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Surrogate modelling is an effective tool for reducing computational burden of simulation optimization.
In this article, polynomial regression (PR), radial basis function artificial neural network (RBFANN),
and kriging methods were compared for building surrogate models of a multiphase flow simulation
model in a simplified nitrobenzene contaminated aquifer remediation problem. In the model accuracy
analysis process, a 10-fold cross validation method was adopted to evaluate the approximation accuracy
of the three surrogate models. The results demonstrated that: RBFANN surrogate model and kriging
surrogate model had acceptable approximation accuracy, and further that kriging model’s approximation
accuracy was slightly higher than RBFANN model. However, the PR model demonstrated unacceptably
poor approximation accuracy. Therefore, the RBFANN and kriging surrogates were selected and used
in the optimization process to identify the most cost-effective remediation strategy at a nitrobenzene-
contaminated site. The optimal remediation costs obtained with the two surrogate-based optimization
models were similar, and had similar computational burden. These two surrogate-based optimization
models are efficient tools for optimal groundwater remediation strategy identification.

1. Introduction

Groundwater contamination problem arises along
with the rapid development of industry and agri-
culture. Since groundwater remediation is a time
consuming and costly process, finding methods
to increase the remediation efficiency and reduce
the remediation cost gradually becomes a crucial
problem. Simulation and optimization technique
is an effective tool to solve this problem (Ahlfeld
et al. 1988; Guan and Aral 1999; Liu et al. 2000;
Schaerlaekens et al. 2006; Md Azamathulla et al.
2008). However, the enormous computational cost
of running such simulations multiple times,
limits the applicability of the simulation opti-
mization techniques in a complex groundwater

remediation optimization process (Qin et al. 2007;
Razavi et al. 2012). One method that reduces this
computational burden is replacing the numerical
models with efficient surrogate models (Sreekanth
and Datta 2010; Jin et al. 2001).

Surrogate models, also called metamodels or
response surface models, are used as particu-
lar substitutes for the complex numerical mod-
els, while being computationally cheaper to eval-
uate (Blanning 1975; Kourakos and Mantoglou
2013). Polynomial regression (PR), artificial neural
network (ANN), kriging, support vector machine,
and multivariate adaptive regression spline, etc.,
are common methods to build surrogate models,
and these surrogate models have been widely used
in space approximation problems (Jin et al. 2001;
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Giannakoglou 2002; Jin 2005; Forrester and Keane
2009).

To improve the computation efficiency of an
optimization process, surrogate models have been
used to approximate the computational simulation
model in groundwater simulation optimization field
in recent years. Huang et al. (2003), Qin et al.
(2007), He et al. (2008), and Fen et al. (2009) used
PR surrogate models to improve the optimization
efficiency in contaminated groundwater remedia-
tion system. Rogers et al. (1995), Morshed and
Kaluarachchi (1998), Johnson and Rogers (2000),
Arndt et al. (2005), Yan and Minsker (2006),
Nikolos et al. (2008), Behzadian et al. (2009),
Dhar and Datta (2009), Kourakos and Mantoglou
(2009), Yan and Minsker (2011) and Papadopoulou
et al. (2010) used artificial neural network surro-
gate models in optimal groundwater remediation
strategy identification, groundwater engineering
facility optimization, optimal water supply design,
and sea water intrusion management problems.
Hemker et al. (2008) used kriging method to
build the surrogate model of simulation model to
reduce optimization computation cost in ground-
water management problem.

It is difficult to say if one of these surrogate
modelling methods is generally superior to others.
For any specific engineering optimization design
problem, conducting a comprehensive comparison
analysis of the surrogate models that are built
with different methods, and selecting the proper
one to be used in the optimization process is
of great importance. Mirfendereski and Mousavi
(2011) compared support vector machines and
polynomial-based surrogate models to approximate
the MODSIM river basin simulation model, and
applied it in Atrak river basin water allocation
problem. Shyy et al. (2001) compared the rela-
tive performance between polynomials and neural
networks surrogate models, and applied them on
aerodynamics and rocket propulsion components.
Simpson et al. (1998) compared the polynomial-
based response surface and kriging surrogates in
aerodynamic design optimization of hypersonic
spiked blunt bodies. However, the comparisons of
different surrogate modelling methods are limited
in groundwater remediation optimization field.

