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Many of the applied techniques in water resources management can be directly or indirectly influenced by
hydro-climatology predictions. In recent decades, utilizing the large scale climate variables as predictors
of hydrological phenomena and downscaling numerical weather ensemble forecasts has revolutionized
the long-lead predictions. In this study, two types of rainfall prediction models are developed to predict
the rainfall of the Zayandehrood dam basin located in the central part of Iran. The first seasonal model
is based on large scale climate signals data around the world. In order to determine the inputs of the
seasonal rainfall prediction model, the correlation coefficient analysis and the new Gamma Test (GT)
method are utilized. Comparison of modelling results shows that the Gamma test method improves the
Nash–Sutcliffe efficiency coefficient of modelling performance as 8% and 10% for dry and wet seasons,
respectively. In this study, Support Vector Machine (SVM) model for predicting rainfall in the region
has been used and its results are compared with the benchmark models such as K-nearest neighbours
(KNN) and Artificial Neural Network (ANN). The results show better performance of the SVM model
at testing stage. In the second model, statistical downscaling model (SDSM) as a popular downscaling
tool has been used. In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is
projected under two climate change scenarios. Most effective variables have been identified among 26
predictor variables. Comparison of the results of the two models shows that the developed SVM model
has lesser errors in monthly rainfall estimation. The results show that the rainfall in the future wet
periods are more than historical values and it is lower than historical values in the dry periods. The
highest monthly uncertainty of future rainfall occurs in March and the lowest in July.

1. Introduction

The rainfall prediction in the next few months or
even seasons has many benefits to decision makers
of the basin for water allocation to different sectors
and proper reservoir operation. Development of the

prediction models leads to more dynamic and flexible
decisions about the reservoir operation including
water storing/releasing and improving the performance
of reservoir operation policies. In recent decades,
much effort has been devoted for developing mid-
to long-term (monthly and seasonal) rainfall
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prediction models. There are various methods to
develop the relationship between the large scale
climatic variables such as geopotential height and
mean sea level pressure (predictors) and the local
variables (predictands) such as temperature and
precipitation. The most widely used models usu-
ally implement the general climate model (GCMs)
outputs as predictors to predict the rainfall. But
because the GCM data are in coarse resolution,
the downscaling techniques are employed to change
climate model outputs into metrological variables
appropriate for hydrologic applications.

Much efforts have been devoted for develop-
ment of models that are a combination of sta-
tistical and conceptual approaches. There have
been advances in rainfall prediction by imple-
menting linear methods such as, simple/multiple
linear regression (Hanssen-Bauer et al. 2003;
Johansson and Chen 2003; Dutta et al. 2006),
canonical correlation analysis (CCA) (Chen and
Chen 2003; Xoplaky et al. 2004) or singular value
decomposition (Conway et al. 1996; Widmann
and Bretherton 2003). When the predictand vari-
able is precipitation, linear regression relationship
may not work very well because the predictor–
predictand relationships are often very complex.
For this reason, a number of nonlinear regression
downscaling techniques, especially artificial neural
networks (ANNs) because of their high potential
for simulating the complex, nonlinear, and time-
varying input–output systems, are employed (e.g.,
Mpelasoka et al. 2001; Haylock et al. 2006; Bae
et al. 2007; Nourani et al. 2009; Najafi et al. 2011).
Other downscaling techniques including support
vector machine (SVM) (Ghosh and Mujumdar
2008; Najafi et al. 2011), K-nearest neighbour
Model (KNN) (Araghinejad et al. 2006), and
Genetic Programming (GP) (Hashmi et al. 2011)
are also utilized.

Some other techniques used for data pre-
processing to reduce the dimensionality of the
problem include principle component analysis (e.g.,
Schoof and Pryor 2001; Araghinejad and Burn
2005), fuzzy clustering (Ghosh and Mujumdar
2008), and Gamma test (GT) (Ahmadi et al. 2009;
Moghaddamnia et al. 2009).

One of the statistical models that is very popular
in GCM downscaling named SDSM (statistical
downscaling model) is developed by Wilby et al.
(1999, 2002). SDSM is a hybrid between a multi-
linear regression method and a stochastic weather
generator. The model has been applied in many
catchments around the world to predict the daily
hydrologic variables and to assess climate change
impacts (e.g., Wilby and Dettinger 2000). Haylock
et al. (2006) compared six statistical models and
two dynamic downscale models to predict the sea-
sonal heavy rainfall in northwest and southeast

England. The results showed that the models based
on nonlinear ANN were found to be the best at
modelling the interannual variability of the indices.
Liu and Coulibaly (2011) compared the SDSM and
a time lagged feed forward neural network (TLFN),
and evolutionary polynomial regression (EPR) in
a region in northeastern Canada. The results are
more efficient downscaling techniques than SDSM
for both the ensemble daily precipitation and tem-
perature. Most of the cases where the SDSM is
applied, are located in the region with high rain-
fall and SDSM is rarely used for rainfall prediction
in arid and semi-arid regions.

