◦ to 21◦

(table 2).
Slope aspect describes the direction of slope. The

slope aspect controls the formation of the land-
slide such as lineaments, rainfalls, wind effects,
and exposure to sunshine (Yalcin and Bulut 2007;
Pourghasemi et al. 2012a). In this study, the slope
aspect map of the study area was produced to
show the relationship between aspect and land-
slide. Aspect regions were divided into nine direc-
tional classes as flat (−1), north (337.5◦–360◦, 0◦

–22.5◦), northeast (22.5◦–67.5◦), east (67.5◦–112.5◦),
southeast (112.5◦–157.5◦), south (157.5◦–202.5◦),
southwest (202.5◦–247.5◦), west (247.5◦ –292.5◦),
and northwest (292.5◦–337.5◦) (figure 2b).

Commonly, general curvature, defined as the rate
of change of slope degree or aspect, has been argued
to affect slope stability. The characterization of
slope morphology and flow can be analyzed with
the help of the general curvature map (Nefeslioglu
et al. 2008). Plan curvature is described as the cur-
vature of a contour line formed by intersection of a
horizontal plane with the surface. It influences the
convergence and divergence of flow across a surface.
The profile curvature, the vertical plane parallel
to the slope direction, affects the acceleration and
deceleration of downslope flows and, as a result,
influences erosion and deposition (Kannan et al.
2013; Kritikos and Davies 2014). In this study, the
general curvature, plan curvature and profile cur-
vature were derived from the DEM in ArcGIS 10.0,
and they were divided into three classes: <–0.05,
0.05 to 0.05, and >0.05, respectively (figure 2c–e).
Altitude is another frequently conditioning fac-

tor for landslide susceptibility analysis because it is
controlled by several geologic and geomorphologi-
cal processes (Gorsevski et al. 2012; Pourghasemi
et al. 2012b; Pradhan and Kim 2014). Landslides
usually occur at intermediate elevations since
slopes tend to be covered by a layer of thin collu-
vium that is prone to landslides (Dai and Lee 2002;
Dragićević et al. 2015). In the study area, the eleva-
tion of the study area ranged from 720 to 1560 m,
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and five categories of elevations were identified,
i.e., 720–850, 850–1000, 1000–1150, 1150–1300, and
1300–1560 m (figure 2f).

Geological fault, responsible for triggering a
large number of landslides due to the tectonic
breaks that usually decrease the rock strength, was
also a necessary parameter in the susceptibility
analysis. In study area, five different buffer zones of
the distance to faults were prepared from geological
maps using the Euclidean distance interpolation
method (figure 2g).

Distance to rivers, an important parameter con-
trolling the stability of a slope, is the saturation
degree of the material on the slope. The close-
ness of the slope to drainage structures is another
important factor for landslide susceptibility anal-
ysis (Pourghasemi et al. 2012b; Park et al. 2013).
To determine the degree to which the streams
affected the slopes, five different buffer categories
were created using Euclidean distance interpola-
tion method (figure 2h).

Similar to the distance of slopes to rivers, the
distance to roads has been considered as one of
the most important anthropogenic factors influenc-
ing landslide occurrences that can be the cause of
cut slope creations through construction of roads
that disturbs the natural topography and affects
the stability of the slope (Pourghasemi et al. 2012b;
Demir et al. 2013). The distance to roads was
calculated by Euclidean distance tool of the GIS
application and it reclassified the resultant map
into five classes: 0–1000, 1000–2000, 2000–3000,
3000–4000, and >4000 m (figure 2i).
The sediment transport index (STI), reflecting

the erosive power of the overland flow, was derived
by considering the transport capacity limiting
sediment flux and catchment evolution erosion
theories (Devkota et al. 2013; Pradhan and Kim
2014). In this study, STI was divided into four
classes <3, 3–9, 9–15, and >15 (figure 2j).

The stream power index (SPI), a measure of
the erosion power of the stream, is also considered
as a factor contributing towards stability within
the study area (Conforti et al. 2011; Regmi et al.
2014). The SPI is expressed as SPI = AS× tan(β),
where AS is the specific catchment’s area and β is
the local slope gradient measured in degrees
(Moore et al. 1988; Park et al. 2013). The SPI map
of the study area was classified into four classes:
<5, 5–10, 10–40, and >40 (figure 2k).