During the model validation and selection pro-
cess, the commonly used method is dividing the
data into two mutually exclusive subsets called
the training set and the validation set, which is
called the holdout method (Kohavi 1995). This
method only uses part of the data to train the
surrogate model and uses the rest of data to val-
idate the surrogate model (Namura et al. 2012),
which may result in overfitting of the training data,
and underfitting of the other data. Cross valida-
tion is an improvement of holdout method because

it uses all data for both training and validation.
In groundwater optimization field, cross valida-
tion is rarely used for surrogate model accuracy
estimation (Razavi et al. 2012).

As an extension of previous researches, this
study attempts to develop an optimization process
based on multi-surrogate models and cross vali-
dation method for identifying the optimal reme-
diation strategy at a nonaqueous phase liquids
(NAPLs) contaminated aquifer. This objective
entails the following tasks:

• build a multiphase flow simulation model in a
nitrobenzene contaminated aquifer;

• develop surrogate models of multiphase flow sim-
ulation model using PR, RBFANN, and kriging
methods, and estimate the accuracy of different
surrogate models with cross validation method;

• surrogate models with acceptable accuracy are
then selected and used in the nonlinear optimiza-
tion model for identifying the most cost effective
remediation strategy.

The novelty of the paper is:

• different surrogate modelling methods were used
and compared in groundwater remediation opti-
mization field;

• cross validation method was used to estimate
the accuracy of different surrogate models in
groundwater optimization field.

2. Methods

2.1 Surrogate modelling method

Polynomial regression is the simplest approxima-
tion method to build surrogate models (Forrester
and Keane 2009). The most widely used polyno-
mial regression model is the second-order poly-
nomial model which has the following form (Jin
2005):

y = β0 +

n∑

i=1

βixi +

n∑

i=1

n∑

j≥i

βijxixj + · · · (1)

where β0, βi, βii, and βij are the regression coeffi-
cients, n is the number of variables, xi and xj are
the variables. Using least square method (LSM),
the regression coefficients can be solved.

RBFANN is a 3-layer feed forward neural net-
work consisting of an input layer, a hidden layer,
and an output layer (Shen et al. 2010).

X is an N dimensional input vector. The out-
put of the neurons in the RBFANN hidden layer is
assumed as:

qi = Φ (‖X− ci‖) (2)
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where ci is the center associated with the ith
neuron in the radial basis function hidden layer,
i = 1, 2, . . . ,H, where H is the number of hid-
den units, ‖X− ci‖ is the norm of X − ci, Φ(·)
is a radial basis function (Chen et al. 1991; Bad-
dari et al. 2009). Outputs of the kth neuron in
RBFANN output layer are linear combinations of
the hidden layer neuron outputs as:

yk =
H∑

i=1

wkiqi − θk (k = 1, 2, . . . ,M) (3)

where wki is the connecting weights from the ith
hidden layer neuron to the kth output layer, θk is
the threshold value of the kth output layer neuron.

The kriging method was developed by the French
mathematician Georges Matheron based on the
Master’s thesis of Daniel GerhardusKrige (Matheron
1963), it was first used as a geostatistical method.

Sacks et al. (1989) firstly introduced kriging
method as a surrogate modelling method, in the
paper of Sacks et al. (1989), kriging surrogate model
was also called design and analysis of computer
experiment (DACE). From that time, many resear-
chers have used kriging method for surrogate mod-
elling (Booker et al. 1998; Simpson et al. 2001; Ryu
et al. 2002; Hemker et al. 2008; Coetzee et al. 2012).

