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In this study, multi-linear regression (MLR) approach is used to construct intermittent reservoir daily
inflow forecasting system. To illustrate the applicability and effect of using lumped and distributed
input data in MLR approach, Koyna river watershed in Maharashtra, India is chosen as a case study.
The results are also compared with autoregressive integrated moving average (ARIMA) models. MLR
attempts to model the relationship between two or more independent variables over a dependent variable
by fitting a linear regression equation. The main aim of the present study is to see the consequences of
development and applicability of simple models, when sufficient data length is available. Out of 47 years
of daily historical rainfall and reservoir inflow data, 33 years of data is used for building the model and
14 years of data is used for validating the model. Based on the observed daily rainfall and reservoir
inflow, various types of time-series, cause-effect and combined models are developed using lumped and
distributed input data. Model performance was evaluated using various performance criteria and it was
found that as in the present case, of well correlated input data, both lumped and distributed MLR models
perform equally well. For the present case study considered, both MLR and ARIMA models performed
equally sound due to availability of large dataset.

1. Introduction

Inflow forecast is a key component in planning,
development, design, operation and maintenance
of the available water resources. Inflow forecast
models are useful in many water resources appli-
cations such as flood control, drought manage-
ment, optimal reservoir operation and hydropower
generation. There are many studies pertaining to
the reservoir inflow prediction by considering the
observed inflow as a time-series (Mays and Tung
1992). However, in many reservoirs in India, espe-
cially in intermittent rivers where the only source
is monsoon rainfall, the inflow depends heavily

on the rainfall and catchment characteristics. It
is to be remembered that the transformation of
rainfall into runoff involves much highly complex
process, such as interception, depression storage,
infiltration, overland flow, percolation, evapora-
tion and transpiration (Singh 1988). Over a period
of time, the relationship between rainfall and
runoff becomes equilibrium when there is not
much change in the catchment characteristics, i.e.,
the pattern between input and output remain
similar. Fairly a large number of models have
been developed and applied to simulate these
processes. According to the use of observational
data and description of the physical processes all

Keywords. Multi-linear regression; lumped and distributed data; time-series models; cause-effect models; combined

models; ARIMA models; Koyna reservoir inflow; India.

J. Earth Syst. Sci. 120, No. 6, December 2011, pp. 1067–1084
c© Indian Academy of Sciences 1067



1068 R B Magar and V Jothiprakash

watershed models can be categorized into four
broad types (Jothiprakash and Magar 2009):

• Empirical models,
• Conceptual models,
• Physically based models, and
• Data driven models

Each of these type of models has its own advan-
tages and disadvantages (Sorooshian et al 1993).

Large numbers of time-series models (Yevjevich
1963; Box and Jenkins 1976; Salas et al 1980) are
available in the literature. All the time-series mod-
els generate the synthetic sequence based on the
statistical parameters of the historical data. The
results reported in many of the earlier studies are
frequently benchmarked against those produced
by Box–Jenkins autoregressive integrated moving
average (ARIMA) modelling approach (Ahmed
and Sarma 2007; Momani and Naill 2009). If fairly
longer length of observed data is available, then it
is assumed that the catchment characteristics are
inherently captured in the observed input series
and thus simple regression models could also result
in better scenario. Regression is a basic statisti-
cal technique for the extrapolation of a dataset to
other situations either in time or space. Regres-
sion relationship will always be associated with
an estimate of the uncertainty associated with
the prediction of the dependent variables (Beven
2000). Even though many types of models are avail-
able for representing rainfall-runoff process, the
problem still remains unresolved and it is per-
haps for this reason that the alternative modelling
approaches are still being sought along with the
empirical models. Black box or the empirical mod-
els which attempt to develop relationship among
input and output variables provide first-hand infor-
mation on the rainfall-runoff estimation. There
are several empirical and semi-empirical rainfall-
runoff models currently in use. Such models are
developed by first assuming some mathematical
a priori, and then the parameters of the model
are estimated by minimizing a suitable objective
function.

Diskin (1970) viewed a linear regression model
as a simple conceptual model and explained the
physical meaning of the regression coefficients.
Loague and Freeze (1985) used regression, unit
hydrograph and quasi-physically based models for
upland catchments and concluded that regres-
sion models perform marginally better. Driver and
Troutman (1989) used linear regression models for
estimating urban storm-runoff quantity and qual-
ity. The use of various regression models in the
data has been dealt in detail by Hirsch (1979)
and Hirsch and Gilroy (1984). Chiew et al (1993)
suggested minimization of the sum of the two
objective functions; these objective functions were

minimized using the Levenberg–Marquardt (LM)
non-linear least-squares algorithm. Raman et al
(1995) studied five regression models namely,
runoff coefficient model, single linear regression,
monthly linear regression model, monthly linear
regression with stochastic description and double
regression models. All these models were used to
extend the monthly stream flow data at a site
where the available historic rainfall and stream
flow data are short for adequate system study.
Jagdeesh et al (2000) used sum of squares of errors
(SSE) between predicted and measured values par-
ticularly useful to take low monthly flows into
account.

Jain and Prasad (2003) investigated two types of
regression models namely, a linear multi-regression
and nonlinear multi-regression models to model an
event based rainfall-runoff process. Jothiprakash
et al (2007) developed MLR models based on dif-
ferent input structure combinations namely, cause-
effect, time-series and combined for modelling
monthly rainfall–runoff relationship for Kanand
watershed in Maharashtra, India. Sveinsson et al
(2008) compared the forecasting performances of
autoregressive (AR) model and linear regression
model by means of absolute-force error, root-
mean-square-force error, Akaike information crite-
ria (AIC), bias, and coefficient of determination
(R2). Only seasonal inflow (May–June–July) was
considered disregarding the rest of the time in a
year. It was reported that multiple model com-
bination approach was more effective than a sin-
gle forecast model. The above studies prove that
still multi-linear regression (MLR) models are very
much sought because of having the advantage of
a relationship between input and output. Present
study is intended to study the MLR model develop-
ment and its applicability for reservoir inflow fore-
casting using fairly longer length of daily lumped
and distributed input data (for the same catch-
ment). The main objective of the present study
is to develop various types of MLR models using
time-series data derived from the Koyna water-
shed in Maharashtra, India which is an intermit-
tent river. Further ARIMA models also have
been developed using time-series lumped data
and compared with time-series MLR lumped
data models to see the effect of longer length
of data.

