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Space geodesy era provides velocity information which results in the positioning of geodetic points by
considering the time evolution. The geodetic point positions on the Earth’s surface change over time due
to plate tectonics, and these changes have to be accounted for geodetic purposes. The velocity field of
geodetic network is determined from GPS sessions. Velocities of the new structured geodetic points within
the geodetic network are estimated from this velocity field by the interpolation methods. In this study,
the utility of Artificial Neural Networks (ANN) widely applied in diverse fields of science is investigated
in order to estimate the geodetic point velocities. Back Propagation Artificial Neural Network (BPANN)
and Radial Basis Function Neural Network (RBFNN) are used to estimate the geodetic point velocities.
In order to evaluate the performance of ANNs, the velocities are also interpolated by Kriging (KRIG)
method. The results are compared in terms of the root mean square error (RMSE) over five different
geodetic networks. It was concluded that the estimation of geodetic point velocity by BPANN is more
effective and accurate than by KRIG when the points to be estimated are more than the points known.

1. Introduction

Geodesy was defined by Helmert (1880) as the
science devoted to measuring and mapping the
Earth’s surface. Further to this effectual definition,
the scope of geodesy has been extended, especially
due to space-based techniques allowing geodesy to
determine the parameters of Earth system with
high accuracy. Today, geodesy is the science of
determining the geometry, gravity field, and rota-
tion of the Earth and their evolution in time.
This understanding of modern geodesy is based on
the definition of the three pillars of geodesy: (1)
geokinematics, (2) Earth rotation and (3) gravity
field (Plag et al. 2009). Geokinematics (geometry
and kinematics) refers to determine and monitor
with utmost precision the geometric shape of the
Earth (land, ice and ocean surface) as well as

its variations with time. This pillar of geodesy
addresses the problems of the determination of pre-
cise three-dimensional object positions from global
to local spatial scale and their changes in time.
In recent decades, comprehensive efforts have been
made to determine these time variations which
have become possible owing to the accuracy of new
space-geodetic methods, and also owing to a truly
global reference system that only space geodesy can
realise (Altamimi et al. 2002). Defining a suitable
reference system and its realisation as a reference
frame is a demanding endeavour to consider the
time variation in geokinematics. The geodetic ref-
erence frames are the basis for providing means to
assign three-dimensional coordinates to points as
a function of time in global, regional and national
geodetic reference networks. One of the major
functions of geodesy is the establishment and
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maintenance of geodetic reference networks for the
presentation of geospatial positioning. Geodetic
reference networks are comprised of a set of
properly-defined and constructed points distribu-
ted on the surface of the Earth to materialise the
reference systems to support sub-millimetre global
change measurements over space, time and evolv-
ing technologies (Pearlman et al. 2006).
According to the theory of plate tectonics, the
Earth’s surface is in constant motion. As such,
the points in the geodetic networks are not static
entities. The crustal motion of the Earth’s surface
emanated from tectonic plate movements and dis-
placements associated with earthquakes can cause
the geodetic points to move at predictable rates
from year to year. These kinematic effects on the
geodetic points can be defined by a phenomenon
called point velocity (Mathews and Biediger
2012). The most demanding scientific and non-
scientific requirements concerning positioning are
not only the increase in accuracy and temporal sta-
bility, but also high spatial and temporal resolution
and low latency (Gross et al. 2007). In order to
meet these demands, it is vital to determine veloc-
ities for all geodetic points on the Earth’s surface.
The widespread availability of GPS equipment pro-
vides accurate velocity information which results
in the determination of precise three-dimensional
point coordinates in geodetic networks by consid-
ering the time evolution. The spatial positions of
geodetic points on the Earth’s surface change over
time due to the plate tectonics, and therefore, they
are dependent on the epoch of their determina-
tion. All these spatial changes have paramount
importance in geodetic applications. If we have
GPS measurements at least in two epochs, it is
possible to compute the change of geodetic point
coordinates. Otherwise, a continuous contempo-
rary velocity field of geodetic network is essen-
tial. The velocity field of geodetic network is
determined from the periodic GPS measurements.
The velocities of the new structured geodetic points
(e.g., densification points) within the geodetic net-
work are estimated from the velocity field of geode-
tic network or from the velocities of the existing
geodetic points determined by campaign type
repeated GPS sessions (static GPS surveying for
8-24 h) by the interpolation methods. The geode-
tic point velocities derived from measured time
series of positions are used as the basic parameter
in geodetic and geophysical applications includ-
ing velocity field determination of geodetic net-
works, kinematic modelling of crustal movements,
understanding plate boundary dynamics, and
monitoring global sea level change (Yilmaz 2012).
The estimation of an accurate geodetic point

M Yilmaz and M Gullu

velocity has, therefore,
geosciences.