The kriging model is a combination of two com-
ponents (Queipo et al. 2005): deterministic func-
tions and localized deviations.

Y (x) =
k∑

i=1

fi (x)βi + z (x) (4)

where
∑k

i=1 fi (x)βi is the term of deterministic
functions, βi are coefficients of deterministic func-
tions, fi(x) are k known regression functions, which
are usually polynomial functions. z(x) is term of
localized deviations with mean zero, variance σ2,
and covariance expressed as:

Cov [z (xi) , z (xj)] = σ2R (xi, xj) (5)

where R (xi, xj) is the correlation function between
any two of the ns samples The common types of
correlation functions are linear function, exponen-
tial function, Gauss function, spline function, etc.
(Ryu et al. 2002).

The prediction of unsampled points response
y(x) can be expressed as:

�
y (x) = f (x)

T
β + rTR−1 (Y − Fβ) (6)

where Y is the vector of ns samples response,
r is the correlation vector between samples and
prediction points.

r =[R(x, x1), R(x, x2), . . . , R(x, xnx
)]T, (7)

F =[f(x1) · · · f(xnx
)]T. (8)

2.2 Cross validation – an accuracy
estimating method

Cross validation is a technique for estimating the
generalization errors of a predictive model. In cross
validation process, all available data can be used
both for validation and training, which helps avoid
overfitting of the training data (Cheng and Pecht
2012). In k-fold cross validation, the data are
divided into k subsets of approximately equal size.
The surrogate model is built k times, each time
leaving out one of the subsets as the validation data
for validating the model, and using the remaining
k–1 subsets for training. Total error of k times
prediction is averaged to assess the approximation
accuracyofsurrogatemodels(Jiawei andKamber 2001).

3. Case study

3.1 Site overview

To evaluate the advantages and disadvantages of
different surrogate models of groundwater simula-
tion model, three different surrogate models (PR
model, RBFANN model, and kriging model) were
applied to a test aquifer contaminated by nitroben-
zene. The contaminated site is located in the sec-
ond terrace of a valley alluvial plain in the lower
Songhua River. The contaminated site is flat with
an average altitude of 193m. The upper part of
the soil consists of an upper Pleistocene silt and
silty clay with a thickness of 1–2m, while the lower
part is made up of medium sand and gravel, with a
thickness of about 15m. The main recharge sources
are precipitation and runoff, while the main dis-
charge source is runoff. Groundwater flows from
northeast to southwest. The objective simulation
layer is pore phreatic water in loose rock mass, the
buried depth is about 4m, and the single well yield
is about 500–1000m3/d. The study area and initial
contaminant plume are shown in figure 1.

Based on the contaminant distribution, a surfac-
tant enhanced aquifer remediation (SEAR) with

Figure 1. Contaminant conditions, and injection and extrac-
tion wells’ conditions.
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sodium lauryl sulfate as surfactant was designed
with four injection wells and one extraction well
(figure 1). 10% surfactant solution (volume frac-
tion) was injected into the injection wells. To main-
tain hydraulic balance, the total extraction rates
and injection rates were equal.

The optimization objective was to identify the
most cost-effective strategy which can satisfy:

• more than 60% of the contaminant is removed;
• injection rate of each well is smaller than

70m3/d; and the remediation duration is
smaller than 20 days.

3.2 Numerical simulation model developed

The simulation domain was generalized as a het-
erogeneous and anisotropic 3-D multiphase flow
and transport model. A first-type boundary con-
dition was assigned at the northeast and south-
west boundaries of the site. The other boundaries
were no-flux boundaries. The simulation domain
was discretized into 17 vertical layers, and each
layer further discretized into 35 × 19 grids. Each
grid dimension was 3m × 3m × 1m in the x,
y, and z axes directions respectively. The physical
and chemical parameters of the site are presented
in table 1.