2. Multi-linear regression models

Since the basic characteristics of the watershed
remain unaltered in years, there exists certain cor-
relation between the input and output variables.
MLR is the simplest and well developed repre-
sentation of a casual, time invariant relationship
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between an input function of time and correspond-
ing output function. MLR models are considered as
benchmark for comparison with other techniques
in reservoir inflow forecasting (Chau et al 2005).
MLR attempts to model the relationship between
two or more independent variables and dependent
variables by fitting a linear regression equation to
observed data. Every value of the independent vari-
able ‘x’ is associated with a value of the dependent
variable ‘y’. If y is a dependent variable (expected
value) and x1, x2,. . . , xn are independent variables,
then the basic MLR model is given by

y = a + b1x1 + b2x2 + · · · + bnxn (1)

where a, bi = regression constant determined using
a least square method.

3. Study area

The area selected for the present study model
application is the Koyna watershed, situated on
the west coast of Maharashtra, India, lies between
the latitude of 17◦00′–17◦59′N and longitude of
73◦02′–73◦35′E. The location of the study area
along with nine rain-gauge stations in the Koyna

watershed is shown in figure 1. The Koyna Dam
is one among the 23,000 large dams in the world.
The height of the Koyna Dam above foundation
level is 103 m and the length of the dam at the
crest is about 800 m. The Koyna project is a multi-
purpose project, but primarily designed as a hydro-
electric project that supplies hydro-electric power
to Maharashtra, India with an installed capacity of
1920 MW. The Koyna watershed has an elongated
leaf shape, about 64 km in length and about 13 km
width with an area of 891.78 km2. The watershed
is bounded by hills and broadly consists of 41% for-
est, 49% cultivated area, 6% waste land and 4% of
others (CDO 1992). The water spread area at full
reservoir level is 115.36 km2 which is about 13% of
the total catchment area. Nearly 99% of the annual
rainfall in this basin occurs during south-west mon-
soon (June to October) and varies from 2972 to
6694 mm annually over the valley.

Daily rainfall data (January 1961–December
2007) available from nine rain-gauge stations and
daily inflow data into the reservoir has been col-
lected from the Koyna Irrigation Division Office,
Government of Maharashtra, India and is used
in this study. Table 1 shows important statisti-
cal properties of the daily rainfall and daily inflow
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Figure 1. Location of the study area, the Koyna watershed.
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series. The cross correlation among each rain-gauge
station as well as inflow station is presented in
table 2. From table 2, it can be seen that the cor-
relation among each station is very good revealing
that the daily rainfall is uniformly distributed over
the catchment.

4. Model development

Historically, observed inflow values represent the
hydrological state of the catchment which greatly
determines a catchment’s response to a rainfall
event. Hence both rainfall and inflow are consid-
ered as critical input to the model development.
In the Koyna catchment, there are nine rain-gauge
stations measuring the rainfall data. Hence only
rainfall (P ) and runoff (Q) data are used for model
development. Even though each station has a time-
series of data, all the rainfall data are lumped
using Thiessen polygon method with respect to
time and a single time-series rainfall data has been
used to predict the inflow and the model is consid-
ered as lumped data models. In fact averaging by
Thiessen polygon method produced a smoothing
of non-stationarities by averaging the fluctuations
recorded at each rain-gauge station (Burlando
et al 1993; Toth et al 2000). Spatially or distributed
data models are developed by using the rainfall
at each rain-gauge station ‘as it is’ as the input
data. According to different input combinations
to the models, various types of models developed
in the present study are time-series models (fore-
casted values are based on observed current and
past values), cause-effect models (output, the reser-
voir inflow is affected by precipitation alone over
the entire catchment area) and combined models
(output is affected by current and delayed rainfall
as well as inflows).

4.1 Daily lumped input data models

Initially daily lumped input data is used for model
development. Training dataset is a major part of
the data that is used for training the network and
for finding the governing pattern of the data and
should be preferably high for better generalization
ability compared to testing the data. The test-
ing patterns are used for evaluating accuracy of
the trained model. Training dataset should contain
low, medium as well as peak values so that it can
capture the fluctuations within the data. Hence, in
the present study, the data was divided into two
sets: a training set consisting of first 33 years (70%)
and a testing set of the remaining 14 years (30%).
In the present study, an attempt is made to develop
a relationship between the inflow at the catchment

outlet (at reservoir), using rainfall and inflow data
available up to the current time ‘t’. Therefore, all
developed models are basically approximators of
the general function.

Q(t+n) = f
{
Pobs(t), Pobs(t−1), ......., Pobs(t−m),

Qobs(t), Qobs(t−1), ........, Qobs(t−n)

}
(2)

Pobs(t) and Qobs(t) represent observed rainfall and
inflow during time period ‘t′. Q(t+n) is inflow to be
predicted for the next time step. The prediction is
done up to 3 days ahead. Initially ARIMA model
has been developed for the observed time-series
inflow.

Luk et al (2000) and Aqil et al (2007) reported
that networks trained on transformed data achieve
better performance. A logarithmic transformation
has been used to bring the observed data to near
normal distribution. Transformation is performed
on each input output variable independently using
the following equations.

Zp,t = a log10

(
Pobs(t) + b

)
, (3)

Zq,t = a log10

(
Qobs(t) + b

)
. (4)

The predicted results were then back-transformed
using the following equation

Qpred(t) = 10Zqt/a − b (5)

where Zp,t, Zq,t are the transformed values of the
rainfall and inflow during time period ‘t’, a and
b are arbitrary constants assumed as 0.5 and 1,
respectively.

Since these coefficients are arrived on trial-and-
error basis, until the data followed normal dis-
tribution, it is assumed that there is no need of
sensitivity analysis using these coefficients. The
descriptive statistics of total observed, transformed
dataset as well as training and testing dataset are
shown in table 3. From table 3, it can be observed
that the standard deviation, skewness, kurtosis
show very high values in observed data and found
to be greatly reduced after logarithmic transforma-
tion. From table 3 it can also be observed that the
training, testing, and entire dataset (both rainfall
and inflow) are statistically similar revealing that
the data are from same population and are station-
ary. This conclusion is supported by many authors
(Kisi 2007; Aytek and Alp 2008). The same dataset
has been used for both ARIMA as well as MLR
model development.

Determination of significant input variables that
determines the model a priori is one of the most
important steps in the linear model development
process. Choosing a proper and relevant input
variable that have an influence on the output is
one of the most essential tasks in developing a
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successful forecast of a rainfall-inflow dynamics
(Maier and Dandy 1997). Generally, some degree
of a priori knowledge is used to specify the initial
set of inputs (Campolo et al 1999; Thirumalaiah
and Deo 2000). When the relationship to be mod-
elled is not well understood; then various tech-
niques, such as cross correlation, autocorrelation
function (ACF) and partial autocorrelation func-
tion (PACF) plots are often employed (Sudheer
et al 2002; Sivakumar et al 2002). Based on cross
correlation, ACF and PACF, 20 different lumped
data models with various input combinations have
been formulated to develop the rainfall inflow
relationship. As an example, sample lumped
data input models (two in each type) are shown in
Appendix I.