The velocity field determination has been inves-
tigated by several researchers (e.g., Demir and
Acikgoz 2000; Nocquet and Calais 2003; Perez
et al. 2003; D’Anastasio et al. 2006; Hefty 2008;
Novotny and Kostelecky 2008; Aktug et al. 2011).
The velocity information has been used by several
researchers in crustal movements, plate boundary
dynamics, seismic site characterization and defor-
mation kinematics (e.g., McClusky et al. 2000;
Delacou et al. 2008; Hackl et al. 2009; Kanli 2009;
Perez-Pena et al. 2010; Foti et al. 2011; Pinna et al.
2011).

Ar)tiﬁcial neural network (ANN) can be viewed
as a computational method that is a highly simpli-
fied model of learning, interpretation and decision-
making processes presented in human biological
nerve systems, and it is formed by layers of inter-
connected artificial neurons which transform the
input data into associated output data. ANNs
have been applied in diverse fields of science and
engineering for several types of functions such
as estimation, modelling, classification, predic-
tion, filtering, and optimisation because of their
major advantages (i.e., non-parametric nature, tol-
erance to noisy data, applicability to complex data,
arbitrary decision making capabilities and incor-
poration of different types of data) (Yilmaz 2012).
Many geophysical phenomena are described as self-
affine fractals characterized by coefficients that
can be calculated by various methods such as
wavelet transform, power spectrum and rescaled
range analysis, etc. In practice, the geophysical
data are of limited duration with gaps or noises
and non-stationary, and the calculation of coef-
ficient is not reliable for short or noisy time
series (Chamoli et al. 2007). ANNs gave a new
dimension for solving complex geophysical prob-
lems. Neural-based methods are well equipped
to deal with the real world problem of non-
stationarity and non-linearity (Dimri and Chamoli
2008). ANNs have been found to be effective in
identifying the complex behaviour of most geo-
physical data which, by their very nature, exhibits
extreme variability (Shahin et al. 2008) and have
the ability to analyse non-stationary geophysical
data like wavelet transforms. In geophysical and
geodetic applications, the data are assumed to
have a normal distribution, but in real life prob-
lems this assumption is not always realistic as
dataset might show abnormal and highly skewed
distribution. ANNs provide linear and non-linear
mapping between input and output spatial data
by its non-parametric nature which assumes no
a priori knowledge (as in traditional regression

great importance in
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models), particularly of the frequency distribution
of the data. This provides ANN a unique advantage
over other statistical and conventional prediction
techniques such as regression and interpolation
methods (i.e., Pariente 1994; Kumar 2005; Singh
et al. 2005; Karabork et al. 2008; Erol and
Erol 2013).

ANN applications in geophysical and geodetic
velocity modelling problems have increased in the
last decade. Calderon-Macias et al. (2000) have
used ANN in order to obtain 1D velocity mod-
els from seismic waveform data. Eskandari et al.
(2004) compared multiple regression and ANN to
predict shear wave velocity in the seismic explo-
ration. Baronian et al. (2007) described an ANN
approach for seismic velocity analysis. Peak ground
velocities are used as input data in ANN appli-
cation in the seismic design of deep tunnels by
Ornthammarath et al. (2008). Moghtased-Azar
and Zaletnyik (2009) have compared the ability of
ANNs and polynomials for modelling the crustal
velocity field. Gullu et al. (2011) have applied ANN
for the velocity estimation of the points in a local
geodetic network.

The main objective of this study is to evaluate
the utility of ANN in order to estimate the veloc-
ities of the points as an alternative tool for the
conventional methods in a regional geodetic net-
work. The development and optimisation of ANN
are searched to obtain the best model configura-
tion for the geodetic velocity estimation prediction.
There are numerous kinds of neural networks.
However, two different types of ANN that have
been more widely applied among all other ANN
applications are back propagation artificial neu-
ral networks (BPANN) and radial basis function
neural networks (RBFNN), which are used to
estimate the geodetic point velocities in this study.
In order to evaluate the performance of BPANN
and RBFNN, the point velocities are also estimated
by Kriging (KRIG) interpolation method, and
the results are compared in terms of the root
mean square error (RMSE) over five different
geodetic networks in the study area. The general
scheme of this paper is organised as follows:
In section 2, the theoretical aspects of BPANN,
RBFNN, and KRIG are described. Section 3
outlines the study area, the structured geodetic
networks, the point velocity data used and the
evaluation methodology. The detailed information
about the design and the optimisation of ANN
is given in section 4. Section 5 is concerned with
the case study. The results and conclusions of
ANN’s utility for geodetic point velocity estima-
tion are presented in section 6 to motivate further
studies.
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2. Theoretical aspects

Two supervised and feed-forward ANN types,
BPANN and RBFNN were used in artificial neu-
ral approach of this study. A commonly applied
method for spatial data, KRIG, was used in
interpolation approach. The detailed theoreti-
cal information about these methods is given
below.