The topographic wetness index (TWI) describes
the effect of topography on the location and size
of saturated source areas of runoff generation, and
it is another topographic factor within the runoff
model (Pourghasemi et al. 2013b; Pradhan and
Kim 2014). TWI is calculated as: Ln[AS/tan(β)],
where AS is the specific catchment area of each cell
and β represents the slope gradient (in degrees)
of the topographic heights (Moore et al. 1988;
Saadatkhah et al. 2014). In the present study, the
TWI values were arranged in four classes:<7, 7–10,
10–13, and >13 (figure 2l).

Geomorphology is considered as an important
factor closely related to landslide occurrence. The
detailed geomorphology map, derived from the
geological maps with limited field check (Kannan
et al. 2013), consists of five prominent units such
as mountain areas, loess ridge and hill areas, loess
tableland areas and plain areas (figure 2m).

Lithology is one of the most common determi-
nant factors in landslide stability studies because
different lithological units have different land-
slide susceptibility values, which can provide
important information regarding landslide sus-
ceptibility of a region (Yalcin and Bulut 2007;
Pourghasemi et al. 2012a). In this study, the lithol-
ogy map of the study area is compiled from exist-
ing geological maps (1/100,000 scale) in ArcGIS
10.0. The study area is covered with various
types of lithological units. Their names, lithologic

Table 1. Description of geological units of the study area (Wang 2008).

No. Code Formation Lithology Geological age

1 Q4 – Sand, gravel, silty clay Quaternary

2 Q3 – Loess Quaternary

3 Q2 – Loess Quaternary

4 Q1 – Loess Quaternary

5 N2 – Glutenite, sandstone, siltstone Neogene

6 K1Lh Luohandong Sandstone, siltstone, mudstone Early Cretaceous

K1h Huanhehuachi Sandstone, siltstone, mudstone Early Cretaceous

K1L Luohe Glutenite, sandstone Early Cretaceous

K1y Yijun Glutenite Early Cretaceous

7 J3f Fenfanghe Glutenite, sandstone, siltstone Late Jurassic

J2z Zhiluo Glutenite, siltstone, shale Middle Jurassic

8 P1 – Sandstone, shale Early Permian

9 O1−2 – Limestone, dolomite Early-Middle Ordovician
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characteristics, and ages of the geological units
are provided in table 1, and the general geologi-
cal setting of the area is shown on the source map
(figure 2n).

The rainfall was taken into account as a trigger-
ing factor for landslide initiation, thus it is another
one of the main parameters in landslide suscepti-
bility mapping. For this study, the annual rainfall
map was produced, using the data of the weather
stations of eight towns in the area and apply-
ing the inverse distance weighted (IDW) inter-
polation method. This map was reclassified into
five classes: <600, 600–650, 650–700, 700–750, and
>750 mm/yr (figure 2o).

4. Modelling approach

4.1 Certainty factor model

Certainty factor approach, one of the proposed
favorability functions to deal with the problem
of combination of heterogeneous data, has been
widely used for mapping landslide susceptibil-
ity (Kanungo et al. 2011; Sujatha et al. 2012;
Pourghasemi et al. 2013c; Liu et al. 2014). The
function of probability (certainty factor) was
proposed by Shortliffe and Buchanan (1975) in
the beginning, and later improved by Heckeman
(1986), and the expression is as:

CF=

{
(PPa−PPs)/(PPa(1−PPs)) if PPa ≥ PPs

(PPa−PPs)/(PPs(1−PPa)) if PPa < PPs

(1)
where PPa is the conditional probability of land-
slide event occurring in category a. PPs is the
prior probability of total number of landslide
events in the study area a. The certainty factor
ranges between −1 and 1; positive values means
an increasing certainty in landslide occurrence, and
negative values correspond to a decreasing cer-
tainty in landslide occurrence. A value close to
zero means that there is not enough information
about the variable and thus, it is difficult to give
any indication about the certainty of the landslide
occurrence (Sujatha et al. 2012; Dou et al. 2014).