In this study, three nonlinear methods includ-
ing ANN, KNN, and SVM are used to find the
relationship between the large-scale climate vari-
ables provided by the National Centres for Envi-
ronmental Prediction (NCEP) and the rainfall of
the Zayandehrood dam basin. Zayandehrood river
is the most important river in the central part of
Iran. Climate change may exacerbate the already
contentious water supply situation in the basin.
In order to select the model inputs, two meth-
ods including the correlation coefficient analysis
and Gamma test (GT) have been employed and
their performances in the model inputs selection
are assessed. The results of simulation models are
compared and the best one is introduced. Then the
statistical downscaling model (SDSM) is utilized
for daily rainfall prediction. The results of nonlin-
ear models have been compared to the results of
the SDSM in monthly rainfall prediction. Finally,
climate change impacts on the Zayandehrood dam
basin’s rainfall in the future are assessed.

The main contributions of this study are utilizing
Gamma test in input selection for developing more
accurate downscaling models, comparing monthly
and daily downscaling models, and evaluating cli-
mate change impacts on the case study. This paper
evaluates the impacts of climate change on rainfall
of Zayandehrood river basin. The paper is orga-
nized as follows: the used models including ANN,
KNN, SVM, GT, and SDSM are briefly described
in section 2. A case study for implementing the pro-
posed methodology is presented in section 3. The
obtained results are presented in section 4.

2. Materials and methods

In this study, firstly the signals that affect the
basin’s climate are identified out of the effective
signals on Iran’s climate carried out by Karamouz
et al. (2005). The relevancies between the case
study’s rainfall with the climate signals are identi-
fied during a period of six months. The statistical
period is classified into the wet season (December–
May) and the dry season (June–November). The
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steps of applying the proposed methodology in this
study are presented in figure 1. As shown in this
figure, after collecting and categorizing data into
two seasons, in order to achieve more precise pre-
dictions and reduce the number of input variables
between some effective signals, the correlation coef-
ficient analysis and the new Gamma test method
are applied. The results of two methods in select-
ing the effective variables are compared through
the assessment criteria.

Then the prediction models are developed using
data-driven models including the ANN, KNN, and
SVM methods and the results from different mod-
els are compared. Also, SDSM is used for predicting

the daily rainfall in the study basin. Finally, the
results of monthly rainfall obtained from monthly
data driven models and the daily statistical down-
scaling model are compared.

2.1 Gamma test

The Gamma test is used to examine the rela-
tionship between inputs and outputs in numer-
ical datasets without a need to construct the
prediction model. It is used for estimating
the variance of the output before modelling,
even though the model is unknown. This error

Categorizing rainfall data into dry and wet seasons

Data gathering including daily and monthly rainfall,
NCEP data of effective climate signals on the case

study

Determining more effective signals using
correlation coefficient analysis

Determining more effective signals using
Gamma test

Developing simulation models including ANN,
SVM and KNN

Comparison of the results and selecting the best model

Prediction of seasonal data

Daily rainfall prediction using
SDSM

Calculating seasonal rainfall

Comparison of the results and select the best
downscaling method for monthly rainfall based on

the historical data

Using GCM data to project the future seasonal
rainfall of the case study

Generating monthly rainfall using disaggregation
models

Evaluating climate change impacts on monthly
rainfall

Figure 1. Flowchart of the study.
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variance estimate presents a target mean-squared
error that any smooth nonlinear function should
attain on unseen data. Suppose we have a set of
observed data represented by:

((x1, . . . , xM ), y) = (x, y) (1)

where the vector X = (x1, . . . , xM ) is the input,
confined to a closed bounded set C ∈ RM and the
scalar y is the corresponding output, without loss of
generality. The only assumption made is that the
relationship of the system is in the following form:

y = f (x1, . . . , xM ) + r (2)

where f represents a smooth function and r
denotes an indeterminable part, which may be due
to real noise lack of functional determination in the
assumed input/output relationship. The Gamma
test is used to return a data-derived estimate for
Var(r) without knowing the underlying function
f , just directly from the data. The estimate of
the model’s output variance called the Gamma
statistic and represented by Γ cannot be accounted
for by a smooth data model. The Gamma test
is derived from the Delta function of the input
vectors:

δM (k) =
1

M

M∑

i=1

∣∣xN [i,k] − xi

∣∣2 (3)

where xN [i,k] denotes the index of the kth near-
est neighbour to xi, and |.| denotes Euclidean
distance. Thus δM (k) is the mean square distance
to the kth nearest neighbour. The corresponding
Gamma function of the output values is:

γM (k) =
1

2M

M∑

i=1

(yN [i,k] − yi)
2. (4)

The Gamma test computes the mean-squared kth
nearest neighbour distances δ(k), (1 ≤ k ≤ kMax)
and the corresponding γ(p)2. In order to compute
Γ the best line is constructed for the p points
(δM (k), γM (k)), and the vertical intercept, Γ is
returned as the gamma value. The regression line
slope is also returned to show the complexity of
the model f . The Vratio is the standardized results
by considering Γ/Var(y). It returns a scale invari-
ant noise estimate which normally lies between zero
and one.

2.2 Support Vector Machines (SVM)

The fundamental of Support Vector Machine
(SVM) has been developed by Vapnik (1995,
1998). SVM is based on the principle of structural
risk minimization from statistical learning theory.
The application of SVM has received attention

in the field of hydrological engineering and water
resources management due to its interesting fea-
tures and promising empirical performance (Choy
and Chan 2003; Bray and Han 2004; Yu et al.
2004; Sivapragasam and Liong 2005; Karamouz
et al. 2009).

The SVM model is produced by support vec-
tors included in the training data and presents
the means of small sunset of training points. The
cost function for building the model ignores any
training data that are within a threshold ε to the
model prediction. In SVM method, the generaliza-
tion bounds are relied on defining the loss func-
tion that ignores errors. In SVM, the problem is to
find a linear function that best interpolates a set
of training points for the following equation.

y = Wx+ b. (5)

The parameters (W, b) should be determined to
minimize the sum of the squared deviations of the
data utilizing the least squares approach:

l∑

i=1

(yi −Wxi − b)2. (6)

Some deviation ε between the eventual targets
yi and the function y is allowed by defining the
following constraint.

(yi −Wxi ± b) ≤ ε. (7)

A band or a tube around the hypothesis function
y can be visualized that with points outside the
tube regarded as training errors, otherwise called
slack variables ξi. For points inside the tube, the
slack variables are zero and increase gradually for
points outside the tube. This approach to regres-
sion is called ε–SV regression (Vapnik 1998). It
can be shown that this regression problem can
be expressed as the following convex optimization
problem.

Min
1

2
w2 + C

l∑

i=1

(ξi + ξ∗i ) (8)

Subject to:

yi − (W · xi + b) ≤ ε+ ξi
(W ·xi + b)− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, 2, . . . , l (9)

where C is a prespecified and positive constant
that determines the degree of penalized loss when
a training error occurs, ξi and ξ∗i are slack
variables representing the upper and the lower
training errors subject to an error tolerance ε.
Then the Lagrange function is constructed from



Climate change impacts on rainfall 1607

both the objective function and the corresponding
constraints to solve the optimization problem.
SVMs are characterized by usage of kernel func-
tion used to change the representation of the
data in the input space to a linear representa-
tion in a higher dimensional space called a feature
space.

2.3 Artificial Neural Network (ANN)

Artificial neural network is a mathematical struc-
ture including the network topology and pattern
of interconnected assembly of simple processing
nodes and the transformed functions. The unique
structure of the ANN and utilizing the nonlinear
transfer function corresponding to each hidden
and output node have made ANNs a powerful
tool to develop the nonlinear relationships with-
out a priori assumption. Multilayer perceptrons
(MLPs) are the most widely used network architec-
ture. The historical data is used to train the net-
work. The input data flows from the input layer to
the output layer. In this study, the GCM predic-
tors are the inputs to the nodes in input layer and
the back propagation algorithm is used to train the
network.

2.4 K-nearest neighbourhood (KNN)

The KNN model is a nonparametric statisti-
cal pattern recognition procedure without any
assumption of the theoretical or analytical rela-
tion between the inputs and the outputs. KNN is
used for various hydrological modelling by Karlsson
and Yakowitz (1987); Galeati (1990); Kember and
Flower (1993); Toddini (2000); Karamouz et al.
(2010). This model returns the K, most similar pat-
terns between the historical data in the time series.
A feature vector of past records summarizes the past
history in a smaller-dimension vector of observations
including most of the information relevant to the
forecast.

The distance of each feature vector between the
present time (t) and historical data (j = 1, 2, . . .,
number of observed data), zdtj , is calculated based
on the Euclidean norm for d-dimensional vector as
follows:

∥∥zdtj
∥∥ =

(
d∑

i=1

wi

(
pit − pij

)2
)1/2

(10)

where wi is the weight of each predictor and pit is
the ith predictor at time t. The K vectors of obser-
vations are identified that have the minimum dis-
tances. Then the forecast instant t is calculated as
a weighted average of the K nearest neighbours. In

this study, the kernel functions used for estimating
the unknown data (Rt):

Rt =

∑K

j=1 Rj/j
∑K

j=1 1/j
(11)

where j is the order of the nearest neighbours and
Rj is the value of the neighbour j. The best val-
ues for weights and K value are optimized during
calibration process using cross-validation.