2.1 Back propagation artificial neural network

BPANN (Werbos 1974; Rumelhart et al. 1986) is
a widely used and effective multilayer perceptron
(MLP) model due to their simple implementation
and flexibility for a wide spectrum of problems in
many application areas varying from military pur-
poses to finance, medicine, engineering and space
sciences. BPANN consists of (i) an input layer
with neurons representing input variables to the
problem, (ii) one or more hidden layers contain-
ing neurons to help capture the nonlinearity in the
data and (iii) an output layer with neurons rep-
resenting the dependent variables. The architec-
ture of a simple BPANN is shown in figure 1. All
inter-neuron connections have been associated by
means of synaptic weights that are adjusted by
an iterative back propagation algorithm known as
training process. The introduction of back prop-
agation algorithm has overcome the drawback of
previous ANN algorithm of 1970s where the sin-
gle layer perceptron failed to solve a simple XOR
(Exclusive OR) problem. After the training proce-
dure, an activation function is applied to all neu-
rons to generate the output information (Leandro

FEED FORWARD
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Figure 1. The BPANN architecture.
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and Santos 2007) within a permissible amplitude
range.

The output of BPANN with a single output neu-
ron (output layer represented by only one neuron,
i.e., n = 1) can be expressed according to Ngrgaard
(1997) by:

y=1f (Z W, f (Z w; 2 + wm) + WO> , (1)

j=1

where N is the number of inputs, ¢ is the number of
hidden neurons, W; is the weight between the jth
hidden neuron and the output neuron, w;,; is the
weight between the [th input neuron and the jth
hidden neuron, z; is the /th input parameter, w
is the weight between a fixed input equal to 1 and
jth hidden neuron, and W, is the weight between
a fixed input equal to 1 and the output neuron
(Valach et al. 2007). The sigmoid function is the
most commonly used activation function satisfying
the approximation conditions of BPANN (Haykin
1999; Beale et al. 2010) and is represented by:

1

)= (1 4oy

(2)

where z is the input information of the neuron and
f(z) €10, 1]. The input and output values of BPANN
have to be scaled in this range.

The back propagation algorithm based on
squared error minimization corresponds to an
adjustment of the weights between the hidden
layer and the output layer. This iterative process
updates the weights in order to decrease the resid-
uals of the predicted output of the neural network.
It requires the estimation of the network parame-
ters that lead to the global minimum of a cost func-
tion E. Typically, this cost function is chosen to be
the sum of the squared discrepancies between com-
puted and target output over all samples N and all
output units K:

where y/(k) is the BPANN output and y;(k) is the
target response of each output neuron k.

The new weights are estimated by modifying
them in the opposite direction of the gradient of
the cost function in the point of actual estimation.
The weight-update at iteration ‘¢’ is given by:

Aw;(t) = —n +a-Aw;(t—1), (4)
where the parameter 7 denotes learning rate and «
is the momentum term.
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2.2 Radial basis function neural network

RBFNN (Powell 1987) is known from the approx-
imation theory as it is applied to the real mul-
tivariate interpolation problem. RBFNN is popu-
larized by Moody and Darken (1989), and many
researchers suggested it as an alternative ANN
structure to MLP. RBFNN is very useful for
function approximation and classification problems
because of its more compact topology and faster
learning speed. RBFNN is configured with three
layers (figure 2). An input layer consists of source
neurons (sensory units) and distributes input vec-
tors to each of the neurons in the hidden layer
without any multiplicative factors. The single hid-
den layer has receptive field units (hidden neu-
rons) each of which represents a nonlinear transfer
function called a basis function. The output layer
produces a linear weighted sum of hidden neuron
outputs and supplies the response of RBFNN.
The output of 4th output neuron can be
described in a general expression as follows:

where ¢ is the number of hidden neurons, w;;
is the weight between the jth hidden neuron
and the ¢th output neuron, and w, is the bias
value. The basic function ¢(-) is a nonlinear trans-
formation from the input layer to hidden layer
of high dimensionality, and it plays the role of
the activation function in MLPs. The most com-
mon form of basic function in RBFNN is the
Gaussian function (Bishop 2005; Yeung et al. 2010)
and it is defined by:

s =e (<1700

2
2aj

where zeR? is the input vector and u;eR? and o;
are the centre value and the width parameter of