The CF values of all the thematic layers used in
the present study were calculated in ArcGIS 10.0
and Microsoft Excel based on equation (1), and
the result is given in table 2. Then, the CF values
of the causative factor were pair-wise based upon
the combination rule given in the following equa-
tion (Pourghasemi et al. 2013c; Dou et al. 2014; Ilia
et al. 2015):

Z =

{
X + Y −XY X, Y ≥ 0
(X + Y )/(1−min(|X| , |Y |)) X ∗ Y < 0
X + Y +XY X, Y < 0

(2)

By using the integration rule of equation (2), the
pair-wise combination is repeatedly performed
until all the CF layers are combined to generate
the landslide susceptibility.

4.2 Index of entropy model

Index of entropy model, based on the principle
of bivariate analysis, was used for evaluating the
landslide susceptibility in this study. This approach
allows calculation of the weight for each input
variable. In this model, the weighing process is
based on the methodology proposed by Vlcko et al.
(1980). The weight value for each parameter taken
separately is expressed as an entropy index. In the
present study, the weight parameter was obtained
from the defined level of entropy representing the
extent that various factors influence the develop-
ment of a landslide. The information coefficient Wj

representing the weight value for the parameter as
a whole was calculated using the following equa-
tions (Constantin et al. 2011; Devkota et al. 2013;
Jaafari et al. 2014; Youssef et al. 2014a, b):

Pij =
b

a
, (3)

(Pij) =
Pij∑Sj

j=1 Pij

, (4)

Hj = −
Sj∑
i=1

(Pij) log2 (Pij) , j = 1, 2, . . . , n, (5)

Hj max = log2 Sj , Sj is the number of classes, (6)

Ij =
Hj max −Hj

Hj max

, I = (0, 1), j = 1, . . . , n, (7)

Wj = Ij × Pj, (8)

where a and b are the domain and landslide per-
centages, respectively, (Pij) is the probability den-
sity, Hj and Hjmax represent entropy values, Ij
is the information coefficient and Wj represents
the resultant weight value for the parameter as
a whole. The final landslide susceptibility map is
developed based on equation (9) using the ArcGIS
10.0 software.

YIOE =
n∑
i

z

mi

× C ×Wj, (9)

where YIOE is the sum of all the classes; i is the
number of particular parametric map (1,2,. . .,n);
z is the number of classes within parametric map
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with the greatest number of classes; mi is the num-
ber of classes within particular parametric map; C
is the value of the class after secondary classifica-
tion and Wj is the weight of a parameter (Bednarik
et al. 2010; Devkota et al. 2013; Jaafari et al. 2014).

5. Results and discussion

5.1 Certainty factor (CF) model

The certainty factor rating for different classes of
the causative factors show the importance of the
respective classes in the slope instability. It can be
observed from table 2 that the slope angle class
14◦–21◦ has the highest value of CF (0.14) and
the lowest value of CF (−1.00) is for slope class
28◦–38◦. From this, it is clear that the landslide
occurrence increases by the increase in slope gra-
dient up to a certain extent, and then, it decreases
(Kanungo et al. 2011). Few landslides occur on
a very gentle slope and the landslide occurrence
decreases as the slope becomes higher than 28◦. A
positive correlation between landslide occurrence
and slope was also reported by Sun (2009). Within
the slope aspect categories, the CF value is positive
for north-facing, east-facing, southwest-facing and
northwest-facing, with the maximum value (0.40)
at north-facing followed by east-facing (0.22) slope.
The west-facing slopes are less prone to landslides
as they have negative CF value. The CF values of
general curvature show that the CF value is posi-
tive (0.21) only on class < −0.05, indicating a high
probability of landslide occurrence in this area. In
the case of plan curvature, few landslides occur on
>0.05 class. In the study area, class >0.05 of pro-
file curvature has higher CF value (0.3), this means
that the landslide probability is higher in this class.
The relationship between landslide occurrence and
altitude reflects that the elevations between 720
and 850 m, and 850 and 1000 m have positive CF
value (0.71 and 0.46), indicating that the probabil-
ity of occurrence of landslide in these altitudes is
high. Meanwhile, altitude >1300 m has a low CF
value (−0.88). The reason is mainly that the higher
topographical elevation is formed by the lithologi-
cal units resistant to landslide. In case of distance
to faults, the closer the fault, the greater is the
landslide probability. At a distance of <1000 m,
the CF value is 0.31, showing a high probability of
a landslide. The CF value is lower than zero at a
distance >8000 m and this indicates a low proba-
bility. In the case of relationship between landslide
occurrence and distance to rivers, as the distance
from a drainage increases, the landslide probabil-
ity generally decreases. At a distance of about
<200 m, the CF value is positive (0.48), indicat-
ing a high probability of landslide occurrence, and
at distances about >200 m, the CF value was <0,