4.2 Daily distributed input data models

Daily distributed data models have been devel-
oped for establishing relationship between rain-
fall and inflow for the Koyna watershed. Unlike
lumped data model, in distributed data model, the
input variables from different stations are consid-
ered as individual inputs (used ‘as it is’) for the
model development. Hence in this case only cause-
effect and combined models have been developed
for daily distributed data. The rainfall from nine
rain-gauge stations are valued as P1(t), P2(t), P3(t),
P4(t), P5(t), P6(t), P7(t), P8(t), P9(t) and inflow as Q(t).
In this case also logarithmic transformed inputs are
used. Twenty different models (same lags as that
of lumped data models) with various combinations
of input have been formulated to develop the rain-
fall inflow relationship. As an example, sample dis-
tributed data input models (two in cause-effect and
one in combined) are shown in Appendix II. The
equations given in Appendices I and II are same,
the difference is: if the rainfall is lumped then it is
one input and if rainfall is distributed then it will
be nine inputs for a single lag. The general form of
distributed data MLR model is

Qt+1 =f
{(

P1(t), P2(t), ..., P9(t)

)
,

(
P1(t−1), P2(t−1), . . . , P9(t−1)

)
, . . . ,

(
P1(t−m), P2(t−m), . . . , P9(t−m)

)

×Qobs(t), Qobs(t−1), . . . , Qobs(t−n)

}
. (6)

5. Model performance criteria

There is no single performance criterion avail-
able to select the best model. Many performance
criteria are used to select a best model. All
the performance criteria are estimated based on
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the observed and predicted values. Each perfor-
mance criteria indicates a particular capability of
the model hence various indicators are used. In
the present study, correlation coefficient (R), root
mean square error (RMSE), Nash–Sutcliffe effi-
ciency (E), Akaike information criteria (AIC) and
Bayesian information criteria (BIC) are used and
are explained in Appendix III. ‘R’ is commonly
used statistical parameter and provides informa-
tion on the strength of linear relationship between
the observed and the computed values. ‘R’ can be
used to determine whether two ranges of data move
together; that is, where large values of one set are
associated with large values of other (positive cor-
relation) whether small values of one set are asso-
ciated with large values of other (negative correla-
tion), or whether values in both sets are unrelated
(correlation near zero) (Srinivasulu and Jain 2006).

The Nash–Sutcliffe model efficiency (E) is used
to assess the predictive power of hydrological mod-
els (Nash and Sutcliffe 1970). It is a normalized
statistic that determines the relative magnitude
of the residual variance (noise) compared to the
observed data variance and indicates how well the
plot of observed versus predicted data fits the 1:1
line. RMSE is probably the most easily interpreted
statistic, since it has the same units as the variable.
The RMSE is thus the difference, on average, of
an observed data and the estimated variable. The
RMSE is specially suited to iterative algorithms
and is a better measure for high values. It offers a
general picture of the errors involved in prediction.
It needs to be noted that the measures involving
the error-square terms are also sensitive to extreme
values.

In order to make a better balance among gener-
alization ability, parsimony and training speed, two
additional indicators, the AIC and BIC, are used
(Akaike 1974; Rissanen 1978). The goal is to mini-
mize AIC to obtain a network with best generaliza-
tion. Although the RMSE statistics are expected
to progressively improve as more parameters are
added to the model, the AIC and BIC statistics
penalize the model for having more parameters and
therefore tend to result in more parsimonious mod-
els (Hsu et al 1995). Model selection is performed
by looking for the minimum BIC value. It turns out
the final form of this criterion is rather similar to
that of AIC but one can see that the penalty due
to the number of model parameters is multiplied
by ‘ln’. As a consequence, BIC learns more than
AIC towards lower-dimensional models.

6. Results and discussion

More than 20 developed models have been applied
to the Koyna watershed data to select the best

model and type of input data to forecast inflow into
reservoir. The ARIMA time-series analysis used
lags and shifts in the historical data (e.g., mov-
ing averages, seasonality) to predict the future val-
ues. It is to be noted that separate models are to
be developed for different multi-time-step ahead
daily inflow prediction. Trial-and-error procedure
is adopted to select the best parameters (p, d and
q). Various combinations of p, d and q are tried
and the models that have resulted in better com-
bination are only presented in table 4 with a lead
period of 1 day, 2 days and 3 days. The values of
the parameters are chosen such that the sum of
squared residuals (SSR) between the observed data
and the estimated values and AIC and BIC are as
small as possible. The ARIMA models are devel-
oped using 70% length of the data and remaining
30% length of data is used for testing. This per-
centage was arrived after a number of trial-and-
error run of the model by using various percent-
ages of data for training and testing. The com-
mercially available software SPSS 16.0 was used
for ARIMA model development. The analysis was
initialized with one parameter at a time, then their
combination and so on.

From table 4, it is apparent that performances of
the models are slightly deteriorating with increase
in lead time. This may be due to poor correla-
tion of current inflow with 2-day and 3-day lagged
inflows. The prediction of 1 day ahead inflow is
quite satisfactory because the input space con-
tains the most recent information. It can also be
observed that ARIMA(2, 1, 2) model performed
better than any other combination for all lead peri-
ods and obtained the best statistics, i.e., maximum
of R(0.66), E(0.56) and minimum of RMSE(14.99),
AIC(13945.02) and BIC(13951.57). It is also found
that the model performance is not increasing with
the increase in p, q and d. The time-series and scat-
ter plot of observed and predicted inflow (1 day
lead period) during testing period resulted from
ARIMA(2, 1, 2) model is presented in figure 2(a)
and (b), respectively. From the time-series and
scatter plot, it can be seen that only low flows are
predicted reasonably accurate, medium inflows are
overpredicted and high inflows are underpredicted.
The reason may be due to non-linear behaviour
of medium and high inflows. Nevertheless ARIMA
model can provide first-hand information about the
process of inflow prediction. Further models are
developed using MLR techniques.

6.1 Daily lumped data MLR models

The commercially available software SPSS 16.0 has
been used for MLR model development also. The
performance of the lumped MLR models during
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Table 4. Performance measures of daily time-step ARIMA models.