A three-dimensional mathematical model was
built to evaluate the efficiency of SEAR strategies.
The basis mass conservation equation for each com-
ponent can be written as (Delshad et al. 1996):

∂(φC̃kρk)

∂t
+ 	∇

[
3∑

l=1

ρk(Ckl	vl−φSl
		Kkl

	∇Ckl)

]
=Rk

(9)

Table 1. Physical and chemical parameters in simulation
model.

Parameter Value

Porosity 0.34

Permeability 5.9× 10−11m2

Longitudinal dispersivity 1 m

Transverse dispersivity 0.3 m

Hydraulic gradient 0.001

Water density 1000 kg/m3

Nitrobenzene density 1205 kg/m3

Surfactant density 1090 kg/m3

Water viscosity 0.001 Pa s

Nitrobenzene viscosity 0.00168 Pa s

Nitrobenzene/water interfacial tension 0.02566 N/m

Nitrobenzene solubility in water 1.9 kg/m3

Residual water saturation 0.24

Residual nitrobenzene saturation 0.17

where k is component index, including water
(k = 1), oil (k = 2) and surfactant (k = 3), l is
phase index including water (l = 1), oil (l = 2) and

microemulsion (l = 3) phases, φ is porosity, C̃k is
overall concentration of component k (volume frac-

tion), ρk is density of component k (kg/m
3
), Ckl is

concentration of component k in phase l (volume
fraction), 	vl is Darcy velocity of phase l (m/s), Sl

is saturation of phase l,
		Kkl is dispersion tensor

(m2/s), Rk is total source/sink term for component

k (kg/m
3
s).

The mathematical model was constructed with
the above mass conservation equation and cor-
responding initial conditions and boundary con-
ditions. University of Texas Chemical Composi-
tional Simulator (UTCHEM) was used to solve
the mathematical model. UTCHEM is a three-
dimensional, multiphase, multicomponent finite
difference numerical simulator (Delshad et al. 1996;
Bhattarai 2006). The simulator was originally
developed by Pope and Nelson (1978) to simulate
the enhanced recovery of oil using surfactant and
polymer processes, and then was modified to sim-
ulate the remediation process of aquifers contam-
inated by NAPLs (Delshad et al. 1996; Delshad
1997; Qin et al. 2007).

3.3 Surrogate model developed

There are many factors that influence the remedia-
tion efficiency and remediation costs. In this study,
we chose the well rates and remediation duration
as the input variables. Due to the assumption that
total extraction rates were equal to the total injec-
tion rates and there was only one extraction well,
there were five input variables, which were remedi-
ation duration, rates of injection well In1, In2, In3,
and In4 (table 2). The output variable was average
contaminant removal rate.

Forty input samples were collected through sam-
pling in the feasible region of input variables of
multiphase flow numerical simulation model, and
the output responses were obtained through run-
ning the developed simulation model.

With these 40 input–output data, PR, RBFANN,
and kriging methods were used separately to build
three surrogate models of multiphase flow numer-
ical simulation model. Ten-fold cross validation
method was adopted to evaluate the approximation
accuracy of the three surrogate models.

In the 10-fold cross validation process, the 40
input–output data were randomly divided into 10
subsets, with each subset containing four samples.
The surrogate model was built 10 times, with each
time the surrogate model had 36 training data and
four validation data. For PR model, first-order,
second-order, and third-order polynomials were
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Table 2. Input variables and its value range.

Remediation Rate of Rate of Rates of Rates of

Input duration well In1 well In2 well In3 well In4

variables (d) (m3/d) (m3/d) (m3/d) (m3/d)

Range 0–20 0–70 0–70 0–70 0–70

adopted to build the relationship between aver-
age contaminant removal rate, remediation dura-
tion, and four injection rates for each fold, using
least square method (LSM), a set of regression
coefficients were solved, and a total of 10 different
polynomial regression models were obtained.