indicating a low probability. This can be attributed
to the fact that terrain modification caused by
gully erosion and undercutting may influence the
initiation of landslides. For distance from roads, a
positive association with landslides is obtained for
classes <1 and 2–3 km and the areas with more
than 4 km distances from roads have low corre-
lations with landslide occurrence in this study. A
similar trend was also reported by Youssef et al.
(2014a). The relation between STI landslide proba-
bilities showed that >15 class has the highest value
of CF (0.33), and for SPI, the class of >40 shows a
high CF value (0.30). Similarly, for TWI, the high-
est CF value (0.41) was obtained for the interval
of 10–13. In the study area, landslides were com-
monly observed on and close to relatively flat val-
ley bottoms with a huge contributing area, where
TWI, SPI, and STI expose higher values. A similar
pattern was also observed by Jaafari et al. (2014).
Geomorphology yields terrain information, which
is a vital pace in learning the process of landslide
initiation (Kannan et al. 2013). It is noticed that
loess tableland areas have the highest influence in
triggering landslides. For the lithology, it can be
seen that the lithology class 5 has highest CF val-
ues (0.82). This indicates that lithological unit of
the glutenite, sandstone and siltstone has the high-
est influence in triggering landslides. For the rain-
fall, the results show that the CF values in class of
650–700, >750 mm/year are very high (0.51) than
that of the other three classes. The final result of
certainty factor (CF) model is a landslide suscep-
tibility index (LSI) map, in which the LSI values
vary from −8.27 to 5.66.

5.2 Index of entropy (IOE) model

To produce the landslide susceptibility map using
the IOE models, every parameter map was crossed
with the landslide inventory map using the ArcGIS
10.0 software, and the density (Pij) of the landslide
occurrence in each class is calculated. The
resultant weights for each thematic map for the
IOE model are given in table 2. From the Wj

value, it is seen that the altitude has the highest
impact in the landslide susceptibility, followed by
lithology, rainfall, and geomorphology, while others
are less significant in the landslide suscepti-
bility of the region. From the result (Pij), it is
seen that slope interval of 14◦–21◦ is highly prone
to landslide followed by the slope class 21◦–28◦.
In the case of aspect, north-facing slopes followed
by northwest-facing, east-facing, northeast-facing,
and southwest-facing slopes are susceptible to
landsliding. In the case of general curvature, most
landslides occurred <−0.05. In terms of plan cur-
vature and profile curvature, most of the existing
landslides are distributed between the <−0.05 and
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−0.05–0.05 classes, and >0.05 class, respectively.
The Pij value for altitude clearly showed that
ranges 720–850 m, and 850–1000 m have the most
effect on the occurrence of landslides with high
values of 0.59 and 0.32, respectively. The other
classes have low values. In the case of distance to
faults, <2000 m range has the highest Pij value
(0.34) followed by 4000–6000 m (0.23), 2000–4000
m (0.20), 6000–8000 m (0.20), and >8000 m (0.04).
The distance to rivers shows that the Pij value
decreases as the distance to river increases. From
this, it is clear that the bank erosion is one of
the main triggering factors. Assessment of dis-
tance to roads showed that distance of 0–1000 and

2000–3000 m has high correlation with landslide
occurrence. Most of the landslides are located at
>15 class for STI, as the values of Pij is highest
(0.39) here. Relation between SPI, and TWI and
landslide probability showed that >40 and 10–13
classes have highest value of Pij , respectively. The
Pij value for geomorphology showed that loess
tableland areas have the most effect on the occur-
rence of landslides with high value of 0.43. In the
case of the relationship between landslide occur-
rence and lithology, the value of Pij was higher
in glutenite, sandstone and siltstone. In rainfall,
the highest Pij value (0.34) was located in the
rainfall classes of 650–700 and >750 mm/year. The

Figure 3. Landslide susceptibility map derived from the CF model.