Development Testing

Performance Lead period Lead period

Models criteria 1 day 2 days 3 days 1 day 2 days 3 days

ARIMA 1–1–1 R 0.62 0.56 0.52 0.60 0.54 0.50

E 0.58 0.55 0.47 0.57 0.51 0.45

RMSE 17.89 17.95 18.02 18.23 18.32 18.37

AIC 34656.17 34696.40 34743.16 14952.8 14978.17 14992.21

BIC 34663.56 34703.79 34753.44 14959.35 14984.71 14998.75

ARIMA 2–2–2 R 0.65 0.59 0.56 0.62 0.57 0.54

E 0.57 0.56 0.52 0.55 0.52 0.48

RMSE 14.97 15.13 15.05 15.32 15.43 15.49

AIC 32515.17 32642.90 32579.21 14057.17 14094.02 14114.00

BIC 32522.56 32650.30 32589.31 14063.72 14100.56 14120.55

ARIMA 1–2–1 R 0.63 0.58 0.56 0.64 0.57 0.54

E 0.54 0.56 0.55 0.51 0.54 0.50

RMSE 15.12 15.33 15.59 15.46 15.49 15.49

AIC 32634.96 32800.69 33002.76 14104.02 14114 14114.00

BIC 32642.35 32808.08 33012.90 14110.57 14120.55 14120.55

ARIMA 1–2–2 R 0.61 0.58 0.50 0.59 0.52 0.50

E 0.52 0.49 0.45 0.51 0.50 0.43

RMSE 15.26 15.78 15.88 15.31 15.39 15.46

AIC 32745.70 33148.3 33224.20 14053.81 14080.65 14104.02

BIC 32753.09 33155.69 33234.36 14060.35 14087.19 14110.57

ARIMA 2–1–1 R 0.64 0.55 0.51 0.63 0.52 0.50

E 0.59 0.52 0.45 0.58 0.50 0.43

RMSE 15.01 15.03 15.10 15.14 15.20 15.30

AIC 32547.23 32563.23 32619.06 13996.3 14016.67 14050.44

BIC 32554.62 32570.62 32629.17 14002.85 14023.22 14056.99

ARIMA 2–1–2 R 0.64 0.60 0.62 0.66 0.62 0.60

E 0.58 0.50 0.51 0.56 0.53 0.55

RMSE 14.01 14.12 14.19 14.99 15.12 15.19

AIC 31718.85 31812.82 31872.24 13945.02 13989.49 14013.28

BIC 31726.25 31820.21 31882.28 13951.57 13996.04 14019.83

ARIMA 3–2–2 R 0.45 0.47 0.44 0.43 0.45 0.43

E 0.47 0.42 0.41 0.45 0.41 0.39

RMSE 15.18 15.32 15.72 16.10 16.12 16.22

AIC 32682.54 32792.85 33102.53 14312.92 14319.31 14351.16

BIC 32689.94 32800.24 33112.68 14319.47 14325.86 14357.71

ARIMA 4–1–4 R 0.45 0.43 0.41 0.43 0.41 0.39

E 0.42 0.40 0.40 0.40 0.40 0.45

RMSE 18.38 18.54 18.61 18.08 18.10 18.21

AIC 34980.83 35084.97 35130.24 14910.25 14915.95 14947.15

BIC 34988.22 35092.36 35140.56 14916.8 14922.49 14953.70

training and testing period is presented in table 5.
From table 5, it can be observed that the perfor-
mance of each model during training and testing is
similar indicating that the models are not overfit-
ted and also the results are consistent and encour-
aging. The reason may be due to the statistical
properties of training dataset and testing dataset
are similar and length of input data used for model
development is sufficiently longer. From table 5 it
is apparent that the performances of all models are

slightly deteriorating with increase in lead time. As
the forecast lead period increases the correlation
between desirable output and given input decreases
leading to poor prediction.

For comparison, the performance of time-series
models (DL-MLR model 1 to DL-MLR model
7) listed in table 5 are considered. From this
it is observed that model performance is increas-
ing up to a lagged input of six and then
slightly decreases. Correlation coefficient (R) and
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Figure 2. (a) Time-series and (b) scatter plot of ARIMA(2, 1, 2) model during testing period.

Nash–Sutcliffe efficiency (E) is gradually increas-
ing and the RMSE, AIC, BIC values are decreas-
ing with increase in number of inputs. Among
seven models, DL-MLR model 6 with 1 day lead
period which used input structure of Q(t−5),
Q(t−4), Q(t−3), Q(t−2), Q(t−1), Q(t) has yielded a
maximum R (0.67) and E (0.59) values and min-
imum RMSE (16.21), AIC (14349.81) and BIC
(14356.35) values. Since AIC and BIC values are
minimum than any other model, DL-MLR model 6
may be considered as a parsimonious model. From
this result it is found that this lumped time-series
MLR model behave same as that of ARIMA(2–1–
2) model. This may be due to large dataset, which
might have completely captured the stochasticity.
However, overall the performance is not convinc-
ing, hence to improve the performance further, the
causing parameter, viz., rainfall is introduced as
the input in the model development and is named
as cause-effect MLR models.

From table 5, it can be seen that the DL-MLR
model 8 to DL-MLR model 16 are cause-effect
models. In this model type, it is assumed that
the output (inflow in this case) is caused by the
lumped rainfall (exogenous input parameter) over
the entire catchment area. In this type, the mod-
els are redeveloped and from the performances
during training and testing it is found that there
is gradual improvement with increase in numbers
of input up to 7-day lags (i.e., from DL-model 8
to DL-model 15) and thereafter the performance
is decreasing. Among the cause-effect models
DL-MLR model 15 which used 8 inputs has
obtained best statistics than any other model. In
this type also the model performance is deteriorat-
ing as lead time increases from 1 day to 3 days. This
could be attributed to the low dependency between
the values separated by higher lags. It is also found
that the time-series models are performing better
than cause-effect models. The reason may be due
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Table 5. Performance measures of daily lumped data MLR models.