OUTPUT LAYER
INPUT LAYER
HIDDEN LAYER

Figure 2. The RBFNN architecture.
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the basic function, respectively, associated with the
jth hidden neuron. ||| denotes the Euclidean dis-
tance. The hidden neuron is activated whenever x
is close enough to its corresponding v in RBFNN.
The location of neurons, the weight coefficients,
and the bias are defined during the training pro-
cess of RBFNN. The training of RBFNN requires
a set of data samples for which the correspond-
ing network outputs are known. Mathematically,
the training can be considered as an optimization
problem where the network parameters are to be
solved while the error of the neural network must
be minimal.

2.3 Kriging interpolation method

KRIG (Krige 1951) is a geostatistical and flexible
interpolation method which has been extensively
used in diverse fields of mathematics, earth sci-
ences, geography and engineering and has proved
to be powerful and accurate in its fields of use.
According to KRIG, both the distance and the
degree of variation between reference points are
taken into account for optimal spatial prediction
(Joseph 2006). KRIG assigns a mathematical func-
tion to a certain number of points or all the points
located within a certain area of effect in order
to determine the output values for each location
(Chaplot et al. 2006). KRIG uses the semivari-
ogram which measures the average degree of dis-
similarity between unsampled values and nearby
values to define the weights that determine the con-
tribution of each data point to the prediction of
new values at unsampled locations (Krivoruchko
and Gotway 2004). KRIG is based on a constant
mean g for the data and random errors € with
spatial dependence as follows:

Z(wo) = p(x0) + &(20), (7)

where Z(x() is the variable of interest, u(xg) is
the deterministic trend, and e(xy) is the correlated
error (Erdogan 2010). In the ordinary algorithm of
KRIG, equation (7) can be given as follows:

Z(z0) = (o) + Z Ailz(mi) — p(xo)],  (8)

where n is the number of sampled points used for
the estimation, A; is the weight assigned to the
sampled point (z;), and > A; =1 is forced (Li
and Heap 2008). KRIG is the most appropriate
interpolation method when a spatially correlated
distance or directional bias in the data is known.
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3. Data acquisition and evaluation
methodology

The estimation of the geodetic point velocities is
performed over a study area located in central
and western Anatolian parts of Turkey. The study
area is limited by 36.95°-40.50°N in latitude and,
27.10°-32.75°E in longitude, and it defines a total
area of ~182,500 km?. Its span is approximately
380 km in the north—south direction and 480 km
in the east—west direction.

The evaluating procedure of the geodetic points’
velocity refers to a source dataset in the study
area that comprises 125 control points belong-
ing to Turkish National Fundamental GPS Net-
work (TNFGN) (Ayhan et al. 2002). The positional
accuracies of the TNFGN stations are about
1-3 ¢m whereas the relative accuracies are within
the range of 0.01-0.1 ppm. For each TNFGN sta-
tion, time-dependent 3D coordinates and their
associated velocities were computed in ITRF2000
(reference epoch 2005.00) with repeated GPS
observations (Caglar 2006). Velocity solution of
TNFGN over the interval 1992-2004 was obtained
by the procession of campaign type GPS measure-
ments of 366 TNFGN points. TNFGN velocities
with 1o standard deviations used in this study are
given in table 1.

The source dataset (125 TNFGN points) is clas-
sified into two groups as a reference dataset for
the training (modelling) process and a test dataset
for the controlling process. In ANN approach, the
reference points are used to train BPANN and
RBFNN, and the test points are used to evalu-
ate the performance of ANNs. In KRIG approach,
the reference points are used to generate a surface
model of the study area, and the test points are
used to check the estimation accuracy of KRIG.
Five different geodetic networks are generated to
assess the impact of the point density on the veloc-
ity estimation results. The reference points are
selected to cover the study area from outside, and
the test points are selected as densification points
of the geodetic network formed by the reference
points. The point classification and density infor-
mation about the geodetic networks are summa-
rized in table 2, and the spatial distribution of
the reference and test points in geodetic networks
within the study area is plotted in figure 3.

Table 1. Standard deviations (1o) of TNFGN welocities
(units in mm/year).

O‘VX O'Vy O‘VZ
Minimum 0.60 0.40 0.60
Maximum 11.10 6.00 10.20
Mean 2.00 1.17 1.86
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Table 2. Point classification and density of geodetic networks.