Table 3. Comparison of predicted landslide hazard zones and observed landslides.

CF model IOE model

Landslide Area Landslide Area Landslide

susceptible zones (%) (%) (%) (%)

Very high 14.19 37.04 5.18 16.05

High 19.52 41.98 13.57 46.91

Moderate 20.49 11.11 14.59 20.98

Low 27.4 6.17 17.51 4.94

Very low 18.4 3.70 49.15 11.11
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findings based on entropy approach show that alti-
tude, lithology, and rainfall are the most important
factors which explain better the landslide occur-
rence and distribution in the study area. It should
be noted that the landslide contributing factors
may vary from region to region, such that the rat-
ing scheme followed in this study area may not
be suitable anywhere else (Bijukchhen et al. 2013).
The final result of index of entropy (IOE) model
is an LSI map, in which the LSI values vary from
0.50 to 5.42.

5.3 Landslide susceptibility maps

For visual interpretation of LSI maps, the data
need to be classified into categorical susceptibility
classes (Jaafari et al. 2014). In this study, using the
natural breaks method in ArcGIS 10.0, the land-
slide susceptibility map generated with the cer-
tainty factor model was reclassified into five classes:
very low, low, moderate, high, and very high (figure
3). From the output of analysis carried out using
the ArcGIS 10.0 (table 3), it was found that 18.4%
of the study area was placed in the group with very
low susceptibility. Low, moderate and high suscep-
tibility landslide classes comprised of 27.40, 20.49,

and 19.52% of the area, respectively. In all, 14.19%
of the region was placed in the class with very high
landslide susceptibility. It can be observed from
table 3 that 3.70 and 6.17% of the total landslides
fall in the very low and low susceptibility zones
respectively. Moderate, high, and very high suscep-
tible zones represent 11.11, 4.98, and 37.04% of the
landslides, respectively. In landslide susceptibility
map produced from index of entropy model (figure
4), the very low susceptible zone covers 49.15% of
the total study area, whereas low, moderate, high,
and very high susceptible zones cover 17.51, 14.59,
13.57 and 5.18% of the total area, respectively.
Meanwhile, the results show that the percentages
of the total landslides in very low, low, moder-
ate, high, and very high susceptibility classes are
11.11, 4.94, 20.98, 46.91, and 16.05%, respectively
(table 3).

5.4 Validation of the landslide susceptibility maps

Validation of predictive models is an essential
requirement to check the accuracy of the land-
slide susceptibility map produced (Gorsevski et al.
2000; Chung and Fabbri 2003). The validity of the
landslide susceptibility maps can be graphically

Figure 4. Landslide susceptibility map derived from the IOE model.
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Figure 5. AUC representing quality model (a) success rate curve and (b) prediction rate curve.