2.5 Statistical downscaling Model (SDSM)

The SDSM is a multiple linear regression based
tool for constructing future ensemble to evaluate
the impact of climate change (Wilby et al. 2002).
It is capable of projecting the unseen ensembles at
daily time scale using grid resolution GCM output.
Based on the correlation and the partial correla-
tion analysis, and also utilizing scatter plots, and
the physical sensitivity between predictors and pre-
dictants, the most relevant predictors are selected.
Table 1 shows the list of the predictors with their
short names as used in SDSM. For downscaling
future climate scenarios four sets of GCM output
are available: HadCM2, HadCM3, CGCM2, and
CSIRO.

This model is assembled and calibrated using
the NCEP re-analysis large scale predictors from

Table 1. NCEP reanalysis predictors in the SDSM.

Predictor Description

d1 Ncepmslpaz Mean sea level pressure
d2 Ncepp5 faz 500 hPa airflow strength
d3 Ncepp5 uaz 500 hPa zonal velocity
d4 Ncepp5 vaz 500 hPa meridional velocity
d5 Ncepp5 zaz 500 hPa vorticity
d6 Ncepp5thaz 500 hPa wind direction
d7 Ncepp5zhaz 500 hPa divergence
d8 Ncepp8 faz 850 hPa airflow strength
d9 Ncepp8 uaz 850 hPa zonal velocity
d10 Ncepp8 vaz 850 hPa meridional velocity
d11 Ncepp8 zaz 850 hPa vorticity
d12 Ncepp8thaz 850 hPa wind direction
d13 Ncepp8zhaz 850 hPa divergence
d14 Ncepp500az 500 hPa geopotential height
d15 Ncepp850az 850 hPa geopotential height
d16 Ncepp faz Surface airflow strength
d17 Ncepp uaz Surface zonal velocity
d18 Ncepp vaz Surface meridional velocity
d19 Ncepp zaz Surface velocity
d20 Ncepp thaz Surface wind direction
d21 Ncepp zhaz Surface divergence
d22 Ncepr500az Relative humidity at 500 hPa
d23 Ncepr850az Relative humidity at 850 hPa
d24 Nceprhumaz Near surface relative humidity
d25 Nceprhumaz Surface specific humidity
d26 Nceptempaz Mean temperature at 2 m



1608 Azadeh Ahmadi et al.

1961–1991. It regulates the average and variance of
downscaled daily rainfall considering factors such
as bias, and variance to conform simulated values
to observed one. HadCM3 (Hadley Centre Coupled
Model, version 3) scenario A2 and B2 data avail-
able from year 1961 to 2099, are used for assessing
climate change impacts. In this paper, HadCM3
GCM output is used and other sets of GCM out-
put could be applied. In this paper, NCEP and
HADCM3 data for BOX 15X and 22Y are utilized.

2.6 Model evaluation

The criteria of mean bias error (MBE), root mean
square error (RSME), mean absolute error (MAE)
and Nash–Sutcliffe coefficient are used to evaluate
the performance of simulation modelling of the his-
torical rainfall. The following formulae are used to
calculate them.

MBE =

∑n

t=1 (ŷt − yt)

n
(12)

RMSE =

√∑n

t=1 (yt − ŷt)2

n
(13)

MAE =

∑n

t=1 |ŷt − yt|
n

(14)

where yt is the observed value of the historical rain-
fall, ŷt is the simulated value of the rainfall, and n
is the number of data.

The Nash–Sutcliffe model efficiency coefficient is
defined as (Nash and Sutcliffe 1970):

E = 1−
∑n

t=1 (yt − ŷt)
2

∑n

t=1 (yt − yt)2
(15)

where yt is the mean value of observed precipitation
values. Nash–Sutcliffe efficiencies can range from
−∞ to 1. An efficiency of 1 (E = 1) corresponds
to a perfect match of modelled precipitation to the
observed data. An efficiency of 0 (E = 0) indicates
that the model predictions are as accurate as the
mean of the observed data, whereas an efficiency
less than zero (E < 0) occurs when the observed
mean is a better predictor than the model. Essen-
tially, the closer the model efficiency is to 1, the
more accurate the model is.

3. Study area and dataset

The study area is the Zayandehrood dam basin
in central Iran. It is located within 31◦15′–33◦45′

latitude and 50◦02′–52◦45′ longitude. The basin is
4200 km2 in area and contains the primary trib-
utaries of the Zayandehrood river. Zayandehrood

river is the most important river in the central part
of Iran, which has the semi-arid climate.