. Classification

Geodetic

network Reference Test
GN-1 20 105
GN-2 40 85
GN-3 60 65
GN-4 80 45
GN-5 100 25

The evaluation of the geodetic point velocity
estimation by BPANN, RBFNN, and KRIG is
focused on the differences between the known and
estimated point velocities using the equation below:

AVX,Y,Z — VX7yyz(TNFGN)
—Vxy.z(BPANN, RBFNN, KRIG), (9)

where AVyxy z is the geodetic point velocity
residual, Vyyz (TNFGN) is the point veloc-
ity known through repeated GPS measurements
within TNFGN and Vyy, (BPANN, RBFNN,
KRIG) is the point velocity based on BPANN,
RBFNN, and KRIG.

For the statistical analysis of geodetic point
velocity residuals (AVy y z) minimum, maximum,
and mean values were determined and investi-
gated by RMSE value because RMSEs are sensitive
to even small errors to measure the devia-
tions between known and estimated discharges on
models (Gullu et al. 2011), RMSEs are global
measures for comparing interpolation techniques
(Erdogan 2010), and are effective tools for evalu-
ating the results of ANN applications (Schroeder
et al. 2009). RMSE is always positive and it is
defined by:

where n is the number of test points used in the
geodetic network.

4. ANN design and optimisation

The main goal of ANNs is to find a solution to gen-
eralize the multidimensional input—output map-
ping problems. In other words, ANNs perform well
when they do not extrapolate beyond the range of
the (training) data used for the estimation of their
parameters. In order to do so, ANNs have to cap-
ture the functional relationship that leads to the
mapping of the input data into the output data.
ANN structure that is chosen to be too complex
in relation to the functional relationship that has

Density (km?/point)

Reference Test
~9000 ~1750
~4500 ~2150
~3000 ~2800
~2250 ~4050
~1825 ~7300

to be captured also memorises its free coefficients,
the noise contained in the data. This occurrence
is called overfitting. Such a model will perform
well in approximating the data used in order to
estimate its parameters (ANN has memorised the
training data) but it will be extremely poor on new
data (ANN has not learnt to generalize). To allow
proper generalization capabilities, ANN overfitting
of the training data must be avoided (i.e., model
should be fitted only to the signal present in the
training sample, not to the noise). A number of
techniques have been developed to further improve
ANN generalization capabilities including different
variants of cross-validation (Haykin 1999), noise
injection (Holmstrom and Koistinen 1992), error
regularization, weight decay (Poggio and Girosi
1990; Haykin 1999), and the optimized approxima-
tion algorithm (Liu et al. 2008). A number of cross-
validation variants exist, and some of them are of
special attention when data are very scarce, i.e.,
multifold cross-validation or leave-one-out (Haykin
1999). But probably the most popular in practical
applications (Liu et al. 2008) is the so-called early
stopping (Piotrowski and Napiorkowski 2013). To
use the early stopping approach in this study, the
available dataset is divided into two subsets: (i)
training (reference) data used during ANN opti-
mization and (ii) the test data (not presented to
ANN during optimization) used to define stopping
criteria to prevent overfitting thus ensuring a gen-
eralised solution. The division is done keeping in
mind that training dataset should be extensive and
comprehensive (representative of all possible vari-
ations of the data on which ANN will be tested).
The mean square error (MSE) (Graupe 2007; Hsieh
2009) is used as the model evaluation indicator. For
a given set of N inputs, MSE is defined by:
N
MSE = Z(yact - ypred)Q/Na

1

(11)

where y..; denotes the given actual output value,
and yp,eq denotes the ANN (predicted) output. The
performance of ANN during the training and test-
ing process is monitored in the form of MSE. The
testing error normally decreased during the initial
phase of training, as did the training error. How-
ever, when overfitting occurred, the testing error
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Figure 3. Geodetic networks (A — reference; e — test).

typically began to rise. When the testing error
increased, the training process was stopped, and
it is assumed that optimal ANN parameters were
reached. In table 3, the MSEs of ANNs obtained
by early stopping to avoid overfitting are shown for
training and test dataset on Geodetic Network (1).

Once the available data have been divided into
training (reference) and testing subsets, ANN trai-
ning can be made more efficient by pre-processing
the data in a suitable form before they are applied
to ANN. Data pre-processing is necessary to ensure
that all inputs receive equal attention during the
training process and to give numerical stability to
ANN. Moreover, pre-processing usually speeds up

the learning procedure and minimizes the predic-
tion error (Boukhrissa et al. 2013). Pre-processing
can be in the form of data scaling, normaliza-
tion and transformation (Shahin et al. 2008). In
this study, the minimum—maximum normalization
(a linear transformation that preserves exactly
all relationships of the original data) is used for
scaling the inputs and outputs to commensurate
within the specified range of the activation func-
tion used for ANN. The associated normalization
is expressed by:

(Pz - Pmin)

(Pmax - Pmin) (12)

Pn(l) =
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Table 3. MSEs of the datasets (units in mm/year).