ascertained with the area under curve (AUC)
method (Chung and Fabbri 2003; Van Westen
et al. 2003; Intarawichian and Dasananda 2011;
Kayastha et al. 2013). This method works by cre-
ating specific rate curve which explains percent-
age of known landslides that fall into each defined
level of susceptibility rank and displays as the
cumulative frequency diagram (Intarawichian and
Dasananda 2011). Chung and Fabbri (2003) dis-
tinguished between success- and prediction-rate
curves. A success rate curve is based on a com-
parison of the susceptibility map with the land-
slides used in modelling (i.e., the training set). This
is considered as a degree of fit measure (Chung
and Fabbri 2003; Pradhan and Kim 2014). Apart
from the success rate curve, the prediction rate
curve is a good indicator of the predictive power of
the susceptibility map. The prediction rate curve
can be created by the validation landslide inven-
tory (Pradhan and Kim 2014). In rate curve, the
y axis is normally considered as the cumulative
percentage of observed landslide occurrences in
different susceptibility classes and the x axis
corresponds to the cumulative percentage of the
area of the susceptibility classes. Total area under
a rate curve (AUC) can be used to determine
prediction accuracy of the susceptibility map qual-
itatively in which larger area means higher accu-
racy achieved (Lee 2005; Mathew et al. 2009;
Intarawichian and Dasananda 2011; Pourghasemi
et al. 2013b). In this study, at first, the total land-
slides observed in the study area were split into two
parts, 56 (70%) landslides were randomly selected
from the total 81 landslides as the training data
and the remaining 25 (30%) landslides were kept
for validation propose. Then the rate curves were
obtained by comparing the landslide training data
and validation data with the susceptibility maps
and the areas under the curve were calculated.

The success rate curves of CF and IOE models
shown in figure 5(a), indicate that the first 10% of

the area of the susceptibility classes can explain
about 52%, 48% of all used landslides (out of 56
events), respectively. The first about 72% for CF
and IOE models can accommodate all known land-
slides. Similarly, the prediction rate curves (figure
5b) indicate that the first 10% of the area of the
susceptibility classes can explain about 37% and
32% of all used landslides (out of 25 events), respec-
tively. The first, about 93% for CF and IOE mod-
els can accommodate all known landslides. From
calculation of the AUC for CF and IOE models, it
was found that AUC for the success rate curves are
0.8433 and 0.8227, respectively. Namely, the train-
ing accuracy of the susceptibility maps is 84.33%
and 82.27%, respectively. The areas of prediction
rate curves are 0.8232 and 0.8088, which means
that the overall prediction rates are 82.32% and
80.88% for the CF and IOE models, respectively.
These results show that the CF and IOE mod-
els are successful estimators, and the two models
employed in this study have reasonably good accu-
racy in predicting the landslide susceptibility of the
study area. The map produced by CF model exhib-
ited the better result for landslide susceptibility
mapping in the study area.

6. Conclusions

In this study, both certainty factor and index of
entropy models to estimate areas susceptible to
landslides for the Qianyang County of Baoji city,
China, using GIS has been presented. The relation-
ship between a landslide occurrence and the identi-
fied 15 causative factors such as slope angle, slope
aspect, general curvature, plan curvature, profile
curvature, altitude, distance to faults, distance to
rivers, distance to roads, STI, SPI, TWI, geomor-
phology, lithology, and rainfall was evaluated using
CF and IOE methods. The selection of the 15 con-
ditioning landslide factors, based on consideration
of relevance, availability, and scale of data that was
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available for the study area, is relative and sub-
jective, and can be improved in future research.
Before susceptibility analysis, a total of 81 land-
slides observed in the area were separated into two
groups, 56 (70%) landslides were randomly selected
for generating a model and the remaining 25 (30%)
were used for validation proposes. The susceptibil-
ity maps produced by CF and IOE models were
divided into five different susceptibility classes such
as very low, low, moderate, high, and very high.
The area under the rate curve quantitatively indi-
cates the performance of the susceptibility maps.
The results show that the CF model with a success
rate of 84.33% and predictive accuracy of 82.32%
performs better than IOE (success rate, 82.27%;
predictive accuracy, 80.88%) models. Overall, both
models showed almost similar results and were
reasonable models for the landslide susceptibility
mapping of the study area. In addition, it should
be noted that both the models were developed on
some basic assumptions such as topography, geol-
ogy, and stream, etc. If data on factors causing
the landslides, such as extreme rainfall, earthquake
shaking, exist, then a more accurate analysis could
be done.

The output results of the present study can help
the decision makers, managers, urban planners,
engineers, and land-use developers to manage
slopes and choose susceptible locations to accom-
plish development in wild land as well as urban
areas. Also, it is worth mentioning that similar
method can be used elsewhere where the same
geological and topographical feature prevails.
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Turkey; Landslides 9 93–106.