No.
Training Testing

of input Performance Lead period Lead period

Models variables criteria 1 day 2 days 3 days 1 day 2 days 3 days

Time-series models

DL-MLR 1 R 0.56 0.53 0.50 0.51 0.48 0.50

Model 1 E 0.54 0.53 0.48 0.50 0.47 0.52

RMSE 17.98 18.21 18.47 18.16 18.31 18.52

AIC 34724.36 34878.17 35042.59 14935.44 14977.69 15036.78

BIC 34731.75 34885.56 35049.99 14941.99 14984.23 15043.33

DL-MLR 2 R 0.62 0.58 0.55 0.58 0.48 0.50

Model 2 E 0.56 0.55 0.50 0.47 0.47 0.52

RMSE 17.64 17.37 18.19 17.89 18.20 18.25

AIC 34496.71 34307.06 34863.49 14857.04 14946.96 14960.83

BIC 34504.11 36473.33 34870.88 14863.58 14953.51 14967.37

DL-MLR 3 R 0.64 0.62 0.59 0.61 0.59 0.55

Model 3 E 0.61 0.53 0.51 0.58 0.52 0.51

RMSE 17.59 17.66 18.01 17.67 17.98 18.23

AIC 34456.66 34505.58 34743.27 14793.94 14883.04 14952.86

BIC 34464.05 34512.97 34750.66 14800.49 14889.59 14959.40

DL-MLR 4 R 0.66 0.63 0.60 0.62 0.60 0.57

Model 4 E 0.63 0.60 0.58 0.59 0.55 0.54

RMSE 16.70 16.99 17.00 17.06 17.35 17.92

AIC 33833.89 34045.40 34050.67 14613.81 14699.78 14865.31

BIC 33841.28 34052.87 34058.07 14620.36 14706.32 14871.85

DL-MLR 5 R 0.67 0.65 0.61 0.65 0.64 0.60

Model 5 E 0.63 0.62 0.59 0.63 0.62 0.62

RMSE 16.37 16.64 16.96 16.90 16.96 17.34

AIC 33592.20 33790.66 34022.35 14565.01 14581.17 14697.64

BIC 33599.60 33798.06 34029.75 14571.55 14587.72 14704.18

DL-MLR 6 R 0.70 0.68 0.64 0.67 0.62 0.59

Model 6 E 0.66 0.60 0.53 0.59 0.57 0.56

RMSE 15.99 17.06 18.56 16.21 17.23 18.83

AIC 33316.25 34090.42 35106.71 14349.81 14664.83 15121.76

BIC 33323.65 34097.82 35114.10 14356.35 14671.38 15128.30

DL-MLR 7 R 0.65 0.62 0.58 0.61 0.57 0.50

Model 7 E 0.61 0.58 0.55 0.58 0.56 0.45

RMSE 15.25 16.12 17.38 15.31 15.68 15.99

AIC 32745.65 33410.11 34312.63 14055.61 14176.87 14280.63

BIC 32753.04 33417.51 34320.03 14062.15 14183.41 14287.18

Cause-effect models

DL-MLR 1 R 0.55 0.52 0.50 0.52 0.50 0.45

Model 8 E 0.45 0.43 0.44 0.40 0.37 0.35

RMSE 19.17 19.23 19.25 19.46 20.14 20.80

AIC 35495.64 35530 35544.27 15291.02 15467.53 15634.03

BIC 35503.03 35537.4 35551.67 15297.57 15474.08 15640.58

DL-MLR 2 R 0.58 0.55 0.52 0.55 0.52 0.48

Model 9 E 0.55 0.54 0.42 0.46 0.50 0.47

RMSE 19.17 19.23 19.25 19.46 20.14 20.80

AIC 35495.64 35530 35544.27 15291.02 15467.53 15634.03

BIC 35503.03 35537.4 35551.67 15297.57 15474.08 15640.58

DL-MLR 3 R 0.60 0.58 0.55 0.57 0.54 0.50

Model 10 E 0.58 0.56 0.45 0.48 0.45 0.48

RMSE 19.12 19.26 19.18 19.23 19.36 19.69

AIC 35462.89 35546.22 35497.44 15229.13 15262.94 15351.46

BIC 35470.28 35553.61 35504.83 15235.68 15269.49 15358
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Table 5. (Continued.)

No.
Training Testing

of input Performance Lead period Lead period

Models variables criteria 1 day 2 days 3 days 1 day 2 days 3 days

DL-MLR 4 R 0.62 0.58 0.56 0.58 0.55 0.53

Model 11 E 0.67 0.55 0.46 0.49 0.47 0.49

RMSE 18.86 19.20 19.00 19.12 19.41 19.72

AIC 35298.25 35513.74 35386.87 15200.37 15277.39 15358.08

BIC 35305.64 35521.13 35394.26 15206.91 15283.94 15364.63

DL-MLR 5 R 0.62 0.58 0.56 0.59 0.55 0.54

Model 12 E 0.66 0.55 0.47 0.50 0.48 0.50

RMSE 19.12 19.33 19.03 19.17 19.15 19.94

AIC 35462.89 35591.07 35406.46 15213.91 15208.17 15416.98

BIC 35470.28 35598.47 35413.86 15220.46 15214.71 15423.53

DL-MLR 6 R 0.63 0.59 0.58 0.58 0.56 0.56

Model 13 E 0.62 0.56 0.49 0.52 0.49 0.52

RMSE 18.92 19.41 19.15 19.18 19.41 19.46

AIC 35331.74 35641.18 35477.81 15215.17 15277.39 15291.02

BIC 35339.13 35648.57 35485.21 15221.72 15283.94 15297.57

DL-MLR 7 R 0.63 0.60 0.55 0.62 0.57 0.55

Model 14 E 0.61 0.56 0.50 0.54 0.50 0.52

RMSE 18.89 19.46 19.20 19.30 18.98 19.04

AIC 35313.25 35672.66 35513.74 15249.17 15162.72 15179.16

BIC 35320.64 35680.05 35521.13 15255.71 15169.27 15185.71

DL-MLR 8 R 0.66 0.64 0.60 0.63 0.58 0.56

Model 15 E 0.61 0.60 0.58 0.57 0.50 0.53

RMSE 14.95 15.87 17.63 17.37 17.77 17.98

AIC 32503.09 33220.9 34488.8 14706.18 14822.06 14882.32

BIC 32510.48 33228.3 34496.19 14712.73 14828.60 14888.87

DL-MLR 9 R 0.54 0.53 0.52 0.50 0.50 0.45

Model 16 E 0.45 0.44 0.45 0.45 0.38 0.35

RMSE 19.71 20.07 18.021 18.53 18.60 18.89

AIC 35827.94 36042.87 34746.78 15038.36 15056.43 15137.03

BIC 35835.33 32791.42 34754.18 15044.90 15062.98 15143.57

Combined models

DL-MLR 2 R 0.70 0.65 0.63 0.65 0.62 0.60

Model 17 E 0.63 0.60 0.62 0.57 0.61 0.59

RMSE 14.10 15.31 18.02 18.53 18.60 18.89

AIC 31802.67 32791.42 34746.78 15038.36 15056.43 15137.03

BIC 31810.06 32798.81 34754.18 15044.90 15062.98 15143.57

DL-MLR 3 R 0.84 0.82 0.77 0.80 0.79 0.74

Model 18 E 0.69 0.68 0.57 0.66 0.62 0.54

RMSE 14.57 16.06 16.70 14.83 16.64 17.29

AIC 32199.94 33363.02 33833.89 13891.64 14483.66 14680.47

BIC 32207.33 33370.41 33841.28 13898.19 14490.21 14687.02

DL-MLR 5 R 0.67 0.65 0.62 0.71 0.68 0.65

Model 19 E 0.64 0.61 0.56 0.65 0.62 0.59

RMSE 14.20 15.24 18.02 16.93 15.32 16.05

AIC 31890.20 32734.80 34746.78 14574 14057.80 14299.57

BIC 31897.60 32742.19 34754.18 14580.55 14064.35 14306.12

DL-MLR 7 R 0.65 0.62 0.60 0.69 0.66 0.63

Model 20 E 0.62 0.59 0.50 0.66 0.65 0.61

RMSE 14.55 14.91 18.29 16.33 15.64 15.74

AIC 32180.12 32470.75 34928.99 14388.10 14165.53 14197.94

BIC 32187.51 32478.14 34936.38 14394.65 14172.08 14204.48
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to the better autocorrelation of inflow data than
the serial correlation with rainfall.