BPANN
MSE Vx Vy
Training 3.15 2.12
Test 6.51 3.73

where P, (i) is the normalized parameter, P is
either input or output parameter, P,;, and P, .
refers to the minimum and maximum values of the
parameters, respectively.

The architecture of ANN determines the number
of parameters to be calibrated. This architecture
should always be adapted to the problem in ques-
tion (Zhang et al. 1998), as it depends on the num-
ber of input and output variables. Generally, the
number of neurons in the input layer depends on
the number of possible inputs (independent vari-
ables) that we used in ANN. However, the num-
ber of neurons in the output layer depends on the
number of desired (target) outputs. For this study,
ANNSs are proposed with two neurons in the input
layer and one neuron in the output layer. The geo-
graphical coordinates (latitude and longitude) of
the geodetic point are selected as input quantities,
and the velocity component of the point (Vy,y,z)
is used as output quantity for training and testing
procedure of BPANN and RBFNN.

In ANN approach, there are two major chal-
lenges regarding the hidden layers: the number of
hidden layers and how many neurons will be in
each of these hidden layers. Two hidden layers
are required for modelling data with discontinu-
ities such as a sawtooth wave pattern. Actually,
one hidden layer is sufficient for nearly all problems
(Panchal et al. 2011). In the present study,
the proposed BPANN and RBFNN are com-
posed of one hidden layer. ANN with one hid-
den layer can approximate any continuous func-
tion given a sufficient number of hidden neurons
(Cybenko 1989; Funahashi 1989; Hornik et al.
1989; Bishop 2005). Essentially, the number of
neurons in the hidden layer defines the complex-
ity and power of ANN to delineate the under-
lying relationships and structures inherent in a
dataset. The number of hidden layer neurons has
a considerable effect on both classification accu-
racy and training time requirements. The accu-
racy that can be produced by ANN relates to
the generalisation capabilities. Basically, the num-
ber of neurons in the hidden layer should be large
enough for the correct representation of the prob-
lem, but at the same time low enough to have
adequate generalisation capabilities (Kavzoglu
and Mather 2003). Several strategies and heuris-
tics (destructive, constructive and hybrid meth-
ods) have been suggested to estimate the optimum

RBFNN
Vz Vx Wy Vz
3.90 3.98 3.26 3.36
5.04 9.76 5.04 6.67

number of hidden layer nodes (i.e., Hecht-Nielsen
1987; Ripley 1993: Kaastra and Boyd 1996;
Kanellopoulos and Wilkinson 1997; Witten and
Frank 2005). Another way of determining the opti-
mal number of hidden neurons that can result
in good generalization and avoid overfitting is to
relate the number of hidden neurons to the num-
ber of training samples (i.e., Masters 1993; Rogers
and Dowla 1994; Amari et al. 1997). A num-
ber of systematic approaches have also been pro-
posed to obtain the optimal ANN architecture (i.e.,
Ghaboussi and Sidarta 1998; Chakraverty et al.
2006; Chakraverty 2007; Kingston et al. 2008).
However, none of these suggestions has been uni-
versally accepted or used. There is no direct and
precise way of determining the best number of
nodes in each hidden layer. In most of the reported
applications, the number of hidden neurons is
determined from the experience of individuals
using trial-and-error strategies. Hence, a trial-and-
error strategy with 30 neurons in the hidden layer
of ANN is applied in this study, and ANN is pruned
by gradually decreasing the hidden neurons. Con-
sequently, the optimal number of neurons in the
hidden layer was selected as 20 for BPANN and
17 for RBFNN which produced the smallest MSE.
Thus, the optimum structure of BPANN [2:20:1]
and of RBFNN [2:17:1] was determined by MAT-
LAB ANN module that allows changing the learn-
ing algorithm parameters dynamically, monitor-
ing error values and generating digital data about
sufficient learning rates. The significance of prun-
ing away hidden neurons in ANN architecture on
Geodetic Network (5) is represented in figure 4.
The main disadvantage of ANNs that use back
propagation algorithm is its slow convergence to
the global minimum. It is also likely to become
trapped into a local minimum. The learning rate
(n), also referred to as the step size, is used to
control the degree of the change in the weights in
response to errors in the output during each train-
ing cycle. The learning rate determines the size of
the steps taken towards the global minimum error
throughout the training process. It can be consid-
ered as the key parameter for a successful ANN
application because it controls the learning process
(Kavzoglu and Saka 2005). If the learning rate is
set too high, then large changes are allowed in the
weight and no learning occurs. Conversely, if the
learning rate is set too low, only small changes
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Figure 4. The significance of pruning away hidden neurons in ANN architecture.