The Zayandehrood river basin supplies water
demands of about 5 million people of many cities
and villages. This area is very important because of
Isfahan metropolis, Gavkhuny wetland ecosystem,
about 20% of major national industries, and 8%
of national agricultural productions exists in this
basin.

The Zayandehrood dam is constructed to cater
to 1500 MCM water demands of Isfahan province
including domestic, industrial, and agricultural
sectors. Therefore, the rainfall prediction for the
next month can help decision makers of the basin
for water allocation to different sectors and proper
reservoir operation. Figure 2 shows the location
of the Zayandehrood dam basin. The daily rain-
fall data of the basin from 1956–2008 is extracted
from the data bank of Iran’s Meteorological
Organization.

In this study, two models are used for long-lead
rainfall prediction. The predictors used in the first
model are the monthly sea-level pressure (SLP),
difference in sea level pressure (DSLP), and sea sur-
face temperature (SST) of certain points around
the world estimated for the National Science Foun-
dation by the National Centre for Atmospheric
Research (NCAR). The data is available on the
NCEP/NCAR website (http://dss.ucar.edu/pub/
reanalysis/). In the research by Karamouz et al.
(2005), the effective points around the world on the
Iran’s climate, shown in figure 3, are carried out.
In this paper, the 16 climate signals addressed by
Karamouz et al. (2005) are considered as the pre-
dictors of the prediction model of Zayandehrood
dam basin’s rainfall.

4. Results

The months of the year are divided into two dry
and wet seasons. The dry season is from June
to November and the wet season is from Decem-
ber to May. The effective predictors on the sea-
sonal Zayandehrood rainfall are selected between
the SLP, DSLP, and SST of 16 climate variables as
presented in table 2. In this stage, the number of
predictors is considered to be six.

4.1 Selecting the appropriate predictors

In order to determine the appropriate predictors
and select six variables among 16 prediction vari-
ables, the correlation coefficient analysis and the
new Gamma test method are used. The results of
the correlation coefficient analysis show that the
effective rainfall predictors of the dry season are
the SLP at west of Persian Gulf, SLP at northwest

http://dss.ucar.edu/pub/reanalysis/
http://dss.ucar.edu/pub/reanalysis/
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Figure 2. Location of Zayandehrood dam basin.

Figure 3. Selected locations for quantifying the effects of climate variables.
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of Red Sea, DSLP between Indian Ocean and west
of Persian Gulf, DSLP between Indian Ocean and
Soudan, DSLP between Indian Ocean and south-
east of Red Sea, and DSLP between Indian Ocean
and northwest of Red Sea. Also, the results of
the correlation coefficient analysis for the wet sea-
son show that the effective predictors are the SLP
at west of Persian Gulf, SLP at Soudan, SLP at
Caspian Sea, DSLP between west of Persian Gulf
and west of Mediterranean Sea, DSLP between
west and east of Persian Gulf, and DSLP between
west of Persian Gulf and Black Sea.

In the Gamma test method, climate signals with
the lowest Gamma value are selected as the effec-
tive signals. The results of the Gamma test method
of the 16 signals with the rainfall are presented
in figure 4. According to figure 4, signals with the
lowest Gamma values in the dry season are: the
SLP at west of Persian Gulf, SLP at northwest of
Red sea, DSLP between Indian Ocean and west
of Persian Gulf, DSLP between Indian Ocean and
southeast of Red sea, DSLP between Indian Ocean
and east of Mediterranean Sea, and DSLP between
Indian Ocean and northeast of Red sea. Also the
Gamma values of the rainfall with the climate vari-
ables in the study area in wet season are selected
based on the lowest Gamma values including SLP
at west of Persian Gulf, SLP at Caspian Sea,
DSLP between west of Persian Gulf and west of
Mediterranean Sea, DSLP between west and east

of Persian Gulf, DSLP between Caspian Sea and
Greenland, and DSLP between Caspian Sea and
Black Sea. The results show that sea surface

Figure 4. The Gamma values between the rainfall and the
climate signals: (a) dry season and (b) wet season.

Table 2. The effective climate variables on central part of Iran for dry and wet seasons.