Since it is found that either rainfall data (caus-
ing variable) alone or inflow data (effective vari-
able) alone is insufficient to reproduce the inflows
in an effective way, both rainfall and inflow are
given as input and named as combined models.
The performances of the developed combined DL-
MLR models, i.e., DL-MLR model 17 to DL-MLR
model 20 are shown in table 5. However, among the
combined models, DL-MLR model 18 with 1 day
ahead which used input structure as P(t−1), P(t)

and Q(t) is showing better performance R (0.80),
E (0.66). Hence, DL-MLR model 18 is selected as
best MLR model among lumped input data MLR
models (including time-series and cause-effect
models). It is also to be noted that the num-
ber of data points during training and testing are
different leading to skewed AIC and BIC values
during training and testing. The combined input is
responsible for the reduction in RMSE, AIC, BIC

to greater extent. Thus it may be concluded that
while developing a lumped reservoir inflow predic-
tion model, having impulse response to rainfall,
combined input models may result in better sce-
nario. The two dimensions, i.e., rainfall and inflow
as input has captured the non-linearity nature of
inflow.

Figure 3 shows the scatter plots between the
actual observed inflow and corresponding predic-
tions by combined DL-MLR model 18 for different
lead times of 1 day, 2 days and 3 days during test-
ing period. Visual inspection of these figures reveals
that the performances of the models are deterio-
rating with increase in lead period, especially peak
values. In all the MLR models, 1 day ahead predic-
tion was found to produce more acceptable results,
may be because of higher correlation with 1 day
ahead input and output. The poor performance of
higher lead period may be due to non-linear rela-
tionship between current inflow and higher order
input variables.
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Figure 3. Scatter plot of observed and multi-time-step ahead predicted inflow by DL-MLR model 18 during testing period
(combined input).
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Table 6. Performance measures of daily distributed data MLR models.

No.
Training Testing

of input Performance Lead period Lead period

Models variables criteria 1 day 2 days 3 days 1 day 2 days 3 days

Cause-effect models

DD-MLR 9 R 0.45 0.42 0.40 0.42 0.41 0.45

Model 1 E 0.42 0.40 0.42 0.35 0.38 0.35

RMSE 21.15 22.27 23.14 22.98 23.87 25.76

AIC 11705.04 11902.93 12049.89 5152.19 5214.62 5339.82

BIC 11711.29 11909.18 12056.14 5157.59 5220.02 5345.22

DD-MLR 18 R 0.51 0.48 0.42 0.48 0.43 0.46

Model 2 E 0.45 0.46 0.38 0.42 0.40 0.42

RMSE 20.16 21.98 22.76 21.87 22.16 23.80

AIC 11521.19 11852.66 11986.39 5070.85 5092.49 5339.82

BIC 11527.44 11858.91 11992.64 5076.25 5220.02 5345.22

DD-MLR 27 R 0.55 0.52 0.50 0.50 0.48 0.43

Model 3 E 0.51 0.46 0.48 0.45 0.42 0.40

RMSE 19.12 19.30 20.21 20.54 21.32 22.87

AIC 11318.07 11354.00 11530.69 4967.76 5029.00 5144.30

BIC 11324.32 11360.25 11536.94 4973.17 5034.40 5149.71

DD-MLR 36 R 0.60 0.58 0.53 0.58 0.55 0.53

Model 4 E 0.57 0.55 0.44 0.52 0.51 0.49

RMSE 19.86 21.87 22.54 19.87 19.98 20.32

AIC 11463.69 11833.42 11949.14 4913.27 4922.34 4950.07

BIC 11469.95 11839.67 11955.39 4918.68 4927.75 4955.47

DD-MLR 45 R 0.64 0.62 0.59 0.62 0.56 0.55

Model 5 E 0.59 0.56 0.55 0.55 0.50 0.52

RMSE 15.92 16.23 18.61 18.33 18.75 18.91

AIC 10615.65 10689.61 11214.39 4780.73 4817.95 4831.91

BIC 10621.91 10695.87 11220.64 4786.13 4823.36 4837.32

DD-MLR 54 R 0.58 0.55 0.50 0.50 0.48 0.43

Model 6 E 0.55 0.52 0.48 0.45 0.42 0.40

RMSE 18.12 19.30 20.21 20.54 21.32 22.87

AIC 11112.06 11354.00 11530.69 4967.76 5029.00 5144.30

BIC 11118.31 11360.25 11536.94 4973.17 5034.40 5149.71

DD-MLR 63 R 0.54 0.50 0.50 0.52 0.51 0.42

Model 7 E 0.48 0.46 0.48 0.43 0.40 0.39

RMSE 18.98 19.01 20.21 20.14 21.12 22.67

AIC 11289.88 11295.94 11530.69 4935.45 5013.51 5129.87

BIC 11296.14 11302.19 11536.94 4940.85 5018.92 5135.28

Combined models

DD-MLR 10 R 0.65 0.62 0.60 0.61 0.56 0.54

Model 8 E 0.60 0.52 0.50 0.58 0.45 0.46

RMSE 19.82 19.61 19.11 18.89 19.27 19.76

AIC 11455.96 11415.11 11316.06 4830.17 4862.90 4904.15

BIC 11462.21 11421.36 11322.31 4835.58 4868.30 4909.56

DD-MLR 19 R 0.67 0.65 0.62 0.64 0.59 0.55

Model 9 E 0.63 0.55 0.55 0.61 0.58 0.48

RMSE 18.15 18.69 18.91 18.89 18.98 17.31

AIC 11118.40 11230.84 11275.71 4830.17 4837.98 4686.66

BIC 11124.65 11237.09 11281.97 4835.58 4843.39 4692.06

DD-MLR 20 R 0.69 0.66 0.61 0.63 0.61 0.59

Model 10 E 0.65 0.57 0.54 0.60 0.58 0.52

RMSE 16.08 16.34 16.57 18.29 18.68 18.35

AIC 10654.00 10715.52 10769.12 4777.14 4811.81 4782.52

BIC 10660.26 10721.77 10775.37 4782.54 4817.21 4787.93



1080 R B Magar and V Jothiprakash

Table 6. (Continued.)