are allowed, which can increase the learning time.
The momentum term («) dampens the amount of
weight change by adding in a portion of the weight
change from the previous iteration. The momen-
tum term is credited with smoothing out large
changes in the weights and with helping the net-
work converge faster when the error is changing in
the correct direction (Neyamadpour et al. 2010). In
this study, the estimation is started with a learn-
ing rate of 0.3 according to the guidelines sug-
gested by Neuner (2010). Due to the fact that only
an adaptive learning rate ensures the convergence
(Bishop 2005), the learning rate is decreased by a
factor of 0.5 if the cost function decreases and it is
increased by a factor of 1.05 when the cost function
increases during the training procedure. Also, the
momentum term is fixed to 0.6 for weight update
process. According to the general guidelines from
ANN literature (i.e., Gallagher and Downs 1997;
Graupe 2007), the initial values of the inter-neuron
weights were set to a range [—0.25, 0.25] (suitable
for the activation function) at the beginning of the
training process for converging to global minimum
quickly without getting stuck in a local minimum.
The design and optimization parameters of ANNs
of this study are summarized in table 4.

5. Case study

BPANN and RBFNN are trained in Geodetic
Network (5) (maximum reference points), and the
velocities of the test points are estimated via the
trained ANNs for the controlling process. The ANN
parameters obtained in the training procedure in
Geodetic Network (5) are fixed and used as con-
stants in the training process of ANNs for the other
geodetic networks.

In KRIG approach, the reference velocity field
vectors of the study area are generated from the
reference dataset by Surfer 11 surface modelling
program that is used widely for contour map-
ping, terrain modelling, and 3D surface mapping.
These vector maps are overlaid on the velocity
field contour maps (figure 5) to describe the
directional dependence. Figure 5 reveals that the
reference velocity fields used in this study are con-
sistent with the horizontal and vertical velocity
fields of Turkey computed by Aktug et al. (2011).
The KRIG defaults of the software were accepted
for modelling the velocity fields which were point
Kriging type, non-drift type (ordinary Kriging),
and linear variogram model. The reference velocity
fields were checked by cross-validation technique
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Table 4. Design and optimization parameters of ANNs.

Parameters

Training algorithm
Activation function
Number of input neurons
Number of output neurons
Number of hidden neurons
Early stopping criterion for training process
Data pre-processing

Initial weight range
Learning rate

Learning rate decrease
Learning rate increase
Momentum term
Performance function

and the velocity residuals of the test points were
computed from these fields.

The results of the test dataset are significant in
the evaluation procedure of BPANN, RBFNN and
KRIG. Therefore, velocity residual maps are pro-
duced with regard to the velocity differences of the
test points computed by equation (9) in the geode-
tic networks. The velocity residual maps of the
test points associated with AVyy , are given in
figures 6-8, respectively. The contour lines are
drawn at 2 mm intervals on the velocity residual
maps.

6. Results and conclusions

The analysis of the velocity residuals plotted in
figures 6-8 shows that the point velocity residuals
are getting smaller depending on the increase in
the number of the reference points in geodetic net-
works. BPANN’s point velocity estimation is better
than RBFNN’s estimations in all geodetic networks
for ANN approach.

The statistical values of the test dataset’s veloc-
ity residuals are presented in table 5, and the
velocity residual RMSEs of the test points based
on BPANN, RBEFNN and KRIG are shown in
figure 9.

When the results summarized in table 5 are eval-
uated, it can be seen from figure 9 that BPANN
estimated the point velocities more accurately in
Geodetic Networks (1), (2), and (3), with respect
to KRIG, in terms of RMSE as compared to the
others. In Geodetic Networks (4) and (5), KRIG
is more useful than BPANN for the point veloc-
ity estimation. RBFNN’s estimation accuracy is
approximately at the same level with KRIG’s esti-
mation only in Geodetic Network (1). On the other

Settings

Gradient descent back propagation
Sigmoid (BPANN); Gaussian (RBFNN)
2

1

20 (BPANN); 17 (RBFNN)

Test dataset

Min-max normalization

[—0.25, 0.25]

0.3

0.5

1.05

0.6

MSE

geodetic networks, KRIG’s results are better than
RBFNN’s results.