Dry season (June–November) Wet season (December–May)

1. SLP at west of Persian Gulf 1. SLP at west of Persian Gulf

2. SLP at southeast of Red Sea 2. SLP at Soudan

3. SLP at east of Persian Gulf 3. SLP at Caspian Sea

4. SLP at Arabian Sea 4. DSLP between west of Persian Gulf and west of

Mediterranean Sea

5. SLP at northwest of Red Sea 5. DSLP between west of Persian Gulf and Greenland

6. DSLP between Indian Ocean and west of 6. DSLP between west of Persian Gulf and east

Persian Gulf of Persian Gulf

7. DSLP between Indian Ocean and Soudan 7. DSLP between west of Persian Gulf and Black Sea

8. DSLP between Indian Ocean and southeast 8. DSLP between west of Persian Gulf and southeast

of Red Sea of Red Sea

9. DSLP between Indian Ocean and Oman Sea 9. DSLP between Caspian Sea and west of

10. DSLP between Indian Ocean and east of Mediterranean Sea

Mediterranean Sea 10. DSLP between Caspian Sea and Greenland

11. DSLP between Indian Ocean and east of 11. DSLP between Caspian Sea and Black Sea

Arabian Sea 12. DSLP between Caspian Sea and Arabian Sea

12. DSLP between Indian Ocean and northwest 13. DSLP between west of Mediterranean Sea

of Red Sea and Soudan

13. DSLP between Indian Ocean and northeast 14. SST at Greenland

of Red Sea 15. SST at Azores

14. SST at Caspian Sea 16. SST at Arabian Sea

15. SST at east of Mediterranean Sea

16. SST at Greenland
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temperatures (SST) at different locations are not
selected as effective inputs by Gamma test and
correlation coefficient analysis.

4.2 Selecting the best prediction model

The SVM model is used to predict the rainfall
in the study area using the identified effective
signals. Therefore, 42 years (1956–1997) and 11
years (1998–2008) are considered for the training

and testing stages, respectively. In order to eval-
uate the efficiency of the SVM model, the results
from the SVMmodel are compared with the results
obtained from the ANN and the KNN models. In
ANN modelling, the network consists of three lay-
ers contaning input, hidden, and output layers with
6, 3, and 1 neurons, respectively. In the SVM mod-
elling, the ν-SVR model and RBF Kernel function
are used. The results of different rainfall prediction
methods are presented in tables 3 and 4 for both

Table 3. The results of the rainfall prediction models based on the correlation analysis for the dry season.

Training dataset Testing dataset

Model KNN ANN SVM KNN ANN SVM

Bias (MBE) 0.287 0.419 −0.821 0.620 0.745 0.587

RMSE 38.2 44.94 46.37 59.85 67.1 53.3

MAE 18.38 23.96 32.7 52.8 64.7 49.9

E 0.88 0.74 0.66 0.55 0.52 0.71

Table 4. The results of the rainfall prediction models based on Gamma test for the dry season.

Training dataset Testing dataset

Model KNN ANN SVM KNN ANN SVM

Bias (MBE) −0.205 −0.103 −0.542 0.592 0.731 0.490

RMSE 43.06 23.30 36.52 48.69 53.1 40.30

MAE 28.29 9.70 21.49 42.30 47.5 35.36

E 0.67 0.95 0.83 0.64 0.54 0.79
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Figure 5. Comparison of simulated and observed rainfall using the SVM model during the dry season for (a) training dataset
and (b) testing dataset based on the Gamma test.
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Figure 6. Comparison of simulated and observed rainfall using the SVM model during the wet season for (a) training
dataset and (b) testing dataset based on the Gamma test.

Table 5. The results of the rainfall prediction models based on the correlation analysis for the wet season.

Training dataset Testing dataset

Model KNN ANN SVM KNN ANN SVM

Bias (MBE) −6.78 −5.41 −7.96 23.37 21.7 −14.90

RMSE 93.06 78.30 106.52 219.69 203.1 140.30

MAE 88.29 79.70 92.49 162.30 147.5 135.36

E 0.67 0.75 0.63 0.40 0.34 0.49

Table 6. The results of the rainfall prediction models based on Gamma test for the wet season.

Training dataset Testing dataset

Model KNN ANN SVM KNN ANN SVM

Bias (MBE) −5.02 3.21 −7.21 16.7 −19.9 −12.1

RMSE 82.37 67.97 92.05 142.4 196.7 117.3

MAE 70.28 69.85 89.80 109.8 122.4 93.2

E 0.75 0.84 0.69 0.5 0.38 0.59

training and testing stages. The simulated and
observed rainfall using the SVM model for training
dataset and testing dataset based on Gamma test
are presented for dry and wet seasons in figures 5
and 6, respectively.