For RBFANN model, the input layer of the net-
work represented the remediation duration and
four injection rates, a total of five neurons. The
output layer of the network contained only one neu-
ron, which represented the average contaminant
removal rate. The hidden neuron number is set as
10, 20, 30, and 40. In this study, the Gauss function
was used as transfer function, and the orthogonal
least square method was used for network training.
After the RBFANN model training, a total of 10
RBFANN models with different parameters were
obtained.

For kriging model, polynomial functions of
orders 0, 1, and 2 were used as regression functions,
while Gauss function was used as correlation func-
tion. Through training the kriging model, a total of
10 kriging models with different parameters were
also obtained.

3.4 Optimization model developed

To identify the optimal remediation strategy, a
nonlinear optimization model was developed using
the minimal remediation cost as the objective func-
tion, with the remediation duration and rates of
injection well In1, In2, In3, and In4 as the deci-
sion variables. The optimization model can be
represented as follows:

min f (Q, t) = finstallation + foperation

= C1m+ C2n+ C3t

m∑

i=1

QIn
i + C4t

n∑

j=1

QEx
j (10a)

Subject to:

0 ≤ QIn
i ≤ QIn

M (10b)

0 ≤ QEx
j ≤ QEx

M (10c)

m∑

i=1

QIn
i =

n∑

j=1

QEx
j (10d)

0 ≤ t ≤ tM (10e)

g(Q, t) ≥ g0 (10f)

where equation (10a) is the objective function,
equation 10(b–d) are the injection and extraction
rate constraints, equation (10e) is the remediation
duration constraint, equation (10f) is the remedi-
ation efficiency constraint. f is total cost of the
remediation system ($), the first two terms of equa-
tion (10a) account for the installation cost and
the last two terms account for the operation cost,
C1 and C2 are injection wells and extraction wells
installation cost coefficients ($), respectively, C3

and C4 are injection and extraction operation cost
coefficients ($/m3) respectively, m and n are injec-
tion and extraction wells number respectively, QIn

i

is the rate of ith injection well (m3/d), QEx
j is the

rate of j th extraction well (m3/d), QIn
M and QEx

M

are maximum allowable injection rate and extrac-
tion rate of wells (m3/d), t is the remediation dura-
tion (d), tM is the maximum allowable remediation
duration (d), g(Q, t) is the average contaminant
removal rate, which is an output response of the
surrogate model, and g0 is the minimum allowable
value of the contaminant average removal rate. The
constant of the equation is in table 3.

4. Results and discussion

4.1 Surrogate model accuracy analysis

For each surrogate modelling method, there are 10
folds, and in each fold, the output responses of the
four validation samples were predicted with the
developed surrogate models. Therefore, 40 samples’
output responses can be obtained with surrogate
models.

In this study, absolute error (AE) and relative
error (RE) were selected as the loss function to
estimate the accuracy of the surrogate models.
Figures 2, 3, and 4 show the boxplots of abso-
lute and relative error of different surrogate mod-
els. The results demonstrated that: for PR model,
approximation accuracy of second order polyno-
mial is higher than that of first-order polynomial
and third-order polynomial; for RBFANN model,
the RBFANN with 40 hidden neurons obtained
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Table 3. Constants included in the optimization model.

C1 C2 C3 C4 QIn
M

Constant ($) ($) ($/m3 ) ($/m3) (m3/d) m n tM(day) g0

Value 500 500 0.3 0.005 70 4 1 20 0.60

(a) (b)

Figure 2. Boxplots of the PR models: (a) boxplot of absolute errors and (b) boxplot of relative errors.

highest approximation accuracy; for kriging model,
kriging model with second order polynomial func-
tion as regression function obtained the highest
approximation accuracy. Therefore, second-order
polynomial model, RBFANN model with 40 hidden
neurons, and kriging model with second order poly-
nomial function as regression function are selected
as the surrogates, and their parameters are in
table A1, table A2, and table A3 (Appendix).