Based on the experimental results of evaluat-
ing the utility of ANN for the velocity estimation
in regional geodetic networks, the following conclu-
sions can be drawn from this study:

e The employment of BPANN is an alternative
tool to KRIG for the geodetic point velocity
estimation, in practice.

e BPANN can be used effectively with a small
reference point density in geodetic networks. A
rough guideline of point density can be intro-
duced as <~ 3000 km?/point with respect to the
accuracy of the result. When the number of the
points that will be estimated (test) is smaller
than the number of the points known (reference),
the estimation of geodetic point velocity with the
use of KRIG is evaluated as more powerful than
using BPANN.

e The main advantage of BPANN considered as a
velocity estimator is model-free estimation of its
flexible structure. The properly trained BPANN
can be used in the geodetic velocity estima-
tion for additional points, whereas KRIG is re-
determining weights for each additional point in
geodetic network.

e The combination of ANN models (with diverse
architecture; e.g., different training algorithms
and activation functions, additional hidden
layers and neurons) with interpolation methods
would be an appealing tool in geodetic veloc-
ity field applications where one has little or
incomplete point velocity data, because of ANN’s
adaptive feature that ‘learning by example’
replaces ‘programming’ and extrapolation ability
in estimation problems (for boundary or outside
of the geodetic networks).
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Figure 5. Reference velocity fields of geodetic networks: V x (left), Vy (middle), and V z (right).

ANN is a data-driven approach in which the
model can be trained by input—output data
to determine the structure (parameters) of the
model. For ANN, there is no need to either
simplify the physical complexity of the problem
or incorporate any assumptions about the fre-
quency distribution of the data. Besides, ANN

can always be updated with new training data
to obtain better results. In this regard, ANN
outperforms the conventional methods and can
be used as a powerful modelling tool in geodetic
and geophysical problems. The results of this
study reflect that the application of ANN has the
ability to estimate the point velocity estimation
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Table 5. Statistics of test dataset’s velocity residuals over the geodetic networks (units in mm/year).
BPANN RBFNN KRIG
AVyx AVy AVy AVyx AVy AVy AVyx AVy AVy
Geodetic network (1)
Minimum —11.0 —-10.3 —12.5 —12.7 —11.0 —10.6 —11.8 —16.0 —12.7
Maximum 12.1 6.5 11.9 12.7 7.6 13.6 17.2 10.2 14.1
Mean 2.0 —0.3 0.9 2.0 —1.5 2.0 2.7 —0.5 2.1
RMSE 4.8 3.0 4.1 5.4 3.7 4.6 5.4 3.5 4.5
Geodetic network (2)
Minimum —-10.4 —-10.4 —10.1 —14.8 —-10.4 —11.7 —10.1 —9.7 -9.9
Maximum 10.5 5.7 8.2 10.2 8.2 12.5 15.3 8.5 11.5
Mean 0.1 0.3 —0.3 —0.2 —1.2 1.0 1.0 0.5 0.5
RMSE 3.5 2.5 3.2 4.8 3.6 4.4 4.0 2.8 3.3
Geodetic network (3)
Minimum —8.0 —4.5 —6.9 —14.5 —7.0 —5.7 —10.0 —9.6 —14.2
Maximum 7.1 6.0 7.3 10.0 6.5 6.6 9.9 7.4 8.4
Mean —0.5 —0.3 0.6 —0.5 —-1.1 —0.1 0.0 0.0 —0.2
RMSE 3.1 2.2 2.9 4.7 3.1 3.5 3.1 2.3 3.0
Geodetic network (4)
Minimum —6.0 —4.4 —-5.9 —14.5 —5.8 —5.8 —-9.6 —8.0 -89
Maximum 7.8 5.7 7.0 9.7 5.9 7.1 6.3 3.7 4.3
Mean 1.0 0.1 0.9 —0.3 —1.2 1.3 0.1 0.0 0.0
RMSE 3.1 2.1 2.9 4.5 2.9 3.6 2.4 1.8 2.2
Geodetic network (5)
Minimum —4.4 —3.1 —5.2 —10.1 —5.7 —6.5 —4.9 —3.6 —-5.1
Maximum 7.3 5.0 7.0 9.4 6.1 6.2 3.7 3.0 3.9
Mean 0.5 0.0 0.4 —-0.7 —1.2 1.1 0.2 —0.1 0.0
RMSE 2.7 1.9 2.7 4.2 2.9 3.6 1.5 1.3 1.6
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Figure 9. RMSEs of velocity residuals of the test dataset.

for regional geodetic networks. The diverse ANN
architectures can be applied to other datasets for
determining the velocity field of geodetic GPS net-
works which is an open research problem. Despite
the feasibility of ANN in velocity field determina-
tion, future research should give further attention
to ensuring robust models, improving extrapola-
tion ability, and dealing with uncertainty.
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