The results show that the ANN model has the
least simulation errors in the rainfall prediction
during the six months of dry season in the training
stage compared with KNN and SVM models. How-
ever, in the testing stage, the SVM models, the

KNN models, and the ANN models have the least
simulation errors, respectively. Also the results
presented in tables 5 and 6 show that the best
models at the testing stage are the ANN and
the KNN models, respectively. In the wet season,
the SVM model has the better performance in the
rainfall prediction at the testing stage. Tables 3–6
show that inputs selection using the Gamma test
method leads to better performance in the rainfall
prediction.
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4.3 The results of the SDSM Model

In this study, the Statistical Downscaling Model
(SDSM) is used for the daily rainfall prediction.
In SDSM, the most effective predictors between 26
variables utilized in SDSM data bank are selected
based on their maximum correlation coefficient of
their combination with the daily rainfall and min-
imum P-value between the predictors and rainfall.
In this model, the weather generator downscales
observed NCEP (National Centre for Environmen-
tal Prediction) reanalysis predictors. The down-
scaling model has been calibrated during 1961–
1991 and the results have been validated during
1992–2001.

The selected predictors include the mean sea
level pressure, surface zonal velocity, 500 hPa
geopotential height, near surface relative humidity,
and mean temporal at 2 m. Figures 7 and 8 show
the histograms of the monthly values of the obser-
vation and modelling results for the calibration and
validation periods. Table 7 shows the correlation

and the P-values between climate variables and
the rainfall values. In order to compare the devel-
oped SVM and SDSM models, their performances
in simulating seasonal rainfall of 10 years are pre-
sented in table 8. The results show the better
performance of SVM model in seasonal rainfall
prediction.

4.4 Assessment of climate change impacts

In order to investigate the climate change impacts
on Zayandehrood dam basin’s rainfall in the future
using SVM model, the data of large-scale climate
signals under climate change scenarios available
from year 2000 to 2099 are received as model
inputs. The HadCM3 model outputs are taken
from the Hadley Climate Research and Prediction
Centre in England and the data of A2 and B2
scenarios were taken from the DCC division
through the IPCC website. In these scenarios,
greenhouse gas emission and economic and social

0

2

4

6

8

10

12

D
ai

ly
 R

u
n

o
ff

 (
m

m
)

Historical data Simulated Data

Figure 7. The average monthly observed and simulated rainfall for calibration period (1961–1991) using SDSM.
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Figure 8. The average monthly observed and simulated rainfall for verification period (1992–2001) using SDSM.
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Table 7. The correlation coefficients between climate variables and the rainfall.

Pv Pr

Aerologic variables Description R2 (P value) (Partial r)

Ncepmslpz Mean sea level pressure 0.225 0.005 0.017
Ncepp uaz Surface zonal velocity 0.159 0.024 0.019
Ncepp500az 500 hPa geopotential height −0.219 0.021 0.033
Nceprhumaz Near surface relative humidity 0.220 0.005 0.043
Nceptempaz Mean temperature at 2 m −0.249 0.022 0.002

Table 8. The performance criteria for SVM and SDSM (1992–2001).

Dry season Wet season

Model SDSM SVM SDSM SVM

Bias (MBE) 4.32 0.49 19.05 −12.1

RMSE 86.46 40.30 204.009 117.3

MAE 118.06 35.36 158.9 93.2

E 0.48 0.79 0.64 0.59

Figure 9. Uncertainty range of seasonal downscaled model under A2 and B2 scenarios with mean observed value shown by
straight solid line.
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development effects on the future climate are
considered.TheA2 scenario describes a very heteroge-
neous region. The underlying theme is self reliance
and preservation of local identities. Fertility pat-
terns across regions converge very slowly, which
results in a continuously increasing population.
Economic development is primarily regionally ori-
ented and per capita economic growth changes
more fragmented and slower than other scenar-
ios. The B2 scenario describes a region in which
the emphasis is on local solutions for economic,
social, and environmental sustainability. The cali-
brated models were then used to downscale all the
GCM data from 1961–2099 including B2 and A2
scenarios.

The seasonal mean rainfall over the periods of
2010–2039, 2040–2069, and 2070–2099 are shown
as box plots in figure 9. As shown in this figure, the
mean values increase in wet season and decrease in
dry season rather than the historical values. The
lengths of the box plots show the uncertainties of
different years in each time period. The observed
mean values for the period of 1956–2008 for dry
and wet seasons are shown as the straight line. The

results show that wet season prediction has more
uncertainty for all periods whereas dry season has
lower uncertainties. The period of 2070–2099 is the
most uncertain period. In wet season the uncertai-
nty of scenario A2 is more than scenario B2 in
the period of 2070–2099 and it is vice versa in dry
season.

4.5 The statistical disaggregation model

In order to preserve the statistical properties of
a time series at more than one level (spatial/
temporal), the disaggregation models are used.
Disaggregation facilitates the use of long-term
persistence levels, particularly in multisites,
multiseasons time series modelling. Salas et al.
(1980) classified disaggregation models into tem-
poral and spatial types. In this paper, the seasonal
prediction results are disaggregated in the sub-
series of monthly data. To this purpose, the basic
disaggregation model proposed is used. The linear
dependence model is as follows:

Y = AX +Bε (16)

Table 9. Matrix B in the statistical disaggregation model for wet and dry seasons.