The relationship between simulation model
results and surrogate model results of 40 valida-
tion samples are shown in figure 5, which shows
that the accuracy of kriging and RBFANN mod-
els are greater than PR model. From the mean
error (mean AE and mean RE) and maximum error
(maximum AE and maximum RE) of the three sur-
rogate models (figures 2, 3, and 4), we can con-
clude that the RBFANN model and kriging model
had acceptable approximation accuracy, and fur-
ther that the approximation accuracy of kriging
model was slightly higher than that of RBFANN
model. However, PR model’s approximation accu-
racy was unacceptable (the mean relative error is
80%), this probably due to its limited fitting abil-
ity for nonlinear problem, especially for the high-
order nonlinear problem. From the distribution of
surrogate models we can conclude that the distri-
bution of RBFANN model and kriging model (most
of the relative error values are between 3% and
18%) are much more concentrated than that of PR
model (there are many samples with relative error
greater than 100%). In summary, RBFANN model
and kriging model had acceptable accuracy and

robustness, and can be used in the flowing opti-
mization process.

4.2 Optimization result analysis

From the above observations, both the RBFANN
model and kriging model were embedded in the
optimization model, as the linking of the aver-
age contaminant removal rate, injection rates, and
remediation duration. The genetic algorithm was
adopted to solve the developed nonlinear optimiza-
tion model on MATLB platform. In the genetic
algorithm searching process, the surrogate model
was invoked instead of the computational simula-
tion model. The parameters of the genetic algo-
rithm were set the same in the RBFANN surrogate
based optimization model and in kriging surrogate
based optimization model. Selection probability,
crossover probability, and mutation probability
are usually set between 0.7–1.0, 0.7–1.0, 0.01–0.05
(Simpson et al. 1994), and in this paper they are
set as 0.9, 0.7 and 0.05; the generation number
is set as 100. The population size is set as 500,
and the obtained optimal remediation strategies
are in table 4. The optimal remediation strategies
obtained with RBFANN and kriging were evalu-
ated using the multiphase flow numerical simula-
tion model, and the predicted average contaminant
removal rates were 0.6 and 0.6, which satisfies
the contaminant removal rate constraint. The opti-
mal solutions obtained with the two optimization
models were different, but the optimal remediation
costs were similar, this may be because the complex
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(a) (b)

Figure 3. Boxplots of the RBFANN models: (a) boxplot of absolute errors and (b) boxplot of relative errors.

(a) (b)

Figure 4. Boxplots of the kriging models: (a) boxplot of absolute errors and (b) boxplot of relative errors.

optimization problem had multioptimal solution.
We can conclude that both the RBFANN and krig-
ing surrogate-based optimization models obtained
satisfactory solutions.

4.3 Computational burden analysis

Generally, there are three parts for the computa-
tional burden in the surrogate-based optimization
process: repeated running of the numerical simula-
tion model, surrogate model construction, and the
optimization searchingprocesswith genetic algorithm.

The main computational burden was resulted
from the repeated running of the numerical simu-
lation model. The SEAR optimization for the
nitrobenzene-contaminated site required 295 sec-
onds of CPU time to run every simulation model
on a 3.0 GHz AMD CPU and 2 GB RAM PC
platform. 40 input data were sampled randomly, Figure 5. Simulationmodel results vs. surrogate model results.
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Table 4. Optimal remediation strategy.

and the output responses were obtained with the
simulation model, so the simulation model needed
to be run 40 times; thus, 11,800 s were required
in this process with both of this two optimization
models.

An average of 1.3 s were needed to train the
RBFANN model for one time, while an average of
0.12 s were needed to train the kriging model. In
the cross validation process, each surrogate model
needed to be constructed 10 times, so the construc-
tion of RBFANN model and kriging model totally
needed 13 and 1.2 s respectively.