Akgun A and Turk N 2010 Landslide susceptibility map-
ping for Ayvalik (western Turkey) 379 and its vicinity by
multicriteria decision analysis; Environ. Earth Sci. 61(3)
595–611.

Akgun A, Dag S and Bulut F 2008 Landslide susceptibil-
ity mapping for a landslide-prone area (Findikli, NE of
Turkey) by likelihood-frequency ratio and weighted linear
combination models; Environ. Geol. 54(6) 1127–1143.

Akgun A, Kincal C and Pradhan B 2012 Application of
remote sensing data and GIS for landslide risk assessment
as an environmental threat to Izmir city (West Turkey);
Environ. Monit. Assess. 184 5453–5470.

Bednarik M, Magulova B, Matys M and Marschalko M 2010
Landslide susceptibility assessment of the Kralovany-
Liptovsky Mikulas railway case study; Phys. Chem. Earth
Parts A/B/C 35(3–5) 162–171.

Bijukchhen S M, Kayastha P and Dhital M R 2013 A
comparative evaluation of heuristic and bivariate statis-
tical modelling for landslide susceptibility mappings in
Ghurmi–Dhad Khola, east Nepal; Arabian J. Geosci. 6(8)
2727–2743.

Chauhan S, Sharma M, Arora M and Gupta N 2010 Land-
slide susceptibility zonation through ratings derived from
artificial neural network; Intl. J. Appl. Earth Observ.
Geoinf. 12 340–350.

C.H. of China Meteorological Administration(CMA) (2014)
http://cdc.cma.gov.cn/cdc en/home.dd.

Choi J, Oh H J, Lee H J, Lee C and Lee S 2012
Combining landslide susceptibility maps obtained from
frequency ratio, logistic regression, and artificial neural
network models using ASTER images and GIS; Eng.
Geol. 124 12–23.

Chung C J F and Fabbri A G 2003 Validation of spatial
prediction models for landslide hazard mapping; Nat.
Hazards 30(3) 451–472.

Conforti M, Aucelli P P, Robustelli G and Scarciglia F
2011 Geomorphology and GIS analysis for mapping gully
erosion susceptibility in the Turbolo stream catchment
(northern Calabria, Italy); Nat. Hazards 56(3) 881–898.

Constantin M, Bednarik M, Jurchescu M C and Vlaicu
M 2011 Landslide susceptibility assessment using the
bivariate statistical analysis and the index of entropy in
the Sibiciu Basin (Romania); Environ. Earth Sci. 63(2)
397–406.

Dai F C and Lee C F 2002 Landslide characteristics and
slope instability modeling using GIS, Lantau Island, Hong
Kong; Geomorphology 42(3) 213–228.

Demir G, Aytekin M, Akgün A, İkizler S B and Tatar O
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Dragićević S, Lai T and Balram S 2015 GIS-based
multicriteria evaluation with multiscale analysis to char-
acterize urban landslide susceptibility in data-scarce envi-
ronments; Habitat Intl. 45 114–125.

Gorsevski P V, Gessler P and Foltz R B 2000 Spatial pre-
diction of landslide hazard using discriminant analysis
and GIS; In: GIS in the Rockies 2000 Conference and
Workshop.

Gorsevski P V, Donevska K R, Mitrovski C D and Frizado
J P 2012 Integrating multi-criteria evaluation techniques
with geographic information systems for landfill site selec-
tion: A case study using ordered weighted average; Waste
Management 32(2) 287–296.

Grozavu A, Plescan S, Patriche C V, Margarint M C
and Rosca B 2013 Landslide susceptibility assessment:
GIS application to a complex mountainous environment;
The Carpathians: Integrating Nature and Society Towards
Sustainability; Environ. Sci. Engg., pp. 31–44.

http://cdc.cma.gov.cn/cdc_en/home.dd


1414 Qiqing Wang et al.

Guettouche M S 2013 Modeling and risk assessment of land-
slides using fuzzy logic. Application on the slopes of the
Algerian Tell (Algeria); Arab J. Geosci. 6 3163–3173.

Heckeman 1986 Probabilistic interpretation of MYCIN’s cer-
tainty factors; In: Uncertainty in artificial intelligence
(eds) Kanal L N and Lemmer J F (New York: Elsevier),
pp. 298–311.