December–May June–November

J/I 1 2 3 4 5 6 1 2 3 4 5 6

1 35.1 0 0 0 0 0 0.3 0 0 0 0 0

2 3.2 38.2 0 0 0 0 0.0 0.2 0 0 0 0

3 −7.6 −1.6 37.2 0 0 0 0.0 0.0 0.3 0 0 0

4 −20.7 −25.7 −18.0 42.7 0 0 −0.1 −0.2 −0.2 0.5 0 0

5 1.4 −3.9 −11.0 −17.0 18.3 0 −0.4 −1.0 −4.5 −1.1 11.9 0

6 −2.5 −7.7 −4.2 −11.0 −3.1 15.6 0.1 0.9 4.3 0.5 −11.9 4.0
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Figure 10. The predicted monthly rainfall.
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Figure 11. Uncertainty range of monthly downscaled model under scenario B2 with mean observed value shown by straight
solid line.
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Â = SYXS
−1
XX (17)

B̂B̂T = SY Y − Â · SXY (18)

where Xt is the seasonal rainfall at period t, Yt is
the dependent monthly rainfall of the series being
generated, ε is the independent random variable,
A, B are the parameters matrix, and SXY is the
covariance matrix between series.

According to the Zayandehrood basin historical
data, components of matrix A for the wet sea-
son for December–May are 0.19, 0.18, 0.17, 0.27,
0.15, and 0.04, respectively. These components are
0.0, 0.01, 0.01, 0.02, 0.19, and 0.77 for the period
June–November. Components of matrix B are
presented in table 9. Utilizing parameter matri-
ces A and B, the monthly rainfall time series are
generated based on the predicted seasonal time
series. The disaggregated monthly rainfall is shown
in figure 10. The correlation coefficient between
the observed and simulated for the historical time
series is about 68%. The monthly prediction with
six months lead time could result in more flexibility
in water resources operation.

Therefore, the future GCM data was used to
project the monthly and seasonal data utilizing
the selected predictors along with the SVM and
disaggregation models and associated calibrated
parameters. The results of the monthly downscal-
ing under B2 scenario over the periods of 2010–
2039, 2040–2069, and 2070–2099 as box plots are
shown in figure 11 along with the observed data.
The analysis of the length of the box plots show
that the highest monthly uncertainty occurs in
March for all periods, and the lowest is in July.

As seen in this figure, the mean values increase
in wet season and decrease in dry season rather
than the historical values. It can be deduced that
during rainfall downscaling in wet months, models
tend to diverge and increase the uncertainty. It can
be concluded that climate change in this area in
the beginning of the next century may increase in
the rainfall in wet season and it may decrease in
dry season.

5. Summary and conclusion

In this study, the effects of large scale climate
variables have been studied on the rainfall in
the Zayandehrood dam basin area located in the
central plateau of Iran. For this purpose, the
effective climate signals on Iran’s climate are con-
sidered. In order to select six signals, two methods
including correlation coefficient analysis and
Gamma test method are used based on high corre-
lation coefficient and low Gamma test between the
climate signals and the rainfall, respectively. The
performances of two methods in input selection are

compared through nonlinear model applications
with the suggestive signals. The results show the
better performance of Gamma test method in
climate signal selection.

Then the results of three models including ANN,
KNN, and SVM are compared in rainfall simula-
tion. The results show the better performance of
ANN model in training stage and SVM model in
testing stage. The daily rainfall prediction is also
carried out utilizing SDSMmodel. The effective cli-
mate signals are the mean sea level pressure, surfa-
ce zonal velocity, 500 hPa geopotential height, near
surface relative humidity, and mean temporal at 2m.

The monthly rainfall prediction using SVM and
SDSM models are compared. The results show that
SVM model has the better performance in monthly
rainfall prediction. Then the data of large-scale cli-
mate signals under climate change scenarios are
used to project the future wet and dry seasons
under A2 and B2 scenarios.

The seasonal results show that the mean rain-
fall increases in future wet season and decreases in
future dry season rather than the historical values.
Also the wet season prediction has more uncer-
tainty for all periods whereas dry season has lower
uncertainties. In wet season, the uncertainty of sce-
nario A2 is more than scenario B2 and it is vice
versa in dry season. The monthly results show that
the highest monthly uncertainty occurs in March
for all periods, and the lowest is in July. During
rainfall downscaling in wet months, models tend
to diverge and increase the uncertainty. However,
future studies are needed to carry out the future
drought and flood frequencies.
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