In the optimization searching process, RBFANN
surrogate-based optimization model needed 2.61 s
before the genetic algorithm converged, while
the kriging surrogate-based optimization needed
2.81 s.

Compared with the computational burden of
repeated running of the numerical simulation
model, the computational burden resulted from the
surrogate model construct and the optimization
searching process can be negligible. The whole pro-
cess of surrogate-based optimization model sol-
ving needed nearly 3 hr (11,800 s), no matter which
surrogate model was used. In GA process, 4000
evaluations were used as a termination criterion
(maximum evaluation times). Therefore if the
numerical model was used instead of the surrogate
model, then the total CPU time would have been
1180,000 s (14 days).

5. Conclusions

In this study, three different surrogate mod-
els: polynomial regression, radial basis function

artificial neural network, and kriging were used to
build surrogate model at a nitrobenzene contami-
nated aquifer remediation problem.

Ten-fold cross validation was adopted to com-
pare the approximation accuracy of the three sur-
rogate models. The results showed that the radial
basis function artificial neural network and krig-
ing models had better approximation accuracy and
robustness than the polynomial regression model.
Therefore, the radial basis function artificial neu-
ral network and kriging-based optimization models
were preferred and selected to identify the optimal
remediation strategy for a nitrobenzene contami-
nated site. The two surrogate-based optimization
models obtained similar optimal costs, with a sim-
ilar computational burden. In addition, these two
surrogate-based optimization models considerably
reduced the computational burden compared with
the conventional simulation optimization model.
Therefore, we can conclude that the surrogate-
based optimization models are efficient tools for
optimal groundwater remediation strategy identi-
fication, and radial basis function artificial neural
network method and kriging method are effective
surrogate modelling methods.
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Appendix

Table A1. Parameters of second-order polynomial models.

Parameters 1st fold 2nd fold 3rd fold 4th fold 5th fold 6th fold 7th fold 8th fold 9th fold 10th fold

β0 −0.129402 −0.115985 −0.105305 −0.11044 −0.145679 −0.139754 −0.134486 −0.129165 −0.144638 −0.147624
β1 0.023804 0.011959 0.033544 0.026919 0.022834 0.026457 0.018961 0.020100 0.024650 0.020406
β2 0.003693 0.006405 0.001935 0.002426 0.003917 0.004974 0.005205 0.003924 0.004280 0.003375
β3 0.003435 0.001851 0.002152 0.003996 0.002386 0.002213 0.002214 0.002663 0.002556 0.003253
β4 0.003653 0.003708 0.002383 0.006121 0.005115 0.004029 0.005699 0.004117 0.005080 0.005148
β5 −0.003354 −0.002855 −0.001503 −0.006334 −0.003217 −0.004118 −0.003554 −0.003036 −0.002848 −0.003093
β11 −0.000429 0.000085 −0.000713 −0.000416 −0.000255 −0.000453 −0.000216 −0.000134 −0.000490 −0.000181
β22 −0.000055 −0.000072 −0.000047 −0.000055 −0.000061 −0.000055 −0.000074 −0.000063 −0.000084 −0.000056
β33 −0.000065 −0.000023 −0.000044 −0.000065 −0.000038 −0.000038 −0.000044 −0.000044 −0.000045 −0.000039
β44 −0.000035 −0.000027 −0.000028 −0.000057 −0.000047 −0.000041 −0.000054 −0.000036 −0.000053 −0.000048
β55 0.000029 0.000030 0.000012 0.000050 0.000030 0.000037 0.000027 0.000052 0.000025 0.000029
β12 0.000040 0.000031 0.000005 0.000061 0.000057 0.000056 0.000050 0.000058 0.000130 0.000084
β13 0.000001 0.000049 0.000081 0.000011 0.000007 −0.000004 0.000065 −0.000016 0.000017 −0.000013
β14 0.000138 0.000093 0.000058 0.000066 0.000071 0.000109 0.000055 0.000136 0.000078 0.000113
β15 0.000192 0.000255 0.000145 0.000138 0.000167 0.000168 0.000216 0.000105 0.000163 0.000176
β23 0.000056 0.000004 0.000033 0.000035 0.000031 0.000029 0.000020 0.000037 0.000036 0.000023
β24 −0.000026 −0.000023 0.000034 0.000003 −0.000003 −0.000022 0.000003 0.000002 0.000006 0.000005
β25 0.000017 −0.000001 0.000005 0.000029 0.000015 0.000000 0.000016 0.000009 0.000016 0.000015
β34 −0.000013 −0.000010 −0.000035 −0.000043 −0.000025 −0.000021 −0.000024 −0.000030 −0.000023 −0.000040
β35 −0.000013 −0.000004 0.000011 0.000040 0.000015 0.000020 0.000019 0.000021 0.000013 0.000013
β45 0.000017 −0.000010 0.000007 0.000005 0.000001 0.000017 −0.000006 −0.000021 0.000000 −0.000003