No.
Training Testing

of input Performance Lead period Lead period

Models variables criteria 1 day 2 days 3 days 1 day 2 days 3 days

DD-MLR 21 R 0.72 0.69 0.63 0.69 0.65 0.61

Model 11 E 0.69 0.59 0.56 0.63 0.58 0.56

RMSE 15.98 15.14 14.23 15.66 16.54 17.54

AIC 10630.08 10423.00 10185.28 4522.07 4611.90 4708.35

BIC 10636.33 10429.25 10191.53 4527.48 4617.30 4713.75

DD-MLR 22 R 0.73 0.68 0.59 0.69 0.66 0.63

Model 12 E 0.61 0.57 0.52 0.56 0.64 0.56

RMSE 16.29 17.38 17.75 16.29 16.76 17.89

AIC 10703.76 10952.15 11032.94 4586.88 4633.61 4740.81

BIC 10710.02 10958.40 11039.19 4592.28 4639.01 4746.21

DD-MLR 23 R 0.70 0.65 0.57 0.62 0.60 0.58

Model 13 E 0.60 0.55 0.50 0.55 0.54 0.54

RMSE 16.60 17.67 17.94 16.41 16.68 18.03

AIC 10776.06 11015.61 11073.77 4598.93 4625.75 4753.62

BIC 10782.31 11021.87 11080.02 4604.34 4631.15 4759.02

DD-MLR 24 R 0.72 0.70 0.68 0.68 0.65 0.63

Model 14 E 0.58 0.65 0.62 0.61 0.63 0.67

RMSE 15.89 16.04 16.76 15.89 16.04 16.76

AIC 10608.42 10644.45 10812.85 4546.03 4561.47 4633.61

BIC 10614.67 10650.71 10819.10 4551.43 4566.87 4639.01

DD-MLR 25 R 0.76 0.72 0.66 0.75 0.71 0.70

Model 15 E 0.70 0.65 0.68 0.71 0.69 0.66

RMSE 16.87 16.14 16.23 16.66 16.38 17.32

AIC 10837.93 10668.29 10689.61 4623.78 4595.93 4687.61

BIC 10844.19 10674.54 10695.87 4629.18 4601.33 4693.01

DD-MLR 28 R 0.75 0.72 0.66 0.75 0.71 0.70

Model 16 E 0.72 0.65 0.68 0.71 0.69 0.66

RMSE 16.51 16.64 16.73 18.07 16.93 16.87

AIC 10755.21 10785.29 10805.98 4757.26 4650.19 4644.36

BIC 10761.46 10791.54 10812.23 4762.66 4655.59 4649.76

DD-MLR 29 R 0.80 0.82 0.75 0.76 0.72 0.70

Model 17 E 0.67 0.68 0.65 0.62 0.61 0.52

RMSE 16.03 16.62 18.56 16.87 19.25 21.76

AIC 10642.06 10780.68 11204.07 4644.36 4861.19 5062.56

BIC 10648.31 10786.93 11210.32 4649.76 4866.59 5067.96

DD-MLR 30 R 0.76 0.73 0.67 0.72 0.65 0.62

Model 18 E 0.62 0.60 0.59 0.58 0.57 0.51

RMSE 18.03 18.62 19.03 18.06 18.65 18.98

AIC 11092.96 11216.45 11299.97 4756.35 4809.17 4837.98

BIC 11099.21 11222.70 11306.23 4761.75 4814.57 4843.39

DD-MLR 39 R 0.70 0.66 0.63 0.65 0.60 0.57

Model 19 E 0.60 0.57 0.54 0.58 0.58 0.50

RMSE 18.87 19.65 19.76 19.05 19.62 19.87

AIC 11267.59 11422.93 11444.33 4844.03 4892.47 4913.27

BIC 11273.85 11429.18 11450.59 4849.44 4897.88 4918.68

DD-MLR 48 R 0.68 0.61 0.57 0.61 0.57 0.55

Model 20 E 0.59 0.55 0.54 0.55 0.53 0.49

RMSE 15.76 17.21 18.98 19.52 19.66 19.89

AIC 10576.92 10914.46 11289.88 4884.08 4895.82 4914.93

BIC 10583.17 10920.71 11296.14 4889.48 4901.22 4920.33
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6.2 Daily distributed data MLR models

The daily distributed input MLR models are devel-
oped as discussed above. The distributed data
model has increased number of parameters to be
estimated for same number of lagged input as that
of lumped data. This leads to increased complexity
in model parameter estimation. Also the number
of parameters became laborious and time consum-
ing with lengthy equations while using it for test-
ing. The other limitations of DD-MLR model is
that the length of data used is 15 years (common
for all stations). The performances of distributed
data MLR models during training and testing
period are analyzed and are depicted in table 6.
From table 6, it is also noticed that the perfor-
mances of all the models are slightly deteriorating
when lead time is increased from 1 day to 3 days.
On studying the distributed cause-effect models,
namely, DD-MLR model 1 to DD-MLR model 7
(table 6), it can be observed that the performance
of the models during training and testing are
comparable and there is gradual improvement in

performances of input up to 4-day lags (i.e., from
DD-MLR model 1 to DD-MLR model 5) and there-
after the performance has slightly deteriorated.
However, the performance of DD-MLR cause-effect
models is inferior to DL-MLR as well as ARIMA
models. This indicates that the accuracy of the
parameter governs the prediction results in linear
models.

Analyzing the results of combined models in
table 6 (DD-MLR model 8 to DD-MLR model 20)
it is apparent that all the combined models show
satisfactory results during training and testing.
However, combined DD-MLR model 17 outper-
formed all the models. Combined DD-MLR model
17 with 1 day lead period during testing which used
29 input variables showed best performances (test-
ing) as evident from highest R (0.76) and E (0.62).
Hence, DD-MLR model 17 is selected as the best
model among combined models as well as among
cause-effect models. In comparison with best cause-
effect DD-MLR model 5 to best combined model
DD-MLR model 17 ‘R’ value is increased from 0.62
to 0.76 and ‘E’ value is increased from 0.55 to 0.62.
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Figure 4. Scatter plot of observed and multi-time-step ahead predicted inflow by best DD-MLR model 17 during testing
(combined input).
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The number of input variables are reduced from 45
to 29 which show that distributed combined mod-
els performed better than distributed cause-effect
models even with lesser number of inputs. The scat-
ter plot of observed inflow and the predicted inflow
from combined DD-MLR model 17 during testing
period with lead period of 1 day, 2 days and 3 days
is shown in figure 4. Visual inspection of figures
reveals that as the lead period increases the per-
formance deteriorated. The identified MLR model
performed fairly better in the prediction of low and
medium inflow but failed in prediction of non-linear
peak inflows.