Ilia I, Koumantakis I, Rozos D, Koukis G and Tsangaratos
P 2015 A geographical information system (GIS) based
probabilistic certainty factor approach in assessing land-
slide susceptibility: The case study of Kimi, Euboea,
Greece; In: Engineering Geology for Society and Territory,
Vol. 2, Springer International Publishing, pp. 1199–1204.

Intarawichian N and Dasananda S 2011 Frequency ratio
model based landslide susceptibility mapping in lower
Mae Chaem watershed, Northern Thailand; Environ.
Earth Sci. 64(8) 2271–2285.

Jaafari A, Najafi A, Pourghasemi H R, Rezaeian J and
Sattarian A 2014 GIS-based frequency ratio and index
of entropy models for landslide susceptibility assessment
in the Caspian forest, northern Iran; Int. J. Environ. Sci.
Tech. 11(4) 909–926.

Kannan M, Saranathan E and Anabalagan R 2013 Land-
slide vulnerability mapping using frequency ratio model:
A geospatial approach in Bodi-Bodimettu Ghat section,
Theni district, Tamil Nadu, India; Arabian J. Geosci.
6(8) 2901–2913.

Kanungo D P, Sarkar S and Sharma S 2011 Combining neu-
ral network with fuzzy, certainty factor and likelihood
ratio concepts for spatial prediction of landslides; Nat.
Hazards 59(3) 1491–1512.

Kayastha P, Dhital M R and De Smedt F 2013 Evalua-
tion of the consistency of landslide susceptibility map-
ping: A case study from the Kankai watershed in east
Nepal; Landslides 10(6) 785–799.

Kritikos T and Davies T 2014 Assessment of rainfall-
generated shallow landslide/debris-flow susceptibility and
runout using a GIS-based approach: Application to west-
ern Southern Alps of New Zealand; Landslides, doi:
10.1007/s10346-014-0533-6.

Lee S 2005 Application and cross-validation of spatial logis-
tic multiple regression for landslide susceptibility analysis;
Geosci. J. 9(1) 63–71.

Lee S and Min K 2001 Statistical analyses of landslide sus-
ceptibility at Yongin, Korea; Environ. Geol. 40 1095–1113.

Lee S and Pradhan B 2007 Landslide hazard mapping
at Selangor, Malaysia using frequency ratio and logistic
regression models; Landslides 4(1) 33–41.

Liu C, Li W, Wu H, Lu P, Sang K, Sun W and Li R 2013
Susceptibility evaluation and mapping of China’s land-
slides based on multi-source data; Nat. Hazards 69(3)
1477–1495.

Liu M, Chen X and Yang S 2014 Collapse landslide and mud-
slide hazard zonation; In: Landslide science for a safer
geoenvironment (Springer International Publishing),
pp. 457–462.

Mathew J, Jha V K and Rawat G S 2009 Landslide sus-
ceptibility zonation mapping and its validation in part
of Garhwal Lesser Himalaya, India, using binary logistic
regression analysis and receiver operating characteristic
curve method; Landslides 6(1) 17–26.

Mihaela C, Martin B, Marta C J and Marius V 2011 Land-
slide susceptibility assessment using the bivariate statisti-
cal analysis and the index of entropy in the Sibiciu Basin
(Romania); Environ. Earth Sci. 63 397–406.

Moore I D, O’loughlin E M and Burch G J 1988 A contour-
based topographic model for hydrological and ecologi-
cal applications; Earth Surface Processes and Landforms
13(4) 305–320.

Nefeslioglu H A, Duman T Y and Durmaz S 2008 Landslide
susceptibility mapping for a part of tectonic Kelkit val-
ley (Eastern Black Sea region of Turkey); Geomorphology
94(3) 401–418.

Nefeslioglu H A, Sezer E, Gokceoglu C, Bozkir A S and
Duman T Y 2010 Assessment of landslide susceptibility
by decision trees in the metropolitan area of Istanbul,
Turkey; Mathematical Problems in Engineering, Article
ID 901095, 15p.
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