Table A2. Parameters of RBFANN models.

Parameters 1st fold 2nd fold 3rd fold 4th fold 5th fold 6th fold 7th fold 8th fold 9th fold 10th fold

Number of hidden neurons 40

Training mean squared error goal 0.04 0.06 0.06 0.01 0.1 0.045 0.1 0.04 0.043 0.096

Spreed 1000 90 58 50 540 184 407 116 115 110

Table A3. Parameters of kriging models.

Parameters 1st fold 2nd fold 3rd fold 4th fold 5th fold 6th fold 7th fold 8th fold 9th fold 10th fold

θ1 6.9833 2.7224 2.1806 0.4292 2.6918 2.7602 0.4845 0.7812 0.5298 0.6500

θ2 0.0181 0.0015 0.1106 0.1703 0.0020 0.0209 0.2255 0.1016 0.1319 0.1811

θ3 0.0010 0.0010 0.0145 0.0024 0.0024 0.0018 0.0028 0.0171 0.0149 0.0125

θ4 0.0163 0.0019 0.0321 0.0573 0.0026 0.0099 0.0474 0.1840 0.1456 0.1346

θ5 0.0014 0.0018 0.1160 0.1703 0.0028 0.0078 0.1518 0.1016 0.1319 0.2208

β1 0.0347 −0.1076 −0.0355 −0.1176 −0.0811 −0.0622 −0.0262 −0.0320 −0.0963 −0.0233

β2 0.4837 0.2687 0.6422 0.4943 0.3350 0.5606 0.5182 0.5760 0.5432 0.5789

β3 0.1128 0.1163 0.0876 0.0597 0.1217 0.1030 0.1465 0.1491 0.0798 0.0982

β4 0.0756 0.0601 0.1085 0.1389 0.0495 0.0716 0.1327 0.1026 0.1287 0.1120

β5 0.1911 0.1562 0.1933 0.2155 0.1668 0.1619 0.1921 0.1717 0.2186 0.2067

β6 0.1800 0.1538 0.1257 0.0917 0.1610 0.1437 0.0905 0.1143 0.0943 0.0910

β7 0.1864 0.2936 0.0715 0.0909 0.1633 0.1137 0.0413 0.0724 0.0541 0.0549

β8 −0.0400 −0.0674 −0.0258 −0.0148 −0.0703 −0.0252 −0.0475 −0.0157 −0.0108 −0.0310

β9 −0.0727 −0.0499 −0.0330 −0.0197 −0.0333 −0.0348 −0.0275 −0.0156 −0.0102 −0.0252

β10 −0.1174 −0.0932 −0.0121 −0.0106 −0.0679 −0.0311 −0.0167 −0.0346 −0.0307 −0.0159

β11 0.0466 0.0329 −0.0130 0.0022 0.0062 0.0011 −0.0085 −0.0185 0.0161 −0.0155
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