7. Conclusions

This study investigated the applicability and
capability of multi-linear regression models in
inflow forecasting for the Koyna watershed in
Maharashtra, India into the Koyna reservoir. The
dataset includes daily rainfall and inflow data for
a period of 47 years. Seventy percent of dataset
are used for model building and remaining is used
for testing the models. Twenty models are devel-
oped based on different input structure combi-
nation as time-series, cause-effect and combined
models and also their performances are evaluated
and tested. The results of time-series input models
are compared with ARIMA models. Based on the
results it may be concluded that deterministic and
stochastic models perform equally good, if data
length is sufficiently longer. For lumped data, DL-
MLR model 18 with input combination of P (t−1),
P(t), Q(t) showed better performance with a high-
est R of 0.80 during testing. However, for dis-
tributed data models, DD-MLR model 17 having
29 inputs showed better performance of R (0.76)

and E (0.62) during testing. It is also observed
that even though performances of both lumped
and distributed data are encouraging, lumped daily
data models slightly performed better. The rea-
son may be length of the data available for dis-
tributed model is less than lumped data models
as well large number of input variables increased
the complexity of the model and reduced the
performance.

8. Practical significance

Even though large numbers of sophisticated rainfall
runoff models are available in the literature, many
suffer from various drawbacks such as data inten-
sive; require large computational time and high
skill for successful application. However, field engi-
neers are familiar with the application of empirical
models developed for particular watershed. Hence
the approach of this study will help field engineers
to develop such types of models. The best MLR
equation is currently in use by the dam authorities
at dam site.
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Appendix I

Table A1. Model types and input combinations (daily lumped data).

No. of input
Model type Input variables variables Output variables

Time-series models
DL Model 3 Q(t−2), Q(t−1), Q(t) 3 Q(t+1) Q(t+2) Q(t+3)

DL Model 6 Q(t−5), Q(t−4), Q(t−3), Q(t−2), Q(t−1), Q(t) 6 Q(t+1) Q(t+2) Q(t+3)

Cause-effect models
DL Model 10 P(t−2), P(t−1), P(t) 3 Q(t+1) Q(t+2) Q(t+3)

DL Model 14 P(t−6), P(t−5), P(t−4), P(t−3), P(t−2), P(t−1), P(t) 7 Q(t+1) Q(t+2) Q(t+3)

Combined models
DL Model 19 P(t−2), P(t−1), P(t), Q(t−1),Q(t) 5 Q(t+1) Q(t+2) Q(t+3)

DL Model 20 P(t−3), P(t−2), P(t−1), P(t), Q(t−2), Q(t−1), Q(t) 7 Q(t+1) Q(t+2) Q(t+3)

*DL: Daily-lumped input data, time ‘t’ is in days.
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Appendix II

Table A2. Model types and input combinations (daily distributed data).

No. of input
Model type Model inputs variables Output variable

Cause-effect models
DD Model 3 P1(t−2), P1(t−1), P1(t), P2(t−2), P2(t−1), P2(t), P3(t−2), P3(t−1), P3(t), 27 Q(t+1) Q(t+2) Q(t+3)

P4(t−2), P4(t−1), P4(t), P5(t−2), P5(t−1), P5(t), P6(t−2), P6(t−1), P6(t),

P7(t−2), P7(t−1), P7(t), P8(t−2), P8(t−1), P8(t), P9(t−2), P9(t−1), P9(t)

DD Model 7 P1(t−6), P1(t−5), P1(t−4), P1(t−3), P1(t−2), P1(t−1), P1(t), 63 Q (t+1) Q(t+2) Q(t+3)

P2(t−6), P2(t−5), P2(t−4), P2(t−3), P2(t−2), P2(t−1), P2(t),

P3(t−6), P3(t−5), P3(t−4), P3(t−3), P3(t−2), P3(t−1), P3(t),

P4(t−6), P4(t−5), P4(t−4), P4(t−3), P4(t−2), P4(t−1), P4(t),

P5(t−6), P5(t−5), P5(t−4), P5(t−3), P5(t−2), P5(t−1), P5(t),

P6(t−6), P6(t−5), P6(t−4), P6(t−3), P6(t−2), P6(t−1), P6(t),

P7(t−6), P7(t−5), P7(t−4), P7(t−3), P7(t−2), P7(t−1), P7(t),

P8(t−6), P8(t−5), P8(t−4), P8(t−3), P8(t−2), P8(t−1), P8(t),

P9(t−6), P9(t−5), P9(t−4), P9(t−3), P9(t−2), P9(t−1), P9(t)

Combined models
DD Model 17 P1(t−2), P1(t−1), P1(t), P2(t−2), P2(t−1), P2(t), P3(t−2), P3(t−1), P3(t), 29 Q(t+1) Q(t+2) Q(t+3)

P4(t−2), P4(t−1), P4(t), P5(t−2), P5(t−1), P5(t), P6(t−2), P6(t−1), P6(t),

P7(t−2), P7(t−1), P7(t), P8(t−2), P8(t−1), P8(t), P9(t−2), P9(t−1),

P9(t),Q(t−1),Q(t)

*DD: Daily-distributed data input, time ‘t’ is in days.

Appendix III

Table A3. Model performance criteria.

Pearson’s correlation coefficient (R)

∑N
t=1

[
Qobs (t) − Qobs

] [
Qest (t) − Qest

]

√
∑N

t=1

[
Qobs (t) − Qobs

]2 [
Qest (t) − Qest

]2

Nash–Sutcliffe efficiency (E) E =
E1 − E2

E1

E1 =
N∑

t=1

[
Qobs (t) − Qobs

]2

, E2 =
N∑

t=1
[Qest (t) − Qobs (t)]

2

Root mean square error (RMSE) RMSE =

√∑n
i=1 (Qobs (t) − Qest (t))2

n

Akaike information criterion (AIC) AIC = m ln (RMSE) + 2n
Bayesian information criterion (BIC) BIC = m ln (RMSE) + n ln (m)

where Qobs(t) is the observed runoff at time t and Qest(t) is the estimated runoff at time t. N is the total number of runoff

data points estimated from the model. Qobs the mean observed runoff and Qest the mean estimated runoff. m is the number
of input-output patterns, and n is the number of parameters to be estimated.
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